Ensemble Gaussian Processes for Online, Interactive, and Deep Learning with Scalability and Adaptivity

Georgios B. Giannakis

Acknowledgements: Drs. Q. Lu, Y. Shen, P. Traganitis; G.-V. Karanikolas, and K. Polyzos

NSF grant 1901134
Agenda

- Part I - Gaussian processes (GPs) and random features (RFs)
- Part II - Incremental (online) and ensemble Gaussian processes (IE-GP)
- Part III.A - Bayesian (black-box or bandit) optimization using GPs
- Part III.B – Reinforcement learning (RL) using (E)GPs
- Closing remarks and outlook
Motivating context

- Nonlinear function models are widespread in real-world applications

- Challenges and opportunities

- Classification
- Regression
- Reinforcement learning
- Dimensionality reduction

- Massive scale
- Unknown nonlinearity
- Unknown dynamics
- Uncertainty quantification
Part I

- Gaussian processes (GPs) and random features (RFs)
 - GP/RF basics and applications
 - GP links with wide and deep neural networks (DNNs)
 - Deep GPs
Learning functions from data

Goal: Given data \(\{(x_t, y_t)\}_{t=1}^{T} \), find \(f(\cdot) \):

\[
x_t \rightarrow f(x_t) \rightarrow y_t
\]

- Even unsupervised tasks boil down to function learning
 - E.g., dimensionality reduction, clustering, anomaly detection …

Ex1. Regression: \(y_t = \theta^T x_t + e_t \)
 Curve fitting for e.g. temperature forecasting

Ex2. Classification: \(y_t = \text{sign}(\theta^T x_t + b) \)
 For e.g., disease diagnosis

- Global annual temperature
- Temperature difference (°C) relative to 1981-2010
- Normal brain
- Parkinson's brain

[P. Spetsieris et al PNAS 2015]
Learning functions with kernels

Model: view f as deterministic from a Hilbert space $\mathcal{H} := \{ f | f(x) = \sum_{t=1}^{\infty} \alpha_t \kappa(x, x_t) \}$

Given data $\{(x_t, y_t)\}_{t=1}^{T}$, find

$$\hat{f} = \arg\min_{f \in \mathcal{H}} \frac{1}{T} \sum_{t=1}^{T} C(f(x_t), y_t) + \lambda \Omega \left(\|f\|_{\mathcal{H}}^2 \right)$$

- E.g., Least-squares cost and L_2 regularizer \rightarrow kernel ridge regression

Q1. Kernel selection? **Q2.** Prior information?

Q3. Efficient solvers? **Q4.** Performance analysis?

- Bayesian view is well motivated!
Goal: Learn posterior pdf of f using Bayes’ rule

\[
p(f_t | y_t; X_t) \propto p(f_t; X_t)p(y_t | f_t; X_t)
\]

Model: View learning function f as random with GP prior

\[(a0)\quad f \sim \mathcal{GP}(0, \kappa(x, x')) \iff f_t := [f(x_1), \ldots, f(x_t)]^\top \sim \mathcal{N}(f_t; 0_t, K_t)
\]

\[
[K_t]_{ij} = \text{cov}(f(x_i), f(x_j)) := \kappa(x_i, x_j) \quad \forall t
\]

\[
X_t := [x_1 \ldots x_t]^\top
\]

\[
y_t := [y_1 \ldots y_t]^\top
\]

\[(a1)\quad \text{Likelihood} \quad p(y_t | f_t; X_t) = \prod_{\tau=1}^{t} p(y_\tau | f(\tau))
\]

GP-based inference

Goal: Given training data \(\{X_t, y_t\} \) and test input \(x_* \), infer (pdf of) \(y_* \)

S1. Posterior pdf of function value at test input

\[
p(f_*|y_t; X_t, x_*) = \int p(f_*|f_t; X_t, x_*)p(f_t|y_t; X_t)df_t
\]

\[
\mathcal{N}(f_*; k_*^T K_t^{-1} f_t, \kappa_{**} - k_*^T K_t^{-1} k_*)
\]

S2. Posterior pdf of test output

\[
p(y_*|y_t; X_t, x_*) = \int p(y_*|f(x_*))p(f_*|y_t; X_t, x_*)df_*
\]

- Numerical or MC sampling for non-Gaussian likelihoods
GP regression predictor

- If likelihood also Gaussian, then
 \[p(y_\ast | y_t, X_t, x_\ast) = \mathcal{N}(y_\ast; \hat{y}_\ast | t, \sigma^2_\ast | t) \]

 ➢ Mean and variance in closed form!

 \[
 \hat{y}_\ast | t = k_\ast^\top (K_t + \sigma^2_n I_t)^{-1} y_t \\
 \sigma^2_\ast | t = \kappa_{**} - k_\ast^\top (K_t + \sigma^2_n I_t)^{-1} k_\ast + \sigma^2_n
 \]

- Wiener filtering

 \[h_t = \text{cov}^{-1}(y_t) \text{cov}(y_t, y_\ast) = (K_t + \sigma^2_n I_t)^{-1} k_\ast \]
GP-based classifier

Challenge: likelihood is non-Gaussian; e.g., logistic \(p(y_t|f(x_t)) = \frac{1}{1 + e^{-y_t f(x_t)}} \)

- Gaussian approximation of non-Gaussian posterior [Williams et al.’98]

\[p(f_t|y_t; X_t) \approx \mathcal{N}(f_t; \hat{f}_t, \Sigma_t) \]

\[
\hat{f}_t = \arg \max_{f_t} \ln p(y_t|f_t; X_t) + \ln p(f_t; X_t)
\]

\[
\Sigma_t^{-1} = K_t^{-1} - \nabla^2 \ln p(y_t|f_t; X_t)\big|_{f_t=\hat{f}_t}
\]

S0.

\[
p(f_*|y_t; X_t, X_*) = \int p(f_*|f_t; X_t, x_*) p(f_t|y_t; X_t) df_t \approx \mathcal{N}(f_*; \hat{f}_*|t, \sigma^2_{f_*|t})
\]

S1.

\[
p(y_*|y_t; X_t, x_*) \approx \int p(y_*|f(x_*)) p(f_*|y_t; X_t, x_*) df_*
\]

S2.

