Bag Graph: Modelling Bag Relations in Multiple Instance Learning

Antonios Valkanas, Soumyasundar Pal, Florence Regol, Mark Coates

Department of Electrical and Computer Engineering McGill University Montréal, Québec, Canada

December 19, 2021

Motivation

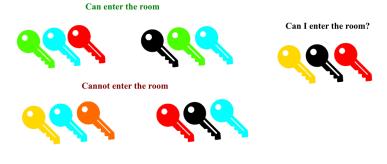
- Modern deep learning algorithms require lots of data.
- Typically obtaining labels is costly.

Some options to address this:

- Fewer data and more expert knowledge (informative priors).
- Weak supervision.

What is Multiple Instance Learning?

- Multiple Instance Learning (MIL) is a weakly supervised method.
- In a MIL problem, the labels are assigned to bags, i.e., a set of instances, rather than individual instances.



What is Multiple Instance Learning?

Basic mathematical description:

$$y = f(\mathbf{X}) = \begin{cases} 1, & \text{if } \exists \ \mathbf{x}_i \in \mathbf{X} \text{ s.t. } g(\mathbf{x}_i) = 1, \\ 0, & \text{otherwise.} \end{cases}$$
 (1)

Equivalent definition:

$$y = f(\mathbf{X}) = \min \left(\sum_{i} g(\mathbf{x}_{i}), 1 \right), \tag{2}$$

Can enter the room

Can I enter the room?

Cannot enter the room

Brief Literature Review

Approaches fall in three main categories:

- Instance space methods
- Bag space methods
- Embedded space methods

Review - Instance Space Approaches

Following from eq. (2):

- **1** Learn instance classifier $g(\mathbf{x}_i)$,
- ② Plug it in $f(\mathbf{X}) = \min \left(\sum_{i} g(\mathbf{x}_i), 1 \right)$

Instance		Label
	\Rightarrow	1
	$\qquad \qquad \Box \gt$	0
	\Box	0
	$\qquad \qquad \Box \gt$	0

Review - Instance Space Approaches

- + Intuitive and explainable.
- + Can trivially apply existing learning methods to learn g(.).
- Difficult to apply without instance labels.
- Treats instances as i.i.d.

Well known algorithms: axis-parallel rectangles $(APR)^1$, mi-SVM² and MI-VLAD³.

¹T. Dietterich et al., "Solving the multiple instance problem with axis-parallel rectangles," Artificial Intelligence, 1997

²S. Andrews et al., "Support Vector Machines for Multiple-Instance Learning," in Proc. Advances Neural Information Processing Systems (NIPS) Dec. 2002

³X. S. Wei et al., "Scalable algorithms for multi-instance learning," IEEE Trans. Neural Networks and Learning Systems, pp.975-987, 2016

Review - Bag Space Approaches

- Create a bag descriptor.
- Learn a mapping from bag descriptors to labels.

Bag Descriptor Label
$$\Leftrightarrow$$
 [0110...] \Rightarrow 0 \Leftrightarrow [1101...] \Rightarrow 0

Review - Bag Space Approaches

- + Do not need instance labels.
- + Can model non-i.i.d. instances.
- Cannot learn complex feature representations.
- Hard to model bag relations.

Some key baselines: MI-Kernel⁴, CCE⁵ and MI-Graph⁶.

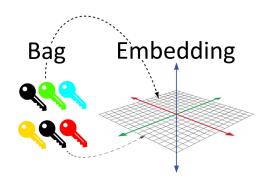
⁴T. Gärtner et al., "Multi-instance kernels," in Proc. Int. Conf. Machine Learning (ICML), 1997

⁵Z. Zhou et al., "Solving multi-instance problems with classifier ensemble based on constructive clustering," in Proc. Knowledge and Information Systems (KDD), 2007

⁶Z. Zhou et al., "Multi-instance learning by treating instances as non-iid samples," in Proc. Int. Conf. Machine Learning (ICML), 2009

Review - Embedding Space Approaches

- Use pooling to combine instances into a bag embedding.
- 2 Learn bag representations.



