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Roadmap
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 Motivation and prior art 

 Multi-kernel learning (MKL) via random feature (RF) approximation

 Online MKL with RF in environments with unknown dynamics

 Performance via regret analysis and real data tests

 Online MKL over graphs 
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Motivation

Nonlinear dimension reduction Nonlinear classification Nonlinear regression

 Nonlinear function models widespread in real-world applications

Massive scale Unknown nonlinearity Unknown dynamics

 Challenges and opportunities
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Learning functions from data
Goal: Given data      , find f  to model  

 Even unsupervised tasks boil down to function learning
 E.g., dimensionality reduction, clustering, anomaly detection …

y

x

Ex1. Regression: Curve fitting for e.g. temperature forecasting

Ex2. Classification: For e.g., disease diagnosis

[P. Spetsieris et al PNAS 2015]
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Learning functions with kernels
Goal: Given data      , find f  to model  

 Reproducing kernel Hilbert space (RKHS)  

cost regularizer

kernel

How can we choose the
appropriate kernel?

Ex. Gaussian (RBF) kernel
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The curse of dimensionality

Curse of Dimensionality (CoD)! , complexity grows with T

 Representer Thm.

Ex. L2-norm cost and L2-norm regularizer: ridge regression

 Keep all data samples in memory
…

T

…

 Not scalable; and not suitable for streaming data



7

Budget-constrained approaches

 Budget-constrained kernel-based learning (KL-B) [Kivinen et al’ 04], [Dekel et al’ 08]

 Keep B data samples in memory

pruning…

B

+

Challenges: choice of B? Adaptivity to unknown dynamics?

… or …

B B

discard replace
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Random features for kernel-based learning
Key idea: View normalized shift-invariant kernels as characteristic functions

 Unbiased estimator                                           via 2Dx1 random feature (RF) vector

Dimensionality  
not growing with T

 Draw D random vectors from pdf to find kernel estimate

 Function estimate

RFs

A. Rahimi and B. Recht, “Random features for large scale kernel machines,”  
Proc. Advances in Neural Info. Process. Syst., pp. 117-1184, Canada, Dec. 2008.
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Multi-kernel learning
 Given dictionary of kernels             , let                                

 Richer space of functions, but batch MKL also challenged by the CoD

 Idea: RFs to the rescue

 Online loss per kernel-based learner 
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Random feature based multi-kernel learning
 Raker: Acquire data vector xt per slot t , and run  

S1. Parameter update   

S3. Function update

S2. Weight update  KL-divergence

Y. Shen, T. Chen, and G. B. Giannakis, "Online Ensemble Multi-kernel Learning Adaptive to Non-stationary and 
Adversarial Environments," Proc. of Intl. Conf. on Artificial Intelligence and Statistics, Lanzarote, April 9-11, 2018.
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Intuition and complexity of Raker

 Online (ensemble) learning with expert advice 
 Self-improvement of each expert (by updating        per RF kernel estimator)

 function update

 Per iteration complexity comparison with online (O) MKL and budgeted (B) MKL

MKL OMKL OMKL-B Raker
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Adaptive Raker for unknown dynamics
Q. What if the function changes over time?

 Challenge: Optimal stepsize depends on the dynamics – what if unknown?

 Idea: Combine weighted Raker learners with different step sizes

s2.       : Raker active at interval I,  with stepsize

AdaRaker steps: A multiresolution design

s1. Add new Rakers at the beginning of intervals with progressively larger lengths

Y. Shen , T. Chen and G. B. Giannakis, “Random Feature-based Online Multi-kernel Learning in Environments with 
Unknown Dynamics,” Journal of Machine Learning Research, to appear 2019.
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AdaRaker in action 

S2.  Use relative loss to update    

S1. Obtain               from active Raker learners, and incur loss 

S3. Update Raker learners           , to obtain
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Performance analysis: Static regret

 Static regret of Raker

Theorem 1. Under (a1)-(a3), Raker attains                                      w.h.p.