Numerical or MC sampling approximation

GP kernel adaptivity and scalability

- Kernel (hyper) parameters; e.g., $\alpha := [\sigma_\kappa^2, \sigma_n^2]^T$

\[
\hat{\alpha} = \arg \max_{\alpha} \quad p(y_t; X_t, \alpha) = \int p(y_t|f_t; X_t)p(f_t; X_t)df_t
\]

- For GP regression \[p(y_t; X_t, \alpha) = \mathcal{N}(y_t; 0_t, K_t + \sigma_n^2 I_t) \]

 - K_t selection decoupled from f_t estimation; Gaussian approx. for classification

- Curse of dimensionality (CoD)

\[
\hat{y}_{*t} = k_{*t}^\top (K_t + \sigma_n^2 I_t)^{-1} y_t \\
\sigma_{*t}^2 = \kappa_{**} - k_{*t}^\top (K_t + \sigma_n^2 I_t)^{-1} k_{*t} + \sigma_n^2
\]

 - Complexity $O(t^3)$; storage $O(t^2)$
 - CoD also in kernel selection

Remedies: low-rank or structured K_t approximants [Quiñonero-Candela et al.’05], [Titsias’09], [Lázaro-Gredilla et al.’10], [Wilson et al.’15], [Nickisch et al.’18]

Random features via Fourier spectrum

RF1. Draw D random vectors from the kernel’s Fourier transform
\[\mathbf{v}_i \sim \pi(\mathbf{v}) = \mathcal{F}(\tilde{\kappa}), \quad i = 1, \ldots, D \]

RF2. Form $2D \times 1$ random feature (RF) vector
\[
\phi_{\mathbf{v}}(\mathbf{x}) := \frac{1}{\sqrt{D}} \left[\sin(\mathbf{v}_1^T \mathbf{x}), \cos(\mathbf{v}_1^T \mathbf{x}), \ldots, \sin(\mathbf{v}_D^T \mathbf{x}), \cos(\mathbf{v}_D^T \mathbf{x}) \right]^T
\]

- RF-based linear kernel approximant $\tilde{\kappa}(\mathbf{x}, \mathbf{x}') = \phi_{\mathbf{v}}^T(\mathbf{x})\phi_{\mathbf{v}}(\mathbf{x}')$

Key idea: Random linear function
\[
\tilde{f}(\mathbf{x}) = \phi_{\mathbf{v}}^T(\mathbf{x})\theta, \quad \theta \sim \mathcal{N}(\mathbf{0}_{2D}, \sigma_{\theta}^2 \mathbf{I}_{2D})
\]

is a parametric GP with
\[
\text{cov}(\tilde{f}(\mathbf{x}_i), \tilde{f}(\mathbf{x}_j)) = \sigma_{\theta}^2 \phi_{\mathbf{v}}^T(\mathbf{x}_i)\phi_{\mathbf{v}}(\mathbf{x}_j)
\]

- Prior $p(\tilde{f}_t; \mathbf{X}_t) = \mathcal{N}(\tilde{f}_t; \mathbf{0}_t, \sigma_{\theta}^2 \Phi_t \Phi_t^T)$
\[
\Phi_t := \left[\phi_{\mathbf{v}}(\mathbf{x}_1), \ldots, \phi_{\mathbf{v}}(\mathbf{x}_t) \right]^T
\]

2D-rank approx. of K_t

RF-driven parametric GPs

- Parametric generative model

 Vanilla GP: \(f \sim \mathcal{GP}(0, \kappa(x, x')) \)

 RF-based GP: \(\tilde{f}(x) = \phi_v^T(x)\theta \)
 \(\theta \sim \mathcal{N}(0_{2D}, \sigma_\theta^2 I_{2D}) \)

- Batch GPR predictor

 \[
 \hat{y}_*|t = \phi_v^T(x_*) \left(\Phi_t^T \Phi_t + \frac{\sigma_n^2}{\sigma_\theta^2} I_{2D} \right)^{-1} \Phi_t^T y_t \\
 \sigma_*^2|t = \phi_v^T(x_*) \left(\frac{\Phi_t^T \Phi_t}{\sigma_n^2} + \frac{I_{2D}}{\sigma_\theta^2} \right)^{-1} \phi_v(x_*) + \sigma_n^2
 \]

- Complexity \(O(t(2D)^2 + (2D)^3) \): scalable especially for \(t \gg 2D \)

Incremental RF-GP learning

- Propagate posterior of θ as in recursive Bayes [Gijsberts-Metta’13]

$$p(\theta|y_t; X_t) \xrightarrow{\text{predictive pdf \ via \ } x_{t+1}} p(y_{t+1}|y_t; X_{t+1}) \xrightarrow{\text{corrective pdf \ via \ } y_{t+1}} p(\theta|y_{t+1}; X_{t+1})$$

$$p(y_{t+1}|y_t; X_{t+1}) = \int p(y_{t+1}|\theta; x_{t+1})p(\theta|y_t; X_t)d\theta$$

$$p(\theta|y_{t+1}; X_{t+1}) = \frac{p(\theta|y_t; X_t)p(y_{t+1}|\theta; x_{t+1})}{p(y_{t+1}|y_t; X_{t+1})}$$