Review - Embedding Space Approaches

- + Does not need instance labels.
- Models instance relations of arbitrary complexity.
- + Outperforms other paradigms in practice scales with data.
- No modelling of inter-bag relations (we will change that!)

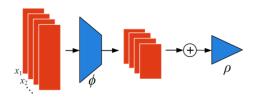
Some key methods: mi-Net⁷, Attention-Based-MIL⁸.

⁷X. Wang et al., "Revisiting multiple instance neural networks," Pattern Recognition, 2018

⁸ M. Ilse et al., "Attention-based deep multiple instance learning," in Proc. Int. Conf. Machine Learning (ICML), 2018

Background: Deep Sets

- Deep Sets⁹: learns **set representations**.
- Architecture: $\rho(\sum_{x \in X} \phi(x))$, where ϕ and ρ are neural networks.
- Works for sets that are order invariant and of arbitrary size.



⁹M. Zaheer et al., "Deep sets," in Proc. Advances in Neural Information Processing Systems (NIPS), 2017

Background: Set Transformer

- The Set Transformer¹⁰: Standard trans. without position encoding.
- Set Attention Blocks have form: $SAB(\mathbf{X}) = \lambda(\mathbf{H} + \mathbf{X}) + \mathbf{H} + \mathbf{X}$, where λ is a NN, and $\mathbf{H} = MHA(\mathbf{X}, \mathbf{X}, \mathbf{X})$.
- Pooling by Multi-head Attention: $\mathsf{PMA}(\mathbf{Z}) = \theta \big(\mathbf{H}' + \kappa(\mathbf{Z}) \big) + \mathbf{H}' + \kappa(\mathbf{Z}), \text{ where } \theta, \kappa \text{ are NNs and } \mathbf{H}' = \mathsf{MHA}(\mathbf{S}, \kappa(\mathbf{Z}), \kappa(\mathbf{Z})).$

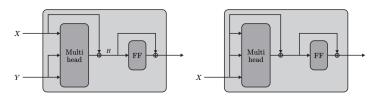


Figure: Reproduced from J. Lee et al. 10

¹⁰ J. Lee et al., "Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks," in Proc. Int. Conf. Machine Learning (ICML), 2019

Background: Graph Convolutional Neural Networks (GCN)

GCN¹¹ layers :

$$\mathbf{H}^{(1)} = \sigma(\tilde{\mathbf{A}}_{\mathcal{G}}\mathbf{X}\mathbf{W}^{(0)})$$

$$\mathbf{H}^{(\ell+1)} = \sigma(\tilde{\mathbf{A}}_{\mathcal{G}}\mathbf{H}^{(\ell)}\mathbf{W}^{(\ell)})$$

X: feature matrix

 $\tilde{\mathbf{A}}_{\mathcal{G}}$: normalized adjacency

 $\mathbf{W}^{(\ell)}$: weights of layer ℓ

 σ : non-linear activation

 $\mathbf{H}^{(\ell)}$: output at layer $\ell-1$

aggregation of features in the first and second layer of a GCN at a node

Problem Setting

Problem Definition

Given:

- Set of sets $\mathcal B$ partitioned to $\mathcal B_{\mathcal O}$ and $\mathcal B_{\mathcal U}$.
- Access to the individual instance matrices ${\bf X}$ inside each set and the labels ${\cal Y}_{\cal L}$ of the observed sets.
- Optional: $\mathcal{G}(\mathcal{V}, \mathcal{E})$ that summarizes relations between sets. Each vertex v_i corresponds to set $\mathcal{B}_i \in \mathcal{B}$. If sets $\mathcal{B}_i, \mathcal{B}_j$ are related then edge e_{ij} connects v_i, v_j .

The goal is to predict $\bar{\mathcal{Y}}_{\mathcal{L}}$ for the unobserved sets.

Methodology

Idea: First analyze locally (set level), then globally (graph level).

Methodology

Idea: First analyze locally (set level), then globally (graph level).

- Get local set level representation.
- De-noise given graph or learn one outright.
- Aggregate information from neighbouring set representations.
- Make neighbourhood cognizant prediction.