(a1) Per slot loss                             is convex and bounded 
(a2) Gradient                                is bounded 
(a3) Kernels              are shift-invariant, and bounded

 Sublinear implies algorithm     incurs no regret "on average”

 Online decisions benchmarked by best fixed strategy in hindsight

S. Shalev-Shwartz, “Online learning and online convex optimization,” 
Foundations and Trends in Machine Learning, vol. 4, no. 2, pp. 107–194, 2011.
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 Best switching solution

Take home: AdaRaker incurs on average no regret relative to the
optimal switching solutions in unknown dynamics 

Switching regret

 Switching regret of AdaRaker

Theorem 2. AdaRaker achieves                                         w.h.p.

 If                          

max. number 
of switches

Y. Shen , T. Chen and G. B. Giannakis, “Random Feature-based Online Multi-kernel Learning in Environments with 
Unknown Dynamics,” Journal of Machine Learning Research, to appear 2019.
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Synthetic test

 RBF kernels with 

 Switching points: t = {8,000, 18,000, 26,000}

 AdaRaker adapts fastest, Raker runs fastest

, B=D=50

Runtime (sec)

AdaMKL 318.52

OMKL 157.10

RBF 47.83

Polynomial 28. 27

OMKL-B 4.02

Raker 1.53

AdaRaker 24.2
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In-home safety monitoring of elderly

Moshe Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml.

 : received signal strength (RSS) measurements from 4 anchor nodes

 : Does trajectory lead to a change of rooms?
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Activity monitoring for health and fitness

Moshe Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml.

 : triaxial acceleration and angular velocity

 : type of activity
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Forecasting air pollution in smart cities

Moshe Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml.

 : amount of different chemicals in the air

 : amount of PM2.5 in the air
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Energy consumption in smart homes

 : humidity and temperature 
outside and in different rooms

 : energy consumption

Moshe Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml.
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Contributions in context

 Budget-constrained approaches, e.g., [Kivinen et al’ 04], [Dekel et al’ 08]

 RF-based single kernel learning [Lu et al’16], [Bouboulis et al’17]

 Online function learning using kernels

 Single kernel-based approach
[Williams et al’ 01], [Sheikholeslami et al’ 17], [Rahimi-Recht’ 07], [Felix et al’ 16]

 MKL approaches [Lanckriet et al’ 04], [Bach’ 08], [Cortes et al’ 09], [Gonen-Alpaydin’ 11]

 Batch function learning using kernels

 Online scalable learning adaptive to unknown dynamics
 Data-driven multi-kernel selection
 Static and dynamic regret bounds

 Our contributions

Y. Shen , T. Chen and G. B. Giannakis, “Random Feature-based Online Multi-kernel Learning in Environments with 
Unknown Dynamics,” Journal of Machine Learning Research, to appear 2019.

and graphs



Learning over graphs
Social networks Internet Energy grids

Financial markets Brain networks Gene/protein-regulatory nets
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 Challenges: unavailable nodal attributes, privacy concern, growing networks

 Desiderata: Online graph- adaptive learning with scalability and privacy

G. B. Giannakis, Y. Shen, and G. V. Karanikolas, "Topology Identification and Learning over Graphs: 
Accounting for Nonlinearities and Dynamics,"  Proceedings of the IEEE, vol. 106, no. 5, pp. 787-807, May 2018.
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Learning graph signals
Q1. What if data are samples on vertices of a graph?

 Adjacency matrix :

Q2. How are the graph signals related to the graph topology?

Goal. Given adjacency matrix      and               , find    
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Kernel-based learning over graphs

 Graph-induced RKHS

 Representer Thm.

Q3. What if new nodes join? Scalability and adaptivity? Privacy concerns? 