- **GPR**

$$\mathcal{N}(\theta; \hat{\theta}_t, \Sigma_t) \xrightarrow{} \mathcal{N}(y_{t+1}; \hat{y}_{t+1|t}, \sigma^2_{t+1|t}) \xrightarrow{} \mathcal{N}(\theta; \hat{\theta}_{t+1}, \Sigma_{t+1})$$

$$\hat{y}_{t+1|t} = \phi_{t+1}^T \hat{\theta}_t$$

$$\sigma^2_{t+1|t} = \phi_{t+1}^T \Sigma_t \phi_{t+1} + \sigma_n^2$$

$$\hat{\theta}_{t+1} = \hat{\theta}_t + \sigma^{-2}_{t+1|t} \Sigma_t \phi_{t+1}(y_{t+1} - \hat{y}_{t+1|t})$$

$$\Sigma_{t+1} = \Sigma_t - \sigma^{-2}_{t+1|t} \Sigma_t \phi_{t+1} \phi_{t+1}^T \Sigma_t$$

- **Complexity $O(t(2D)^2)$**

Hashtag popularity

- GPR model trained per hashtag
 - $x_{h,t}$ timestamp of hashtag h with $y_{h,t}$ occurrences

- Can also predict hashtag from tweet
Astronomical time series modeling

- GPs used for exoplanet discovery and characterization
 - x_t: timestamp with y_t: astronomical observation at t

- Special kernel matrix (tridiagonal) can afford large-scale KF-type inversion

y_t: Stellar rotation

y_t: Astroseismic oscillations

GP classification for remote sensing

- Classify whether pixels of multispectral images belong to clouds or not
- Large-scale imagery prompts RF approximation for GPs
 - x_t : multispectral features per pixel; $y_t \in \{0,1\}$ labels (annotated for training)

GPs for dynamic state estimation

Goal: Given observations y_t, estimate x_t (offline) using GP models for f and g

- GP models can extrapolate and interpolate missing data

- Blue dots are state estimates
- Green dots are state prediction

Deep neural networks

Q. How about parametric function estimators? A. E.g., Deep neural nets (DNNs)

- First layer
 \[f^1_{\nu}(x) = \sum_{\nu' = 1}^{D_x} w^{1}_{\nu,\nu'} x_{\nu'} + b^1_{\nu}, \quad \nu = 1, \ldots, N_1 \]

- Next layers
 \[g^{\ell-1}_{\nu}(x) = \phi(f^{\ell-1}_{\nu}(x)), \quad \nu = 1, \ldots, N_{\ell-1} \]
 \[f^{\ell}_{\nu}(x) = \sum_{\nu' = 1}^{N_{\ell-1}} w^{\ell}_{\nu,\nu'} g^{\ell-1}_{\nu'}(x) + b^\ell_{\nu}, \quad \nu = 1, \ldots, N_\ell \]
Bayesian neural networks (BNNs)

- Zero-mean Gaussian BNN parameters $\{w^\ell_{\nu,\nu'}, b^\ell_{\nu}\}$ with variances $\{\tilde{C}^\ell_w, \tilde{C}^\ell_b\}$
 - $w^\ell_{\nu,\nu'}, b^\ell_{\nu}$ independent across ν, ν'
 - For bounded variance per layer, normalize variances per neuron: $C^\ell_w := \frac{\tilde{C}^\ell_w}{N_{\ell-1}}$
 - $C^\ell_b := \tilde{C}^\ell_b$

Proposition 1 [Neal'96] For $L=2$, if $\{g^1_{\nu}(x)\}_{\nu=1}^{N_1}$ have bounded variances, then as $N_1 \to \infty$ the output $\{f^2_{\nu}(x)\}_{\nu=1}^{N_2}$ (nonlinearity φ) converges in distr. to a 0-mean GP with
 $\mathbb{E}[f^2_{\nu}(x)f^2_{\nu'}(x')] = \delta_{\nu,\nu'}[\tilde{C}^2_w \mathbb{E}_{w,b} \{\varphi(w^T x + b)\varphi(w^T x' + b)\} + C^2_b]$
Sketch of the proof …

- For $L=2$

 \[
 f^2_\nu(x) = \sum_{\nu' = 1}^{D_x} w^2_{\nu,\nu'} x_{\nu'} + b^2_\nu \quad \text{and} \quad g^1_\nu(x) = \varphi(f^1_\nu(x))
 \]

- Gaussian BNN parameters
 \[
 b \sim \mathcal{N}(b; 0, C^1_b), \quad w \sim \mathcal{N}(w; 0, C^1_w I_{D_x})
 \]

- Central limit theorem asserts as $N_1 \to \infty$ a Gaussian pdf with mean and variance:

\[
\mathbb{E}[f^2_\nu(x)] = 0
\]
\[
\mathbb{E}[f^2_\nu(x) f^2_{\nu'}(x')] = \delta_{\nu,\nu'} \left[\tilde{C}_w^2 \mathbb{E}_{w,b} \left\{ \varphi(w^\top x + b) \varphi(w^\top x' + b) \right\} + C^2_b \right]
\]

- Likewise for t training vectors
 \[
 [f^2(x_1), f^2(x_2), \ldots, f^2(x_t)]^\top
 \]