Methodology

Idea: First analyze locally (set level), then globally (graph level).

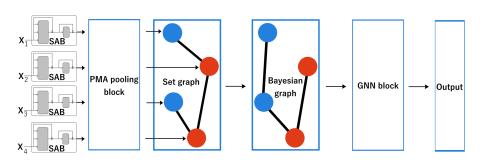
- Get local set level representation.
- De-noise given graph or learn one outright.
- Aggregate information from neighbouring set representations.
- Make neighbourhood cognizant prediction.

Some advantages of this approach:

- Ability to model relations both at the instance and the bag level.
- Does not require a graph to be given.
- GNN and set learning algorithm agnostic.

Architecture

- Elegantly handles variable size inputs.
- End-to-end trainable.



BGCN Model

• Goal: approximate posterior distribution of the unknown labels $\mathbf{y}_{\overline{\mathcal{L}}}$ conditioned on the training labels $\mathbf{y}_{\mathcal{L}}$, the node (bag) features $\mathbf{X}_{\mathcal{V}} = \{\mathbf{X}_i\}_{i \in \mathcal{V}}$, and (possibly) the observed graph \mathcal{G}_{obs} .

BGCN Model

- Goal: approximate posterior distribution of the unknown labels $\mathbf{y}_{\mathcal{L}}$ conditioned on the training labels $\mathbf{y}_{\mathcal{L}}$, the node (bag) features $\mathbf{X}_{\mathcal{V}} = \{\mathbf{X}_i\}_{i \in \mathcal{V}}$, and (possibly) the observed graph \mathcal{G}_{obs} .
- How? Compute expectation of model likelihood w.r.t. posterior distributions of the true graph $\mathcal G$, the GNN weights $\mathbf W = \{\mathbf W^{(\ell)}\}_{\ell=0}^{L-1}$ and the MIL model parameters Θ as follows:

BGCN Model

- Goal: approximate posterior distribution of the unknown labels $\mathbf{y}_{\overline{\mathcal{L}}}$ conditioned on the training labels $\mathbf{y}_{\mathcal{L}}$, the node (bag) features $\mathbf{X}_{\mathcal{V}} = \{\mathbf{X}_i\}_{i \in \mathcal{V}}$, and (possibly) the observed graph \mathcal{G}_{obs} .
- How? Compute expectation of model likelihood w.r.t. posterior distributions of the true graph \mathcal{G} , the GNN weights $\mathbf{W} = \{\mathbf{W}^{(\ell)}\}_{\ell=0}^{L-1}$ and the MIL model parameters Θ as follows:

$$p(\mathbf{y}_{\overline{\mathcal{L}}}|\mathbf{y}_{\mathcal{L}}, \mathbf{X}_{\mathcal{V}}, \mathcal{G}_{obs}) = \int p(\mathbf{y}_{\overline{\mathcal{L}}}|\mathbf{W}, \mathcal{G}, \mathbf{Z}_{\mathcal{V}}) p(\mathbf{W}|\mathbf{y}_{\mathcal{L}}, \mathbf{Z}_{\mathcal{V}}, \mathcal{G}) p(\mathcal{G}|\mathcal{G}_{obs}, \mathbf{Z}_{\mathcal{V}}, \mathbf{y}_{\mathcal{L}}) p(\mathbf{Z}_{\mathcal{V}}|\mathbf{X}_{\mathcal{V}}, \Theta) p(\Theta) d\Theta d\mathbf{Z}_{\mathcal{V}} d\mathbf{W} d\mathcal{G}.$$
(3)

