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Networks as graphs … everywhere
Social networks Internet Energy grids

Financial markets Brain networks Gene/protein-regulatory nets

Network Science

E. D. Kolaczyk, Statistical Analysis of Network Data, Springer, 2009.
D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, “The emerging field of signal processing on graphs: 
Extending high-dimensional data analysis to networks and other irregular domains,” IEEE Signal Proc. Mag., May 2013.
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Challenges and opportunities
 Network-level challenges
 Massive scale

 Framework: Cross-roads of machine learning, statistical SP, optimization, networking

 Desiderata

 Parsimonious models of network structure

 Efficient inference algorithms over networks

 Streaming data (~6,000 tweets/sec)

 Dynamic topologies

 Unobservable links

? ?
?

??
? ?

??
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Linear structural equation models
 Setting: N nodes over which “observable” processes propagate

Directed edge weight

Exogenous variable

unknown

Endogenous variable

Goal: Given                   , estimate to capture directed dependencies
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Theorem 1.  If                                                                     , then
A and B identifiable if  krX

T > 2 max_deg ( ), X := [x1…xT]
OK if
T > 2N

[Goldberger’72,Kaplan’09]

J. A. Bazerque, B. Baingana, and G. B. Giannakis, “Identifiability of sparse structural equation models for directed 
and cyclic networks,” in Proc. of Global Conf. on Signal and Info. Processing, Austin, TX, Dec. 2013.



From single- to multi-layer SEMs

 Layers can model exogenous variables and time snapshots or lags

 Generalizes linear SEM to multi-layer settings

5P. A. Traganitis, Y. Shen, and G. B. Giannakis, "Topology inference for multilayer networks," 
Proc. of INFOCOM Workshop on Network Science for Communications, Atlanta, May 2017.



Multilayer linear SEMs
 Per node

Intra-layer term Inter-layer term

P. A. Traganitis, Y. Shen, and G. B. Giannakis, "Topology inference for multilayer networks," 
Proc. of INFOCOM Workshop on Network Science for Communications, Atlanta, May 2017.

Theorem 2. If Y:= [Y(1)… Y (L) ], and krY > 2 max_deg( ), then      , identifiable 

 Identifiability

 Estimation via e.g., ordinary or regularized least-squares (LS)

Goal: Given                 , find                   , 

 Matrix form
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 Synthetic network, N=40, L = 4 (each layer corresponds to a block diagonal)

Ground-truth Single layer SEM Multilayer SEM

 US economic sectors, N=40 industries, L = 7 sectors (textiles, automotive …)

Ground-truth Single layer SEM Multilayer SEM

Simulated and real data tests
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Topology tracking from network cascades

Popular news stories

Infectious diseases
Buying patterns

Propagate in cascades
over implicit networks

Network topologies:

Unobservable, dynamic, sparse

Topology inference vital:

Viral advertising, healthcare policy

B. Baingana, G. Mateos, and G. B. Giannakis, ``Dynamic structural equation models for social network topology 
inference,'' IEEE J. of Selected Topics in Signal Processing, vol. 8, no. 4, pp. 563-575, Aug. 2014.

Desiderata: track unobservable time-varying network topology from cascade traces

Contagions
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Q: How do network topologies evolve?

Facebook friends
Liberal/conservative retweet network

Major debate Ordinary times

Linear dynamic SEMs

B. Baingana, G. Mateos, and G. B. Giannakis, ``Dynamic structural equation models for social network topology 
inference,'' IEEE J. of Selected Topics in Signal Processing, vol. 8, no. 4, pp. 563-575, Aug. 2014.

 Switching among discrete states

e.g., Tweets during political/sports events

 Slow-varying network topologies
changes slowly; e.g., Facebook 

Goal: Given data , track topology          and external influences  

 Data: Infection time of node i by contagion c during interval t
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Tracking slowly-varying topologies

 Structural spatio-temporal properties

 Slowly time-varying topology

 Sparse edge connectivity,  

 Solver: proximal-splitting optimization methods [Daubechies et al’04]

 Tracking dynamic topologies possible if    

 Sparsity-promoting exponentially-weighted LS estimator (EWLSE)

 Edge sparsity encouraged by     -norm regularization with 
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The rise of Kim Jong-un

t = 10 weeks t = 40 weeks

 Web mentions of “Kim Jong-un” tracked from Mar.’11 to Feb.’12

 N = 360 websites, C = 466 cascades, T = 45 weeks

Data: SNAP’s “Web and blog datasets” http://snap.stanford.edu/infopath/data.html

Kim Jong-un – Supreme leader of N. Korea

Increased media frenzy following Kim 
Jong-un’s ascent to power in 2011
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Identifiability of SEMs with input statistics? 

 Limited access to input x How much did 
you invest in 
Apple stock 
yesterday?

Uh … not gonna
say, man …. 
It’s private!