Normal limiting distribution across layers

Proposition 2. If the \((\ell - 1)\)st layer input is Gaussian distributed with mean and variance

\[
\mathbb{E}[f_{\nu}^{\ell-1}(x)] = 0 \\
\mathbb{E}[f_{\nu}^{\ell-1}(x)f_{\nu'}^{\ell-1}(x')] = \delta_{\nu,\nu'} \kappa(x, x')
\]

\[
\kappa(x, x') := \tilde{C}_w^{-1} \mathbb{E}_{\epsilon^{\ell-1}(x), \epsilon^{\ell-1}(x')} \{ \varphi(\epsilon^{\ell-1}(x)) \varphi(\epsilon^{\ell-1}(x')) \} + C_b^{\ell-1}
\]

\[
\epsilon^{\ell-1}(x) := [g_{1}^{\ell-2}(x), \ldots, g_{N_{\ell-2}}^{\ell-2}(x)]^\top w + b
\]

\[
b \sim \mathcal{N}(b; 0, C_b^{\ell-2}), \ w \sim \mathcal{N}(w; 0, C_w^{\ell-2} I_{N_{\ell-2}})
\]

then as \(N_{\ell-1} \to \infty\) the limiting pdf of the \(l\)-th layer input is also Gaussian with

\[
\mathbb{E}[f_{\nu}^{\ell}(x)] = 0 \\
\mathbb{E}[f_{\nu}^{\ell}(x)f_{\nu'}^{\ell}(x')] = \delta_{\nu,\nu'} [\tilde{C}_w \mathbb{E}\{\varphi(\epsilon^{\ell}(x))\varphi(\epsilon^{\ell}(x'))\} + C_b^{\ell}]
\]

- Limiting GP has recursively computable kernels

Deep BNNs vis-a-vis GPs

Q. How about finite N_ℓ?

- **Width function** $h_\ell : N_\ell = h_\ell(t)$

Theorem. For a BNN with ReLU as φ and any $\{x_\tau\}_{\tau=1}^t$ there are strictly increasing $\{h_\ell(t)\}_{\ell=1}^L$ and thus $\{N_\ell\}_{\ell=1}^L$, so that as $t \to \infty$ the NN output pdf converges to a GP with kernel $\kappa(x, x') = \tilde{C}_w^\ell \mathbb{E}\{\varphi(\epsilon^\ell(x))\varphi(\epsilon^\ell(x'))\} + C_b^\ell$

Deep BNNs versus GPs - Empirical comparison

- Compare \(p_{\text{BNN}}(y; x) \) and \(p_{\text{GP}}(y; x) \) using maximum mean discrepancy metric

\[
\mathcal{MMD}(p_{\text{BNN}}, p_{\text{GP}}, \mathcal{F}) = \sup_{g \in \mathcal{F}} [\mathbb{E}_{y \sim p_{\text{BNN}}}[g(y)] - \mathbb{E}_{y \sim p_{\text{GP}}}[g(y)]]
\]

- Sample estimator over \(\kappa \)-induced RHKS functions (in \(\mathcal{F} \)) [Gretton et al.'12]

\[
\tilde{MMD}^2(p_{\text{BNN}}, p_{\text{GP}}, \mathcal{F}) = \frac{1}{m(m-1)} \sum_{i=1}^{m} \sum_{j \neq i}^{m} \kappa(\tilde{y}_i, \tilde{y}_j) + \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i}^{n} \kappa(\tilde{y}_i', \tilde{y}_j') - 2 \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \kappa(\tilde{y}_i, \tilde{y}_j')
\]

- Draw \(\tilde{y}_i \sim p_{\text{BNN}} \) and \(\tilde{y}_j \sim p_{\text{GP}} \)

- Sample \(\tilde{MMD}^2 \) versus number of neurons per layer

- Faster convergence for wider and shallower BNNs

Going deep…

- Deep (D) GPs: cascade of L-layer GPs to boost expressiveness

$$h_{i,\tau}^\ell = f_i^\ell(h_{\tau}^{\ell-1})$$

$$f_i^\ell \sim \mathcal{GP}(0, \kappa_i^\ell)$$

$\ell = 1, \ldots, L$

$i = 1, \ldots, N_\ell$

$\tau = 1, \ldots, t$

DGP prior (non-Gaussian)

$$p(H_t^L; X_t) = \int \prod_{\ell=1}^L p(H_t^\ell|H_t^{\ell-1}) \ dH_t^{L-1} \cdots dH_t^1$$

Likelihood

$$p(y_t|H_t^L; X_t) = \prod_{\tau=1}^{N_\tau} p(y_{\tau}|h_{1,\tau}^L; x_{\tau})$$

- Intractable integration due to CoD

RF-based DGPs

- Common kernel across each layer nodes $f_i^\ell \sim \mathcal{GP}(0, \kappa_i^\ell)$

- Parametric layer-to-layer mapping

- Per-datum likelihood $p(y_\tau | \Theta; x_\tau)$, $\Theta := \left\{ \Theta_i^\ell \right\}_{\ell=1}^L \in \mathbb{R}^{N_\ell \times D_\ell}$, $\Theta_i^\ell := [\theta_{1i}^\ell \ldots \theta_{N_i}^\ell]^T \sim \mathcal{N}(0_{2D_\ell}, I_{2D_\ell})$
Training and testing with DGPs

Training: find \(\{ \alpha^\ell \} \) and \(p(\Theta | y_t; X_t) \) using variational inference

- Approximate intractable \(p(\Theta | y_t; X_t) \) with tractable \(q(\Theta) = \prod_{\ell=1}^{L} \prod_{i=1}^{N_\ell} \prod_{d=1}^{2D_\ell} \mathcal{N}(\theta_{di}^\ell; \mu_{di}^\ell, s_{di}^\ell) \)

\[
\{\hat{\alpha}^\ell, \hat{\mu}_{di}^\ell, \hat{s}_{di}^\ell\} = \arg\max_{\{\alpha^\ell, \mu_{di}^\ell, s_{di}^\ell\}} \frac{1}{R} \sum_{r=1}^{R} \sum_{\tau=1}^{t} \log p(y_\tau | \tilde{\Theta}_r; x_\tau, \{\alpha^\ell\}) + \frac{1}{2} \sum_{\ell=1}^{L} \sum_{i=1}^{N_\ell} \sum_{d=1}^{2D_\ell} (1 + \log(s_{di}^\ell) - (\mu_{di}^\ell)^2 - s_{di}^\ell)
\]