22 / 37

Recall Eq. (3):

$$p(\mathbf{y}_{\overline{L}}|\mathbf{y}_{\mathcal{L}}, \mathbf{X}_{\mathcal{V}}, \mathcal{G}_{obs}) =$$

$$\int p(\mathbf{y}_{\overline{L}}|\mathbf{W}, \mathcal{G}, \mathbf{Z}_{\mathcal{V}}) p(\mathbf{W}|\mathbf{y}_{\mathcal{L}}, \mathbf{Z}_{\mathcal{V}}, \mathcal{G}) p(\mathcal{G}|\mathcal{G}_{obs}, \mathbf{Z}_{\mathcal{V}}, \mathbf{y}_{\mathcal{L}}) p(\mathbf{Z}_{\mathcal{V}}|\mathbf{X}_{\mathcal{V}}, \Theta) p(\Theta) d\Theta d\mathbf{Z}_{\mathcal{V}} d\mathbf{W} d\mathcal{G}$$

$$(4)$$

¹² S. Pal et al., "Bayesian graph convolutional neural networks using non-parametric graph learning," in Proc. Uncertainty in Artificial Intelligence Conf. (UAI), 2019.

Recall Eq. (3):

$$p(\mathbf{y}_{\overline{L}}|\mathbf{y}_{\mathcal{L}}, \mathbf{X}_{\mathcal{V}}, \mathcal{G}_{obs}) = \int p(\mathbf{y}_{\overline{L}}|\mathbf{W}, \mathcal{G}, \mathbf{Z}_{\mathcal{V}}) p(\mathbf{W}|\mathbf{y}_{\mathcal{L}}, \mathbf{Z}_{\mathcal{V}}, \mathcal{G}) p(\mathcal{G}|\mathcal{G}_{obs}, \mathbf{Z}_{\mathcal{V}}, \mathbf{y}_{\mathcal{L}}) p(\mathbf{Z}_{\mathcal{V}}|\mathbf{X}_{\mathcal{V}}, \Theta) p(\Theta) d\Theta d\mathbf{Z}_{\mathcal{V}} d\mathbf{W} d\mathcal{G}$$

$$(4)$$

• $p(\mathbf{Z}_{\mathcal{V}}|\mathbf{X}_{\mathcal{V}},\Theta)$ can be dropped since: $\widehat{\mathbf{Z}}_{\mathcal{V}} = \mathsf{MIL}(\mathbf{X}_{\mathcal{V}},\widehat{\Theta})$ is a deterministic function.

¹²S. Pal et al., "Bayesian graph convolutional neural networks using non-parametric graph learning," in Proc. Uncertainty in Artificial Intelligence Conf. (UAI), 2019.

Recall Eq. (3):

$$p(\mathbf{y}_{\overline{L}}|\mathbf{y}_{\mathcal{L}}, \mathbf{X}_{\mathcal{V}}, \mathcal{G}_{obs}) = \int p(\mathbf{y}_{\overline{L}}|\mathbf{W}, \mathcal{G}, \mathbf{Z}_{\mathcal{V}}) p(\mathbf{W}|\mathbf{y}_{\mathcal{L}}, \mathbf{Z}_{\mathcal{V}}, \mathcal{G}) p(\mathcal{G}|\mathcal{G}_{obs}, \mathbf{Z}_{\mathcal{V}}, \mathbf{y}_{\mathcal{L}}) p(\mathbf{Z}_{\mathcal{V}}|\mathbf{X}_{\mathcal{V}}, \Theta) p(\Theta) d\Theta d\mathbf{Z}_{\mathcal{V}} d\mathbf{W} d\mathcal{G}$$

$$(4)$$

- $p(\mathbf{Z}_{\mathcal{V}}|\mathbf{X}_{\mathcal{V}},\Theta)$ can be dropped since: $\widehat{\mathbf{Z}}_{\mathcal{V}}=\mathsf{MIL}(\mathbf{X}_{\mathcal{V}},\widehat{\Theta})$ is a deterministic function.
- We use maximum likelihood estimate $\widehat{\Theta}$ rather than integrating $p(\Theta) d\Theta$.

¹²S. Pal et al., "Bayesian graph convolutional neural networks using non-parametric graph learning," in Proc. Uncertainty in Artificial Intelligence Conf. (UAI), 2019.

