Topology ID and Learning over Graphs: Accounting for Nonlinearities and Dynamics

Acknowledgments: Drs. B. Baingana, J.-A. Bazerque, P. Forero, G. Mateos, K. Rajawat, D. Romero; and V. Ioannidis, G.-V. Karanikolas, M. Ma, Y. Shen, and P. Traganitis

NSF 1514056, 1500713, 1711471
Networks as graphs ... everywhere

Social networks

Internet

Energy grids

Financial markets

Brain networks

Gene/protein-regulatory nets

Network Science

Challenges and opportunities

- Network-level challenges
 - Massive scale

- Desiderata
 - Parsimonious models of network structure
 - Efficient inference algorithms over networks

- Framework: Cross-roads of machine learning, statistical SP, optimization, networking
Linear structural equation models

- Setting: \(N \) nodes over which “observable” processes propagate [Goldberger’72,Kaplan’09]

\[
y_{it} = \sum_{j \neq i} a_{ij} y_{jt} + b_{ii} x_{it} + e_{it}
\]

\(i = 1, \ldots, N \)
\(t = 1, \ldots, T \)

Goal: Given \(\{x_{it}, y_{it}\} \), estimate \(\{a_{ij}, b_{ii}\} \) to capture directed dependencies \(a_{ij} \neq a_{ji} \)

Theorem 1. If \(a_{ii} = 0, b_{ii} \neq 0, \forall i, b_{ij} = 0, \forall i \neq j \), then \(A \) and \(B \) identifiable if \(kr_X^T > 2 \max_{\text{deg}}(G) \), \(X := [x_1 \ldots x_T] \)

OK if \(T > 2N \)

From single- to multi-layer SEMs

- Generalizes linear SEM to multi-layer settings
- Layers can model exogenous variables and time snapshots or lags

Multilayer linear SEMs

- Per node

\[y_{it}^{(\ell)} = \sum_{j \neq i} a_{ij}^{(\ell)} y_{jt}^{(\ell)} + \sum_{\ell' \neq \ell} \sum_{j} a_{ij}^{(\ell',\ell)} y_{kt}^{(\ell')} + e_{it}^{(\ell)} \]

Intra-layer term \[y_{it}^{(\ell)} = \sum_{j \neq i} a_{ij}^{(\ell)} y_{jt}^{(\ell)} \]

Inter-layer term \[\sum_{\ell' \neq \ell} \sum_{j} a_{ij}^{(\ell',\ell)} y_{kt}^{(\ell')} + e_{it}^{(\ell)} \]

- Matrix form

\[Y^{(\ell)} = Y^{(\ell)} A^{(\ell)} + \sum_{\ell' \neq \ell} Y^{(\ell')} A^{(\ell',\ell)} + E^{(\ell)}, \quad \ell = 1, \ldots, L \]

Goal: Given \(\{Y^{(\ell)}\}_{\ell=1}^{L} \) find \(\{A^{(\ell)}\}_{\ell=1}^{L}, \{A^{(\ell',\ell)}\}_{\ell \neq \ell'} \)

- Identifiability

Theorem 2. If \(Y = [Y^{(1)} \ldots Y^{(L)}] \), and \(\text{kr}_Y > 2 \max_{\text{deg}(G)} \), then \(\{A^{(\ell',\ell)}\}_{\ell \neq \ell'}, \{A^{(\ell)}\}_{\ell=1}^{L} \) identifiable

- Estimation via e.g., ordinary or regularized least-squares (LS)

Simulated and real data tests

- **Synthetic network**, $N=40$, $L = 4$ (each layer corresponds to a block diagonal)

- **US economic sectors**, $N=40$ industries, $L = 7$ sectors (textiles, automotive …)
Topology tracking from network cascades

Contagions

Popular news stories

Infectious diseases

Buying patterns

Network topologies:
Unobservable, dynamic, sparse

Topology inference vital:
Viral advertising, healthcare policy

Desiderata: track unobservable time-varying network topology from cascade traces

Linear dynamic SEMs

- **Data:** Infection time of node i by contagion c during interval t

$$y_{ic}^t = \sum_{j \neq i} a_{ij}^t y_{jc}^t + b_{ii}^t x_{ic}^t + e_{ic}^t$$

$$Y_t = A_t Y_t + B_t X_t + E_t, \quad t = 1, \ldots, T$$

Goal: Given data $\{Y_t, X_t\}$, track topology $\{A_t\}$ and external influences $\{B_t\}$