 Privacy concerns

 Not explicitly available

Goal:  Given statistics of                identify 
and track hidden directed network topology
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 Covar. over segment m



Network snapshots as tensor slabs

Partially symmetric PARAFAC

= + ……+ +

 Tensor slab

Proposition 1:  If                                                                     , 
then A and B are uniquely expressible in terms of
as                                    and

Y. Shen, B. Baingana, and G. B. Giannakis, "Tensor decompositions for identifying directed graph topologies and 
tracking dynamic networks," IEEE Transactions on Signal Processing, vol. 65, no. 14, pp. 3675 - 3687, July 2017.

,

13

Theorem 2b.  If krR
x >1, but Rx unknown, A identifiable within permutations (finite!) 

Theorem 2a. If krR
x >1, and Rx available, then A is identifiable.



Real stock networks
 Dec. 23 , 2011  to Sep. 30 , 2016 (1,200 days), M = 12 time segments

 Strong connectivity among major technology companies

 Stronger connectivity between Macy’s and Nordstrom

92/100 68/100

 100 runs each with random initialization
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G. Chen, D. R. Glen, Z. S. Saad, J. P. Hamilton, M. E. Thomason, I. H. Gotlib, and R. W. Cox, “Vector autoregression, structural 
equation modeling, and their synthesis in neuroimaging data analysis’’ Comput. in Biology and Medicine, pp. 1142–1155, Dec. 2011.

 Edge weights              capture directed causal dependencies 

 Edge sparsity            only a few      are nonzero

unknown

Linear structural vector autoregressive models 
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 Endogenous variables here played by lagged exogenous



From linear to nonlinear SVARMs
(L+1)N-1 variables

Curse of dimensionality

Idea: Reduce complexity using a generalized additive model

(L+1)N-1 univariate functions

Y. Shen, B. Baingana, and G. B. Giannakis, “Nonlinear Structural Vector Autoregressive Models for Inferring Effective Brain 
Network Connectivity,” IEEE Trans. on Medical Imag., 2018 revised; [Online]. Available: https://arxiv.org/abs/1610.06551

0 1

0 1

 Draw each univariate function from a reproducing kernel Hilbert space (RKHS)

• Linear SVARM is special case
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Edge sparsity leads to group-sparsity

 ,

 Edge sparsity group sparsity of 

 Representer theorem [Wahba etal’90]

 , ,

Bottomline: Nonzero reveal edges; ADMM solver

 Multi-kernels can choose optimal kernel combination from a prescribed dictionary of kernels

17



Simulated test





 Synthetic graph via Erdős–Rényi model, N=20, T=40

Linear SVARMPolynomial SVARM
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Brain is densely networked

 N = 76 electrodes, T = 200 samples, L=1 Y: ECoG data samples
 Data: electrocorticography (ECoG) data for epilepsy [Kramer et al’ 08] 

 Diffusion of information is inhibited after the onset of an epileptic seizure

Linear SVARM (Preictal)

Kernel SVARM (preictal)Linear SVARM (Ictal)

Kernel SVARM (preictal) MKL SVARM (preictal)

MKL SVARM (ictal)

M. A. Kramer, E. D. Kolaczyk, and H. E. Kirsch, “Emergent network topology at seizure onset in humans,” Epilepsy 
Research, vol. 79, no. 2, pp. 173–186, May 2008. 19



Identifying connectivity of meshed power grids

 Grid of N=14 buses; nodal vectors are voltage angle time courses

L. Zhang, G. Wang, and G. B. Giannakis, "Going Beyond Linear Dependencies to Unveil Connectivity of 
Meshed Grids," Proc. of CAMSAP, Curacao, Dutch Antilles, Dec. 10-13, 2017.

 IEEE-14 bus benchmark; voltage angles obtained using MATPOWER

 Real load data from 2012 Global Energy Forecasting Competition

 Nonlinear predictors improve
ID of mesh grid connectivity 
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P. A. Forero, K. Rajawat, and G. B. Giannakis, “Prediction of partially observed dynamical processes over networks via 
dictionary learning,” IEEE Trans. Signal Processing, vol. 62, no. 13, pp. 3305-3320, 2014. 

Interpolating and extrapolating over networks

 Undirected graph                     with

 Only measure              nodes (e.g., link counts, delays) 

 Rows of         selected from 

 Process             per node    , timeslot 

selection matrix

Goal: Impute misses and predict       from selected node observations 

Motivating application: Estimate network delays 
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Graph-regularized dictionary learning approach

 Generalizes low-rank based matrix completion that cannot predict!

 With adjacency matrix A, graph Laplacian                                     

promotes smoothness

Dictionary: Sparse coefficients Graph Laplacian

 Adopt and learn basis and expansion coefficients

Smoothness over graph
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Test case: Internet2

 Prediction improves as link load increases

Training phase – 30 links measured Operational phase – 30 links predicted

 Link count measurements: L=54, T=2,000
(other features possible, e.g., delays) 
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Performance comparisons

 Graph-regularized DL with semi-supervised predictor outperforms alternatives

 Q = number of columns of B; t0=2,000

 Normalized prediction error:

 Gravity-based [Zhang et al’05]; Diffusion wavelets [Coifman-Maggioni’07]

Training with 30 links Training with 50 links
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Graph-adaptive kernel-based interpolation

Goal: Given      ,        ,  and     , estimate     

 Kernel ridge regression (KRR) [Smola-Kondor ‘03]

D. Romero, M. Ma, and G. B. Giannakis, "Kernel-based reconstruction of graph signals,“ 
IEEE Trans. on Signal Processing, vol. 65, pp. 764-778, February 2017.