- Solvable via stochastic optimization

\[
\tilde{\theta}_{di,r}^\ell = \mu_{di}^\ell + \sqrt{s_{di}^\ell} \tilde{\varepsilon}_{di,r}^\ell
\]

\[
\tilde{\varepsilon}_{di,r}^\ell \sim \mathcal{N}(0, 1)
\]

Testing: draw realizations \(\tilde{\Theta}_r \) \(i.i.d. \) \(q(\Theta) \) to obtain output posterior pdf

\[
p(y_* | y_t; X_t, x_*) \approx \int p(y_* | \Theta; x_*, \{\hat{\alpha}^\ell\}) q(\Theta) d\Theta \approx \frac{1}{R} \sum_{r=1}^{R} p(y_* | \tilde{\Theta}_r; x_*, \{\hat{\alpha}^\ell\})
\]
Testing DGP for regression

Benchmarks: DGP-EP [Bui et al.’16], VAR-GP [Hensman et al.’15], dropout-based DNN

Powerplant ($t=9,568, d=4$)

- x_t: hourly ambient measurements
- y_t: electric energy output

Protein ($t=45,730, d=9$)

- x_t: protein structure attributes
- y_t: protein functionality

- RF-based DGPs lower RMSE and quantify uncertainty

Testing DGP for classification

Spam \((t=4,601, D_x=57)\)

- \(x_\tau\): frequency of words/characters per email
- \(y_\tau\): 1 (spam) or 0 (not spam)

EEG \((t=14,979, D_x=14)\)

- \(x_\tau\): measurements from 14 electrodes
- \(y_\tau\): 1 (alcoholic) or 0 (not alcoholic)

- RF-based DGPs scale well; exhibit lower error; and quantify uncertainty

![Graphs showing error rate vs runtime and MNLL for different models](image-url)

![Bar charts showing accuracy and MNLL for MNIST and AIRLINE datasets](image-url)
Part II

- Incremental (online) and ensemble Gaussian processes (IE-GP)
 - IE-GP basics and analysis
 - Dynamic IE-GP learning
 - Unsupervised learning using (E) GPs
 - Graph-guided EGP-based learning
Motivation for incremental ensembles

- Uncertainty quantification and scalability
- Robustness to unknown dynamics
- Performance guarantees valid even in adversarial settings
- Adaptability to operational environments
 - Highly expressive model class
 - Online refinement of the model

Incremental Ensembles of GPs

Ensemble GP learning

Q. How expressive is a single GP? A. The more the merrier ...

- GP prior per learner \(m \) \(f \mid i = m \sim \mathcal{GP}(0, \kappa^m(x, x')) \)
- Ensemble (E) GP prior \(f \sim \sum_{m=1}^{M} w^m \mathcal{GP}(0, \kappa^m(x, x')) \) \(\sum_{m=1}^{M} w^m = 1 \)
- RF-based EGP \(\tilde{f} \mid \{\theta^m\}_{m=1}^{M} \sim \sum_{m=1}^{M} w^m \delta(\tilde{f}(x) - \phi^m_\nu(x)\theta^m), \theta^m \sim \mathcal{N}(\theta^m; 0, \sigma^2_{\theta^m}I_{2D}) \)
 (non-Gaussian prior)

- EGPs can model a richer space of learning functions
 - Meta-learner weighs experts using \(w^m_t := \Pr(i = m \mid y_t; X_t) \)
 - Learners seek (in parallel) \(p(\theta^m \mid y_t; X_t) \)

Incremental EGP

Prediction

- Expert m forms RF-based prediction

\[p(y_{t+1}|y_t, i = m; X_{t+1}) \]

- Ensemble prediction

\[p(y_{t+1}|y_t; X_{t+1}) = \sum_{m=1}^{M} w_t^m p(y_{t+1}|y_t, i = m; X_{t+1}) \]

Correction

- Expert m updates

\[p(\theta^m|y_{t+1}, i = m; X_{t+1}) \propto p(y_{t+1}|\theta^m; x_{t+1}) \ p(\theta^m|y_t; X_t) \]

- EGP meta-learner updates weight

\[w_{t+1}^m = \frac{w_t^m \ p(y_{t+1}|y_t, i = m; X_{t+1})}{p(y_{t+1}|y_t; X_{t+1})} \]

- Gaussian likelihood \rightarrow low complexity $O(M(2D)^2)$ updates
Regret analysis for IE-GP

Goal: Bound performance of IE-GP relative to batch benchmark \hat{f}^*

- No assumptions on data generation \Rightarrow valid in adversarial settings

\[
\mathcal{R}(T) := \sum_{t=1}^{T} -\log p(y_t \mid y_{t-1}; X_t) - \sum_{t=1}^{T} -\log p(y_t \mid \hat{f}^*(x_t))
\]

Theorem. Under (as1)-(as3), IE-GP attains $\mathcal{R}(T) = \mathcal{O}(\log T)$ w.h.p.