- **Q:** How do network topologies evolve?
 - **Switching** among discrete states $\sigma(t) \in \{1, \ldots, S\}$
 - **Slow-varying** network topologies A_t changes slowly; e.g., Facebook

Tracking slowly-varying topologies

- Structural spatio-temporal properties
 - Slowly time-varying topology
 - Sparse edge connectivity, \#edges = \mathcal{O}(\#\text{nodes})

- Sparsity-promoting exponentially-weighted LS estimator (EWLSE)

\[
\{\hat{A}_t, \hat{B}_t\} = \arg\min_{A,B} \left(1/2\right) \sum_{\tau=1}^{t} \beta^{t-\tau} \|Y_\tau - AY_\tau - BX_\tau\|_F^2 + \lambda_t \|A\|_1 \quad \text{s.t. } a_{ii} = 0, \quad b_{ij} = 0, \quad \forall \ i \neq j
\]

- **Edge sparsity** encouraged by ℓ_1-norm regularization with $\lambda_t > 0$
- **Tracking** dynamic topologies possible if $\beta < 1$ ($\beta \in (0, 1]$)

- **Solver**: proximal-splitting optimization methods [Daubechies et al’04]
The rise of Kim Jong-un

- Web mentions of “Kim Jong-un” tracked from Mar.’11 to Feb.’12

- $N = 360$ websites, $C = 466$ cascades, $T = 45$ weeks

Increased media frenzy following Kim Jong-un’s ascent to power in 2011

Data: SNAP’s “Web and blog datasets” http://snap.stanford.edu/infopath/data.html
Identifiability of SEMs with input statistics?

- Limited access to input x
 - Privacy concerns
 - Not explicitly available

Goal: Given statistics of $\{y_t, x_t\}$ identify and track hidden directed network topology

$$y_t = Ay_t + Bx_t \quad \Rightarrow \quad y_t = (I - A)^{-1}Bx_t = Ax_t$$

- Covar. over segment m $R_y^m := \mathbb{E}\{y_t y_t^\top\}$, $t \in [\tau_m, \tau_{m+1} - 1]$, $m = 1 \ldots M$

How much did you invest in Apple stock yesterday? Uh ... not gonna say, man It's private!
Network snapshots as tensor slabs

Tensor slab

\[R^y_m = A \text{Diag}(\rho^x_m) A^\top \]

Partially symmetric PARAFAC

\[R^y = \sum_{i=1}^{N} \alpha_i \circ \alpha_i \circ r^x_i \]

Proposition 1: If \(a_{ii} = 0, b_{ii} \neq 0, \forall i, b_{ij} = 0, \forall i \neq j \), then \(A \) and \(B \) are uniquely expressible in terms of \(A \) as \(B = (\text{Diag}[A^{-1}])^{-1} \) and \(A = I - (\text{Diag}(A^{-1}))^{-1} A^{-1} \)

Theorem 2a. If \(kr^x_R > 1 \), and \(R^x \) available, then \(A \) is identifiable.

Theorem 2b. If \(kr^x_R > 1 \), but \(R^x \) unknown, \(A \) identifiable within permutations (finite!)

Real stock networks

- Dec. 23, 2011 to Sep. 30, 2016 (1,200 days), $M = 12$ time segments
- 100 runs each with random initialization

- Strong connectivity among major technology companies
- Stronger connectivity between Macy’s and Nordstrom
Linear structural vector autoregressive models

- Edge weights capture directed causal dependencies.
- Edge sparsity: only a few $a_{i,j}^\ell$ are nonzero.

Endogenous variables here played by lagged exogenous.

$$y_{jt} = \sum_{i \neq j} a_{i,j}^0 y_{it} + \sum_{i=1}^N \sum_{\ell=1}^L a_{i,j}^\ell y_{j(t-\ell)} + e_{jt}$$

From linear to nonlinear SVARMs

\[y_{jt} = \tilde{f}_j(y_{-jt}, \{y_{t-\ell}\}_{\ell=1}^L) + e_{jt}, \quad j = 1, \ldots, N \]

Idea: Reduce complexity using a generalized additive model

\[\tilde{f}_j(y_{-jt}, \{y_{t-\ell}\}_{\ell=1}^L) = \sum_{i \neq j} \tilde{f}_{ij}^0(y_{it}) + \sum_{i=1}^N \sum_{\ell=1}^L \tilde{f}_{ij}^\ell(y_{i(t-\ell)}) \]

\[\tilde{f}_{ij}^\ell(y) := a_{ij}^\ell f_{ij}^\ell(y) \quad a_{ij}^\ell \in \{0, 1\} \]