：i th row of

 Graph kernels： e.g. , with Laplacian

 Functions of can capture diffusion (DF) or bandlimited (BL) kernels 

 Rely on the entire A, and lead to complexity
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RF-based learning over graphs

Our idea: treat nth column/row of adjacency ( ) as feature of node n 

^

 MKL with RF-approximation
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Graph-adaptive Raker

 GradRaker: Acquire N x1 adjacency vector per slot t , and run  

S1. Parameter update for each kernel-based learner

S2. Weight update  

S3. Function update

Y. Shen, G. Leus, and G. B. Giannakis, “Online Graph-Adaptive Learning with Scalability and Privacy,” IEEE 
Transactions on Signal Processing, 2019.



27

Merits of GradRaker

 Sequential and scalable sampling and updates with theoretical guarantees

 Sublinear regret

 Privacy-preserving scheme for each node with encrypted nodal information



 Real-time prediction for newly joining nodes



 Generalization to multi-layer networks or multi-hop neighbors

 Adaptively combine layer-based learners
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Temperature forecasting
 Nodes: 89 measurement stations in Switzerland 

 Edge weights obtained as in [Dong et al’14]

 Signals: temperatures between 1981 and 2010 

N
or

m
al
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ed

 ru
nt
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e

Y. Shen, G. Leus, and G. B. Giannakis, “Online Graph-Adaptive Learning with Scalability and Privacy,” IEEE 
Transactions on Signal Processing, 2019.



29

Contributions in context

 Single kernel-based approach
e.g., [Kondor et al 02], [Zhu et al 04], [Chen et al’ 14] [Merkurjev et al’ 16], [Segarra et al’ 17] 

 MKL approaches [Romero et al’ 17], [Ioannidis et al’ 18]

 Graph-kernel/filter based learning

 Sequential scalable function learning for growing networks
 Privacy-preserving scheme based on encrypted nodal information
 Analysis in terms of regret bounds

 Our contributions

Y. Shen, G. Leus, and G. B. Giannakis, “Online Graph-Adaptive Learning with Scalability and Privacy,” IEEE 
Transactions on Signal Processing, 2019.

 Graph based semi-supervised learning e.g., [Cortes et al’ 06], [Berberidis et al’ 18]

 Deep learning e.g., [Perozzi et al 14], [Kipf et al’ 16], [Grover et al’ 16]
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Conclusions
 (Ada)Raker

 Adaptivity, scalability, and robustness to unknown dynamics

 Sublinear regret relative to the best time-varying function approximant

 GradRaker

 Sequential sampling and evaluation of nodal attributes

 Adaptivity, scalability, privacy, and theoretical guarantee

 Representative applications 

 Elderly safety monitoring: Movement prediction, activity recognition
 Smart cities: Air pollution, energy consumption, temperature prediction

 E-commerce, financial, social, and brain networks

Thank You!



 Online subspace learning for streaming categorical data with misses [TSP17]
 Online function learning adaptive to unknown dynamics [AISTATS18] [JMLR 19]

 Scalable learning adaptive to (unknown) dynamics

31

Data science meets network science

 Data-driven kernel based nonlinear topology inference [TSP17] [TSP18]
 Tensor-based topology inference and tracking with missing observations [TSP17]

 Graph topology inference and tracking [PIEEE18]

 Graph-aware dimensionality reduction and learning [TSP17] [TSP18]
 Privacy preserving graph-adaptive learning [TSP19]

 Scalable learning adaptive to graphs
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Outlook on algorithms and fundamental limits
 Broadening the scope of function learning

 Reinforcement and deep learning

 Performance analysis

 (Non)parametric and semi-parametric learning

Scalable, resilient, intelligent learning from big (network) data!

 Function learning over graphs

 Scalable learning over growing networks

 Graph convolutional neural networks

 Adaptive sampling over graphs
 Identifying time-varying topologies

 Performance and stability analysis
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Outlook on “ML/DS+X”
 X = Biomedical engineering or Neuroscience

 Brain and gene regulatory networks
 Medical imaging
 Patient satisfaction evaluation

Thank You!

 X = Smart cities
 Traffic, power, communication networks, IoT
 Environmental data analytics

 X = Multi-agent systems
 Robotics
 Computer vision

 X = Financial and Social networks

 Price discrimination
 Recommender systems
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