Details:

- **(as1)** $\mathcal{L}(z; y)$ is convex and continuously twice differentiable wrt z
- **(as2)** $\mathcal{L}(z; y)$ has bounded first two derivatives wrt z
- **(as3)** Kernels $\{\kappa^m\}_{m=1}^{M}$ are shift-invariant and bounded
Switching EGP for global dynamic models

Q. How about global and local dynamics? A. Time-varying learner index i_t and θ_t^m

- Markov chain dynamics at meta-learner: $q_{m,m'} := \Pr(i_{t+1} = m | i_t = m')$

- Weight prediction at meta-learner

$$w_{t+1|t}^m = \sum_{m'=1}^M \Pr(i_{t+1} = m | i_t = m') \Pr(i_t = m'|y_t; X_t) = \sum_{m'=1}^M q_{m,m'} w_{t|t}^m$$

- Used to form ensemble prediction

- Online loss for switching (S) IE-GP

$$\ell_{t+1|t}^{SW} := -\log p(y_{t+1} | y_t; X_{t+1}) = -\log \sum_{m=1}^M w_{t+1|t}^m \exp \left(-l_{t+1|t}^m \right)$$

$$l_{t+1|t}^m := -\log p(y_{t+1} | y_t, i_{t+1} = m; X_{t+1})$$

Regret analysis for global SIE-GP learning

Switching regret: accounting for model shift in the benchmark

\[R^{SW}(T) := \sum_{\tau=1}^{T} \ell^{SW}_{\tau|\tau-1} - \min_{i_1, \ldots, i_T} \sum_{\tau=1}^{T} \mathcal{L}(\hat{f}^{i_\tau}(x_\tau); y_\tau) \]

(as4) \(q_{mm} = q_0, q_{mm'} = \frac{q_1}{M-1} \) for \(m, m' \in \mathcal{M}, q_0 + q_1 = 1, \) and \(0 \leq q_1 < \frac{1}{2} < q_0 \leq 1 \)

(as5) Number of model switches \(\sum_{\tau=1}^{T} I(i_\tau \neq i_{\tau+1}) \leq S, S \ll T \)

Theorem. Under (as1)-(as5), SIE-GP attains \(R^{SW}(T) = \mathcal{O}(\log T) \) w.h.p.
Local dynamic (D) IE-GP models

Q. How each individual GP learners account for dynamics?

A. Time-varying θ_t^m with state-space (e.g., random walk) evolution

\[
\begin{align*}
\theta_{t+1}^m &= \theta_t^m + \epsilon_{t+1}^m \\
y_{t+1} &= \phi_{\nu}^m(x_{t+1}) \theta_{t+1}^m + n_{t+1}
\end{align*}
\]

- Predictive pdf accounts for state transition

\[
p(\theta_{t+1}^m | y_t; X_{t+1}) = \int p(\theta_{t+1}^m | \theta_t^m) \ p(\theta_t^m | y_t; X_t) \ d\theta_t^m
\]

- Kalman filter (KF) updates exact for Gaussian likelihood

Outlook: DI-EGP for extended KF, unscented KF, and particle filtering

Testing EGP-based regression

- **Benchmarks**: SSGP [Bui et al.’17], I-SSGPR [Gijsberts et al.’13], AdaRaker [Shen et al.’19]
- **Normalized mean-square error**

\[
\text{nMSE}_t := t^{-1} \sum_{t} (y_{t'} - \hat{y}_{t'|t'-1})^2 / s_y^2
\]

![Graph](image)

- **(D)IE-GP** achieve state-of-the-art nMSE and running time

Testing EGP-based classification

- **Benchmarks:** SSGP [Bui et al.‘17], AdaRaker [Shen et al.‘19]

- (S)IE-GP outperforms alternatives in classification error and running time
Goal: Obtain low-dimensional representation x_t for observation y_t

GPLVM postulates a nonlinear map f per dimension with GP prior [Lawrence ‘05]

$$[y_t]_d = f_d(x_t) + n_{td} \quad f_d \sim GP(0, \kappa)$$

$$\{n_{td}\} \sim \mathcal{N}(0, \sigma_n^2)$$

- Random feature (RF) approximation for kernel κ [Rahimi et al.’08]
 - For (normalized) `stationary’ kernel $\bar{k}(x, x') = k(x - x')$
 - draw $v_i \sim \pi_{\kappa}(v) = \mathcal{F}(\bar{k})$, and form $\phi_v(x) = \frac{1}{\sqrt{D}}[\cos(v_1^\top x) \sin(v_1^\top x) \ldots \cos(v_D^\top x) \sin(v_D^\top x)]^\top$
 - to obtain kernel approximant: $\tilde{k}(x, x') = \phi_v^\top(x)\phi_v(x')$

- RFs turn nonparametric f_d to a linear parametric approximant

$$\tilde{f}_d(x) = \theta_d^\top \phi_v(x) \quad \theta_d \sim \mathcal{N}(0, I)$$

N. Lawrence, “Probabilistic non-linear principal component analysis with Gaussian process latent variable models,” *JMLR*, 2005
RF-based GPLVM

- Conditional likelihood

\[
p(Y|X, \Theta) = \prod_{t=1}^{T} \prod_{d=1}^{D_y} \mathcal{N}(\hat{y}_{td}; \theta_d^T \phi_v(x_t), \sigma^2_n)
\]

\(X := [x_1 \ldots x_T]^T\)

\(Y := [y_1 \ldots y_T]^T \equiv [y:1 \ldots y:D_y]\)

\(\Theta := [\theta_1 \ldots \theta_{D_y}]_{2D \times D_y}\)

- Marginalization over \(\Theta\)

\[
p(Y|X) = \prod_{d=1}^{D_y} \mathcal{N}(y:d; 0, \Phi \Phi^T + \sigma^2_n I)
\]

\(\Phi := [\phi_v(x_1) \ldots \phi_v(x_T)]^T \in \mathbb{R}^{T \times 2D}\)

- RF approximation allows for \(O(TD^2)\) evaluations of likelihood and gradients