- Linear SVARM is special case

- Draw each univariate function from a reproducing kernel Hilbert space (RKHS)

\[\mathcal{H}_i^\ell := \{ f_{ij}^{\ell} \mid f_{ij}^{\ell}(y) = \sum_{t=1}^\infty \beta_{ij}^{\ell} \kappa_i^{\ell}(y, y_{i(t-\ell)}) \} \]

\[\{ \hat{f}_{ij}^{\ell} \} = \arg \min_{\{f_{ij}^{\ell} \in \mathcal{H}_i^\ell\}} \frac{1}{2} \sum_{t=1}^T \left[y_{jt} - \sum_{i \neq j} \alpha_{ij}^0 f_{ij}^0(y_{it}) - \sum_{i=1}^N \sum_{\ell=1}^L \alpha_{ij}^\ell f_{ij}^\ell(y_{it}) \right]^2 + \lambda \sum_{i=1}^N \sum_{\ell=0}^L \Omega(\|a_{ij}^\ell f_{ij}^\ell\|_{\mathcal{H}^\ell}) \]

Edge sparsity leads to group-sparsity

- Representer theorem [Wahba et al’90]
 \[\hat{f}_{ij}(y) = \sum_{t=1}^{T} \beta_{ijt}^{\ell} \kappa_i^{\ell}(y, y_{i(t-\ell)}) \]

- \(\alpha_{ij}^{\ell} := a_{ij} \beta_{ij}^{\ell} \), \(\beta_{ij}^{\ell} := [\beta_{ij1}^{\ell}, \ldots, \beta_{ijT}^{\ell}]^\top \), \([K_i^\ell]_{t,\tau} = \kappa_i^{\ell}(y_{it}, y_{i(\tau-\ell)}) \)

\[
\{\hat{\alpha}_{ij}^{\ell}\} = \arg\min_{\hat{\alpha}_{ij}^{\ell} = 0, \{\alpha_{ij}^{\ell}\}} \frac{1}{2} \left\| Y - \sum_{l=1}^{L} K^l W_{\alpha}^l \right\|_F^2 + \lambda \sum_{\ell=0}^{L} \sum_{j=1}^{N} \sum_{i=1}^{N} \sqrt{(\alpha_{ij}^{\ell})^\top K_i^\ell \alpha_{ij}^{\ell}}
\]

- \(Y := [y_1, \ldots, y_N] \in \mathbb{R}^{T \times N} \), \(\bar{K}^\ell := [K_1^\ell \ldots K_N^\ell] \)

- Edge sparsity \(\Rightarrow \) group sparsity of \(W_{\alpha}^\ell \)

\[W_{\alpha}^\ell := \begin{bmatrix} \alpha_{11}^\ell & \cdots & \alpha_{1N}^\ell \\ \vdots & \ddots & \vdots \\ \alpha_{N1}^\ell & \cdots & \alpha_{NN}^\ell \end{bmatrix} \]

Bottomline: Nonzero \(\{\alpha_{ij}^{\ell}\} \) reveal edges; ADMM solver

- Multi-kernels can choose optimal kernel combination from a prescribed dictionary of kernels
Simulated test

- Synthetic graph via Erdős–Rényi model, $N=20$, $T=40$
 - $p = 0.3$ \[\alpha_{ij}^\ell \sim \mathcal{N}(0, I) \]
 - $\sigma_e = 0.1$

Graphs:
- Polynomial SVARM
- Linear SVARM

![Graphs showing performance metrics for Polynomial and Linear SVARM models.]
Brain is densely networked

- **Data**: electrocorticography (ECoG) data for epilepsy [Kramer et al’ 08]
 - \mathbf{Y}: ECoG data samples
 - $N = 76$ electrodes, $T = 200$ samples, $L=1$

- Diffusion of information is inhibited after the onset of an epileptic seizure

Identifying connectivity of meshed power grids

- Grid of $N=14$ buses; nodal vectors are voltage angle time courses
 - IEEE-14 bus benchmark; voltage angles obtained using MATPOWER

- Real load data from 2012 Global Energy Forecasting Competition

- Nonlinear predictors improve ID of mesh grid connectivity

Interpolating and extrapolating over networks

- Undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with $|\mathcal{V}| = N$

- Process y_{nt} per node n, timeslot t
 - Only measure $M < N$ nodes (e.g., link counts, delays)

 $$z_t = M_t y_t + \epsilon_t$$

 $$z_t := [z_{1t}, \ldots, z_{Nt}]^\top, \quad y_t := [y_{1t}, \ldots, y_{Mt}]^\top$$

 - Rows of M_t selected from $I_{N \times N}$

Goal: Impute misses and predict y_t from selected node observations z_t

Motivating application: Estimate network delays

Graph-regularized dictionary learning approach

- Generalizes low-rank based matrix completion that cannot predict!