 Graph-dependent symmetric    

 RKHS model:                          iff

 Ex. Laplacian         family 
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Spatio-temporal processes on graphs

K. Rajawat, E. Dall'Anese, and G. B. Giannakis, "Dynamic network delay cartography," 
IEEE Transactions on Information Theory, vol. 60, no. 05, pp. 2910-2920, May 2014. 26

 Spatio-temporal VARM (‘slow’ dynamics; trend)

 Superimposed state model for e.g., packet delays, stock values, temperature,   …           

 Spatial          temporally uncorrelated (‘fast’ dynamics across slots)

 Space-time kriging ridge regression (KRR)

Result. KeKriKF produces the sequence of filtered



Temperature reconstruction

 Temperature sensor network N=109

 Compare reconstruction NMSE per day

27
V. N. Ioannidis, D. Romero, and G. B. Giannakis, ``Inference of Spatio-Temporal Functions over Graphs 
via Multi-Kernel Kriged Kalman Filtering,’’ IEEE Trans. on Signal Processing, pp. 3228-39, June 2018.



GDP prediction

 Financial network between N=127 countries

 Track gross domestic product (GDP) at an unobserved country

V. N. Ioannidis, D. Romero, and G. B. Giannakis, "Inference of spatio-temporal processes over dynamic graphs 
via kernel kriged Kalman filters," Proceedings of EUSIPCO, Kos Island, Greece, Aug. 28-Sept. 3, 2017. 28



Joint ID of topologies and signals on graphs  

 BCD/ADMM solver: Guaranteed convergence at reduced complexity (separable per l)   

V. N. Ioannidis, Y. Shen, G. B. Giannakis, “Semi-blind inference of topologies and signals over 
graphs,” Proc. of IEEE Data Science Workshop, Lausanne, Switzerland, June 2018.

 Linear SEM:  Measurements:  

 Generalizable to nonlinear SEM; multi-layer; and dynamic signals and graphs 

 Joint inference of signals and (directed) graphs (JISG)   

Q: What if topology unknown and just a subset of data available due to privacy/large-scale ?   

Goal: Given                      ,  identify and      
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Testing JISG on gene-regulatory networks
 N=39 immune-related genes; L=69 unrelated individuals; y: gene expression level

 SEM oracle observes all genes M=39 (left); JISG with M=31 (right)

 NMSE for                  = 0.017

 JISG-based recovery similar to that of the oracle

V. N. Ioannidis, Y. Shen, G. B. Giannakis, “Semi-blind inference of topologies and signals over graphs,” 
Proc. of IEEE Data Science Workshop, Lausanne, Switzerland, June 2018. 30
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Goal:  Given subset of user-item ratings, rank `N-best’ candidates of unavailable ratings

Top-N recommender systems and SLIM 

 Sparse linear model (SLIM) of ratings: SEM followed by interpolation and ranking 

Topology ID
via SEM:

Interpolate
and rank:

Our idea: Instead of SLIM, employ sparse nonlinear SVARM with L=0 (SNIM) 

X. Ning and G. Karypis, “SLIM: Sparse linear methods for top-n recommender systems,” 
Proc. of Intl. Conf. on Data Mining, Vacouver, Canada, Dec. 2011, pp. 497–506. 31



Movielens dataset



 3,706 users; 6,040 movies; and 1M ratings

 Here SNIM outperforms SLIM by a slim margin  

 # hits: number of ratings in probe set that also appear in the recommendation list

G. B. Giannakis, Y. Shen, and G. V. Karanikolas “Nonlinear and dynamical models for learning connectivity 
and processes over graphs,” Proceedings of the IEEE, submitted September 2017 (invited).

 Training set: 97% randomly sampled ratings; Probe set: All 5 star ratings in testing set
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Current research and outlook

 Interpolation and extrapolation from partially-observed processes on graphs
 Topology can be known or unknown
 Kernel Kriged Kalman Filtering for inference of dynamic processes

 Learning of processes on graphs 

 Topology identification – a “deterministic” RKHS-based approach  

 Directed and linear multi-layer graphs are allowed with identifiability guarantees
 Nonlinear dependencies accommodated through multi-kernel regression
 Slow-varying and switching dynamics can be afforded 

 Ongoing research and future directions

 Graph-adaptive dimensionality reduction/manifold learning 
 Tracking and identifiability of nonlinear and dynamic topologies
 RKHS-principled multi-kernel learning vis-à-vis DNNs  Thank you!

G. B. Giannakis, Y. Shen, and G. V. Karanikolas, “Topology Identification and Learning over Graphs: 
Accounting for Nonlinearities and Dynamics,” Proceedings of the IEEE, vol. 106, pp. 787-807, May 2018.
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