- MAP estimates

\[
\hat{X} = \arg \min_X - \log p(Y|X) - \log p(X)
\]

\[
p(X) = \prod_{t=1}^{T} \mathcal{N}(x_t; 0, \sigma^2_x I)
\]

- Nonconvex solver using e.g., conjugate gradient method [Møller '93]

Online RF-based GPLVM

Goal. Seek latent representation x_t of new observation y_t given past $\{Y_{t-1}, \hat{X}_{t-1}\}$

- **Conditional likelihood:**
 \[p(y_t|Y_{t-1}, \hat{X}_{t-1}, x_t) = \mathcal{N}(y_t; \mu_t, \sigma_t^2 I) \]
 \[
 \mu_t = \phi_v^\top(x_t)\theta_{t-1,d} = \phi_v^\top(x_t)A_{t-1}^{-1}B_{t-1}
 \]
 \[
 \sigma_t^2 = \sigma_n^2[1 + \phi_v^\top(x_t)A_{t-1}^{-1}\phi_v(x_t)]
 \]

- **MAP estimate of** x_t

 \[
 \hat{x}_t = \arg\max_{x_t} p(y_t|Y_{t-1}, \hat{X}_{t-1}, x_t) \cdot p(x_t)
 \]
 \[
 = \arg\min_{x_t} \frac{1}{2\sigma_t^2}||y_t - \mu_t||^2 + D_y \log \sigma_t + \frac{1}{2\sigma_x^2}||x_t||^2
 \]

- **Recursive updates**

 \[
 B_t = B_{t-1} + \phi_v(\hat{x}_t)y_t^\top
 \]
 \[
 A_t = A_{t-1} + \phi_v(\hat{x}_t)\phi_v^\top(\hat{x}_t)
 \]

 ➢ In practice, updates performed on the Cholesky factor of A_t
Ensemble online RF-based GPLVM

Challenge: Online choice of kernel?

Remedy: Ensemble of M experts, each with a different kernel κ^m

Algorithm for incoming y_t

- Per expert embeddings $\{\hat{x}_t^m\}_{m=1}^M$ computed in parallel

$$\hat{x}_t^m := \arg\max_x p(y_t|Y_{t-1}, i=m, \hat{X}_{t-1}^m, x) p(x) \quad m = 1, \ldots, M$$

- Output "best" embedding across experts $\hat{x}_t := \hat{x}_t^{m^*}$ (MAP estimate)

$$m^* := \arg\max_{m \in \{1 \ldots M\}} p(y_t|Y_{t-1}, i=m, \hat{X}_{t-1}^m, \hat{x}_t^m) \Pr(i=m|Y_{t-1}, \{\hat{X}_{t-1}^{(\mu)}\}_{\mu=1}^M) p(\hat{x}_t^m)$$

- Meta-learner updates expert weights

$$w_t^m := \Pr(i=m|Y_t, \{X_{t}^{(\mu)}\}_{\mu=1}^M) \propto w_{t-1}^m p(y_t|Y_{t-1}, i=m, X_{t-1}^m, \hat{x}_t^m) \quad m = 1, \ldots, M$$

GP-based test for dimensionality reduction

- Broadens probabilistic PCA using a GP latent variable model (LVM)
 - An independent GPR per dimension d

Goal: Given $D_y \times 1$ vectors $\{y_t\}_{t=1}^T$, find latent $D_x \times 1$ vectors $\{x_t\}_{t=1}^T$

- GPLVM with linear kernel boils down to PCA with quantified uncertainty

Testing (E)RF-GPLVM

Alternatives: variational [Damianou et al. ‘16], online [Yao et al. ‘11], GPLVM [Lawrence ‘05]

Figure of merit: error rate of nearest neighbor classification rule vs runtime

- ERF-GPLVM outperforms alternatives on benchmark datasets

N. Lawrence, “Probabilistic non-linear principal component analysis with Gaussian process latent variable models,” *JMLR*, 2005
Learning functions over graphs

- Graphs: model complex systems

- Graph-guided semi-supervised learning (SSL)
Graph-guided incremental SSL

- Graph $\mathcal{G} := \{\mathcal{V}, A_N\}$ with vertex set \mathcal{V} and $N \times N$ adjacency matrix A_N

- Real-valued function on graph $f : \mathcal{V} \rightarrow \mathbb{R}$
 - f_n : feature value at node n
 - y_n : nodal value on observed set \mathcal{O}

Goal: Given \mathcal{G} and $\{y_n, n \in \mathcal{O}\}$, predict values $\{y_n, n \in \mathcal{U}\}$, $\mathcal{U} := \mathcal{V} \setminus \mathcal{O}$

- Incremental setting: use $y_n := [y_1, \ldots, y_n]^\top$ to predict y_{n+1} and correct after y_{n+1} is observed
Incremental **Graph-adaptive EGP**

Idea: Use one-hop connectivity vector a_n as input: $f_n = f(a_n)$

- **Learner m**

 $n \leftrightarrow t$

 $N(\theta^m_n; \hat{\theta}^m_n, \Sigma^m_n) \xrightarrow{a_{n+1}} N(y_{n+1}; \hat{y}^m_{n+1|n}, (\sigma^m_{n+1|n})^2) \xrightarrow{y_{n+1}} N(\theta^m_{n+1}; \hat{\theta}^m_{n+1}, \Sigma^m_{n+1})$

 $$\hat{y}^m_{n+1|n} = \phi^m_V(a_{n+1})\hat{\theta}^m_n$$
 $$\theta^m_{n+1} = \theta^m_n + (\sigma^m_{n+1|n})^{-2} \Sigma_n \phi^m_V(a_{n+1})(y_{n+1} - \hat{y}^m_{n+1|n})$$
 $$(\sigma^m_{n+1|n})^2 = \phi^m_V(a_{n+1})\Sigma_n \phi^m_V(a_{n+1}) + \sigma^2$$
 $$\Sigma^m_{n+1} = \Sigma^m_n - (\sigma^m_{n+1|n})^{-2} \Sigma_n \phi^m_V(a_{n+1})\phi^m_V(a_{n+1})^\top \Sigma_n$$