Recall Eq. (3):

$$p(\mathbf{y}_{\overline{L}}|\mathbf{y}_{\mathcal{L}}, \mathbf{X}_{\mathcal{V}}, \mathcal{G}_{obs}) = \int p(\mathbf{y}_{\overline{L}}|\mathbf{W}, \mathcal{G}, \mathbf{Z}_{\mathcal{V}}) p(\mathbf{W}|\mathbf{y}_{\mathcal{L}}, \mathbf{Z}_{\mathcal{V}}, \mathcal{G}) p(\mathcal{G}|\mathcal{G}_{obs}, \mathbf{Z}_{\mathcal{V}}, \mathbf{y}_{\mathcal{L}}) p(\mathbf{Z}_{\mathcal{V}}|\mathbf{X}_{\mathcal{V}}, \Theta) p(\Theta) d\Theta d\mathbf{Z}_{\mathcal{V}} d\mathbf{W} d\mathcal{G}$$

$$(4)$$

- $p(\mathbf{Z}_{\mathcal{V}}|\mathbf{X}_{\mathcal{V}},\Theta)$ can be dropped since: $\widehat{\mathbf{Z}}_{\mathcal{V}}=\mathsf{MIL}(\mathbf{X}_{\mathcal{V}},\widehat{\Theta})$ is a deterministic function.
- We use maximum likelihood estimate $\widehat{\Theta}$ rather than integrating $p(\Theta) d\Theta$.
- Obtain $\widehat{\mathcal{G}}$ using a non parametric graph learning technique¹².

¹²S. Pal et al., "Bayesian graph convolutional neural networks using non-parametric graph learning," in Proc. Uncertainty in Artificial Intelligence Conf. (UAI), 2019.

Recall Eq. (3):

$$p(\mathbf{y}_{\overline{\mathcal{L}}}|\mathbf{y}_{\mathcal{L}},\mathbf{X}_{\mathcal{V}},\mathcal{G}_{obs}) = \int p(\mathbf{y}_{\overline{\mathcal{L}}}|\mathbf{W},\mathcal{G},\mathbf{Z}_{\mathcal{V}})p(\mathbf{W}|\mathbf{y}_{\mathcal{L}},\mathbf{Z}_{\mathcal{V}},\mathcal{G})p(\mathcal{G}|\mathcal{G}_{obs},\mathbf{Z}_{\mathcal{V}},\mathbf{y}_{\mathcal{L}})p(\mathbf{Z}_{\mathcal{V}}|\mathbf{X}_{\mathcal{V}},\Theta)p(\Theta) d\Theta d\mathbf{Z}_{\mathcal{V}} d\mathbf{W} d\mathcal{G}$$

$$(4)$$

- $p(\mathbf{Z}_{\mathcal{V}}|\mathbf{X}_{\mathcal{V}},\Theta)$ can be dropped since: $\widehat{\mathbf{Z}}_{\mathcal{V}} = \mathsf{MIL}(\mathbf{X}_{\mathcal{V}},\widehat{\Theta})$ is a deterministic function.
- We use maximum likelihood estimate $\widehat{\Theta}$ rather than integrating $p(\Theta) d\Theta$.
- Obtain $\widehat{\mathcal{G}}$ using a non parametric graph learning technique¹².

Integral is still intractable, so we apply Monte Carlo approximation:

$$p(\mathbf{y}_{\overline{\mathcal{L}}}|\mathbf{y}_{\mathcal{L}}, \mathbf{X}_{\mathcal{V}}, \mathcal{G}_{obs}) \approx \frac{1}{S} \sum_{s}^{S} p(\mathbf{y}_{\overline{\mathcal{L}}}|\mathbf{W}_{s}, \widehat{\mathcal{G}}, \widehat{\mathbf{Z}}_{\mathcal{V}}).$$
 (5)

¹²S. Pal et al., "Bayesian graph convolutional neural networks using non-parametric graph learning," in Proc. Uncertainty in Artificial Intelligence Conf. (UAI), 2019.

Experiments¹

MIL Classification Baselines:

- Instance space methods: mi-SVM and MI-SVM, EM-DD, MI-VLAD and miFV.
- Bag space methods: MI-Kernel, mi-Graph.
- Embedding space methods: mi-Net and MI-Net, Attention Neural Network and Gated Attention Neural Network
- Non Bayesian Graph Baseline: Model ablation remove the Bayesian graph learning model and replace with vanilla GNN.