- Adopt and learn basis and expansion coefficients \((y_t = Bs_t)\)

\[
\text{arg min}_{S, B: \{\|b_q\|_2 \leq 1\}^Q_{q=1}} \sum_{t=1}^{T} \left[\|z_t - M_t Bs_t\|_2^2 + \lambda_s \|s_t\|_1 + \lambda_w s_t^\top B^\top L Bs_t \right]
\]

Dictionary: \(N \times Q\)
Sparse coefficients
Graph Laplacian
Smoothness over graph

- With adjacency matrix \(A\), graph Laplacian \(L := \text{Diag}(A1_N) - A\)

\[
s_t^\top B^\top L Bs_t = \left(1/2\right) \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} (y_{it} - y_{jt})^2
\]

promotes smoothness
Test case: Internet2

- Link count measurements: $L=54$, $T=2,000$
 (other features possible, e.g., delays)

Training phase – 30 links measured

Operational phase – 30 links predicted

- Prediction improves as link load increases
Performance comparisons

- Normalized prediction error: \(\text{NPE} := \frac{1}{L t_0} \sum_{\tau=1}^{t_0} \| y_\tau - \hat{y}_\tau \|_2^2 \)

 - \(Q = \) number of columns of \(B; \ t_0 = 2,000 \)

- Gravity-based [Zhang et al’05]; Diffusion wavelets [Coifman-Maggioni’07]

- Graph-regularized DL with semi-supervised predictor outperforms alternatives
Graph-adaptive kernel-based interpolation

\[z_t = M_t y_t + \epsilon_t \quad \text{with} \quad M_t \in \{0, 1\}^{M \times N}, \quad M < N \]

Goal: Given \(z_t, M_t, \) and \(G_t \), estimate \(y_t \)

- **RKHS model:** \(y_t \in \mathcal{H}_{K_t} \iff y_t = K_t \alpha_t, \quad \alpha_t \in \mathbb{R}^N \)
 - Graph-dependent symmetric \(K_t \geq 0 \)
 - Ex. Laplacian \((L_t) \) family \(K_t := r^{-1}(L_t) \)

- **Kernel ridge regression (KRR)** [Smola-Kondor '03]

\[
\hat{y}_t = \arg \min_{y} \frac{1}{M} \|z_t - M_t y\|_2^2 + \mu \|y\|_{K_t}^2 \\
= K_t M_t^T (M_t K_t M_t^T + \mu M I_M)^{-1} z_t
\]

Spatio-temporal processes on graphs

\[\mathbf{z}_t = \mathbf{M}_t \mathbf{y}_t + \mathbf{\epsilon}_t \]

- **Superimposed state model** for e.g., packet delays, stock values, temperature, …

\[\mathbf{y}_t = \mathbf{y}_t^{(\nu)} + \mathbf{y}_t^{(\chi)}, \quad \mathbf{y}_t^{(\chi)} = \mathbf{A}_{t,t-1} \mathbf{y}_{t-1}^{(\chi)} + \mathbf{\eta}_t, \quad t = 1, 2, \ldots \]

- Spatial \(\mathbf{y}_t^{(\nu)} \) temporally uncorrelated ('fast' dynamics across slots)

- Spatio-temporal \(\mathbf{y}_t^{(\chi)} \) VARM ('slow' dynamics; trend)

- **Space-time kriging ridge regression (KRR)**

\[
\arg \min_{\{\mathbf{y}_t^{(\chi)}, \mathbf{y}_t^{(\nu)}\}_{t'}} \sum_{t'=1}^{t} \frac{1}{M_{t'}} \| \mathbf{z}_{t'} - \mathbf{M}_{t'} \mathbf{y}_{t'}^{(\chi)} - \mathbf{M}_{t'} \mathbf{y}_{t'}^{(\nu)} \|^2_2 + \mu_1 \sum_{t'=1}^{t} \| \mathbf{y}_{t'}^{(\chi)} - \mathbf{A}_{t',t'-1} \mathbf{y}_{t'-1}^{(\chi)} \|^2_{K_{t'}^{(\eta)}} \\
+ \mu_2 \sum_{t'=1}^{t} \| \mathbf{y}_{t'}^{(\nu)} \|^2_{K_{t'}^{(\nu)}}
\]