- **Meta-learner**

 $$\sum_{m=1}^{M} w^m_n N(y_{n+1}; \hat{y}^m_{n+1|n}, (\sigma^m_{n+1|n})^2)$$

 $$\hat{y}_{n+1|n} = \sum_{m=1}^{M} w^m_n \hat{y}^m_{n+1|n}$$

 $$\sigma^2_{n+1|n} = \sum_{m=1}^{M} w^m_n [(\sigma^m_{n+1|n})^2 + (\hat{y}_{n+1|n} - \hat{y}^m_{n+1|n})^2]$$

- **Weight updates**

 $$w^m_{n+1} = \frac{w^m_n N(y_{n+1}; \hat{y}^m_{n+1|n}, (\sigma^m_{n+1|n})^2)}{\sum_{m'=1}^{M} w^m_{n'} N(y_{n+1}; \hat{y}^{m'}_{n+1|n}, (\sigma^{m'}_{n+1|n})^2)}$$

- **Complexity** $\mathcal{O}(M((2D)^2+2DN))$

GradEGP vis-à-vis GCNs

Comparison with graph convolutional networks (GCNs)

<table>
<thead>
<tr>
<th>GradEGP</th>
<th>Conventional GCNs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental → reduced storage</td>
<td>Batch approach → storage demand</td>
</tr>
<tr>
<td>Scalable online updates</td>
<td>Demanding training phase</td>
</tr>
<tr>
<td>Bayesian → uncertainty quantification</td>
<td>Deterministic → only point estimates</td>
</tr>
<tr>
<td>No need for additional nodal features</td>
<td>Additional nodal features needed</td>
</tr>
<tr>
<td>Input: encrypted version connectivity pattern of nodes → privacy</td>
<td>Input: connectivity pattern of nodes</td>
</tr>
</tbody>
</table>
Testing GradEGP

Benchmarks
- GP [Rasmussen et al ’06]
- Kernel ridge regression (KRR) [Romero et al ‘16]
- GradRaker [Shen et al ‘19]

Figures of merit
- Normalized mean-square error (NMSE) \(\text{nMSE}_n := n^{-1} \sum_{n'=1}^{n} (y_{n'} - \hat{y}_{n'|n'-1})^2 / s_y^2\)
- Runtime
Performance with uncertainty quantification

- NMSE versus n

- GradEGP with uncertainty quantification

- GradEGP outperforms alternatives and estimates stay within confidence intervals

Runtime comparison

- GradEGP runtime less than scalable GradRaker in large-scale networks

Higher-order interactions

Q. More informative graph guidance than a_n? A. How about per-node “egonet”?

- Egonet of node n
 - Node n
 - Direct neighbors of node n
 - All edges connecting direct neighbors

- $N \times N$ adjacency matrix of node n egonet: A_n^{ego}
 - Sparse matrix due to limited connectivity

- “Egonet feature” vector x_n^{ego}

Model: Use egonet feature vector x_n^{ego} as input

$$f_n = f(x_n^{ego}) \rightarrow \text{“GradEGP-ego”}$$

Egonet feature vector per node n

- x_{ego}^n captures connectivity of node n to all nodes through its egonet

 - Degree of node n \[d_n := \sum_{n' = 1}^{N} A_{n'}^n(n', n) \]

 - Connectivity of any node m with node n as a sum of edge weights with its egonet
 \[c_{Ei}^n(m) = \alpha \sum_{n' \in N_{m}} c_{Ei}^n(m') \]

- Collectively, as eigenvector of max eigenvalue

\[A_n^e v = \alpha^{-1} v \]

- Our x_{ego}^n comprises degree and eigenvector centralities (a.k.a. `vertex centrality')

\[x_{ego}^n := \begin{bmatrix} d_n \\ c_{Ei}^n \end{bmatrix} \]

- x_{ego}^n can also include edge centrality, clustering coefficient, network cohesion [Kolaczyk'96]

Testing GradEGP-ego

Benchmarks: GP [Rasmussen et al ’06], KRR [Romero et al ’16], GradRaker [Shen et al ’19]

- Prediction performance with confidence intervals

- GradEGP-ego: state-of-the-art prediction performance
Summarizing remarks

- GPs as priors for nonparametric random function models with DNN links and uncertainty quantification
- RF offers linear parametric approximate models for online learning with scalability
- Deep GP for richer model expressiveness

- Ensemble GPs offer wide adaptability to operational environments
 - Online expert refinement with performance guarantees
 - Robustness to (un)modeled global and local dynamics
 - Supervised, unsupervised, and semi-supervised learning over graphs

- Interactive open-loop learning (Bayesian optimization) using GPs
- Interactive closed-loop reinforcement learning via (E) GPs
Research outlook

Q1. Desirable sweet spots by going **wide and deep**?

Q2. Particle filtering for **nonlinearities and dynamics**?

Q3. **Distributed/federated** IE-GP under computing/communication constraints?

Q4. EGP-based surrogate model for BO with ensemble acquisitions?

Q5. EGP-based value/policy function estimation for **multi-agent** RL?

Q6. **Distributional robust** EGP learning?

Thank You! Stay safe!
Credit to the ensemble that credit is due ...

Dr. Qin Lu
UofM

G.-V. Karanikolas
UofM

K. Polyzos
UofM

Prof. Y. Shen
UCI

http://spincom.umn.edu

Questions?

Dr. P. Traganitis
UofM