Result. KeKriKF produces the sequence of filtered \(\{\hat{\mathbf{y}}_{t'}^{(\chi)}, \hat{\mathbf{y}}_{t'}^{(\nu)}\}_{t'=1}^{t} \)

Temperature reconstruction

- Temperature sensor network $N=109$
 - Compare reconstruction NMSE per day

![Graph showing NMSE over time for different methods](image)

GDP prediction

- Financial network between $N=127$ countries
 - Track gross domestic product (GDP) at an unobserved country

Joint ID of topologies and signals on graphs

Q: What if topology unknown and just a subset of data available due to privacy/large-scale?

- Linear SEM: \(\mathbf{y}_l = \mathbf{A}\mathbf{y}_l + \mathbf{\eta}_l \)
- Measurements: \(\mathbf{z}_l = \mathbf{M}_l\mathbf{y}_l + \mathbf{\epsilon}_l \)
- \(\mathbf{M}_l \times N \quad l = 1, \ldots, L \)

Goal: Given \(\{\mathbf{z}_l, \mathbf{M}_l\}_{l=1}^L \), identify \(\mathbf{A} \) and \(\{\mathbf{y}_l\}_{l=1}^L \)

- Joint inference of signals and (directed) graphs (JISG)

\[
\min_{\mathbf{A} \in \mathcal{A}, \{\mathbf{y}_l\}_{l=1}^L} \sum_{l=1}^L \|\mathbf{y}_l - \mathbf{A}\mathbf{y}_l\|_2^2 + \sum_{l=1}^L \|\mathbf{z}_l - \mathbf{M}_l\mathbf{y}_l\|_2^2 + \lambda_1\|\mathbf{A}\|_1 + \lambda_2\|\mathbf{A}\|_F^2
\]

- BCD/ADMM solver: Guaranteed convergence at reduced complexity (separable per \(l \))

- Generalizable to nonlinear SEM; multi-layer; and dynamic signals and graphs

Testing JISG on gene-regulatory networks

- $N=39$ immune-related genes; $L=69$ unrelated individuals; y: gene expression level
- SEM oracle observes all genes $M=39$ (left); **JISG** with $M=31$ (right)

- $NMSE$ for $\{\hat{y}_l\}_{l=1}^L = 0.017$
- JISG-based recovery similar to that of the oracle

Goal: Given subset of user-item ratings, rank ‘N-best’ candidates of unavailable ratings

- Sparse linear model (SLIM) of ratings: SEM followed by interpolation and ranking

\[
\min \left\{ a_{ii'} \right\} \left\| r_i - \sum_{i'} a_{ii'} r_{i'} \right\|^2_2 + \lambda \sum_{i'} |a_{ii'}| \\
\text{s.t. } a_{ii} = 0, \quad a_{ii'} \geq 0 \quad \forall i'.
\]

Our idea: Instead of SLIM, employ sparse nonlinear SVARM with \(L=0 \) (SNIM)

Movielens dataset

- 3,706 users; 6,040 movies; and 1M ratings

 - **Training set**: 97% randomly sampled ratings; **Probe set**: All 5 star ratings in testing set
 - # hits: number of ratings in probe set that also appear in the recommendation list

 ![Graphs showing recall and precision](image)

 Recall \((N_r) = \text{#hits} / \text{#probe}\)

 Precision \((N_r) = \text{recall}(N_r) / N_r\)

 - Here SNIM outperforms SLIM by a slim margin

Current research and outlook

- **Topology identification** – a “deterministic” RKHS-based approach
 - Directed and linear multi-layer graphs are allowed with identifiability guarantees
 - Nonlinear dependencies accommodated through multi-kernel regression
 - Slow-varying and switching dynamics can be afforded

- **Learning of processes on graphs**
 - Interpolation and extrapolation from partially-observed processes on graphs
 - Topology can be known or unknown
 - Kernel Kriged Kalman Filtering for inference of dynamic processes

- **Ongoing research and future directions**
 - Graph-adaptive dimensionality reduction/manifold learning
 - Tracking and identifiability of nonlinear and dynamic topologies
 - RKHS-principled multi-kernel learning vis-à-vis DNNs

Thank you!