Experiments

Common MIL Benchmarks:

- Chemical compound property prediction (MUSK & MUSK2)¹³
- Image recognition (Elephant, Fox, Tiger)¹⁴
- 20NewsGroups dataset¹⁵.
- Task: Text categorization.

Algorithm	MI- Kernel	Mi- Graph	Mi- FV	Mi- Net	MI- Net	MI- Net (DS)	MI- Net (RC)	Res+pool	Res+pool- GCN	B-Res+pool- GCN
Average rank	10.00	8.70	7.50	4.60	3.70	4.05	4.50	4.05	4.55	3.35
Median rank	10.00	9.00	8.00	5.00	4.00	4.00	4.00	<u>3.50</u>	4.50	2.50

¹³T. Dietterich et al., "Solving the multiple instance problem with axis-parallel rectangles," Artificial Intelligence, 1997

¹⁴S. Andrews et al., "Support Vector Machines for Multiple-Instance Learning," in Proc. Advances Neural Information Processing Systems (NIPS) Dec. 2002

¹⁵ Z. Zhou et al., "Multi-instance learning by treating instances as non-iid samples," in Proc. Int. Conf. Machine Learning (ICML), 2009

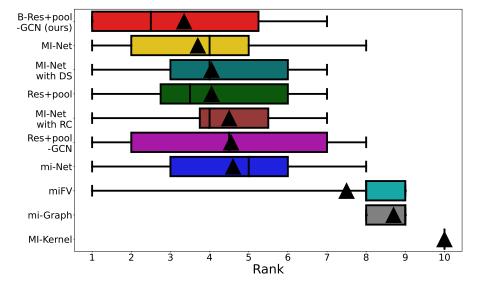


Figure: Boxplot of ranks of the algorithms across the 20 text datasets. The medians and means of the ranks are shown by the vertical lines and the black triangles respectively; whiskers extend to the minimum and maximum ranks.

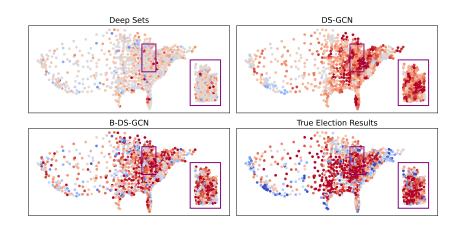
Experiment

Task: Given demographic data from US census per county and some voting results can we predict how the rest of the country will vote?

- Dataset source: Flaxman et al. (2016)¹⁶
- Instances: Voters sampled per neighborhood.
- Features: Census data.
- Bags: Neighborhoods.

¹⁶ S. Flaxman et al., "Understanding the 2016 US Presidential Election using ecological inference and distribution regression with census microdata," arXiv preprint (2016).

Results



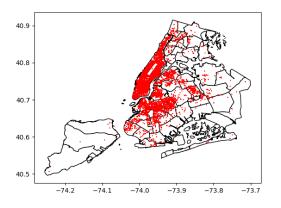
Results

Table: Experimental verification of results for various sample sizes. Mean accuracy over 100 trials reported with standard error.

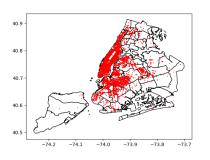
Method	50 samples	100 samples	400 samples
MISVM	60.67±5.90	$61.25\pm\ 5.50$	61.27 ± 5.52
MI-Kernel	63.76 ± 5.90	$63.45 \pm\ 6.10$	63.31 ± 5.73
miSVM	67.23 ± 12.1	$72.17 \pm\ 9.10$	73.41 ± 8.14
Deep Sets	67.55 ± 3.28	73.22 ± 3.22	73.42 ± 3.18
DS-GCN	67.86 ± 4.24	74.05 ± 4.56	75.35 ± 3.16
B-DS-GCN	70.26 ± 3.22	$74.29 {\pm} 3.15$	76.04 \pm 3.11

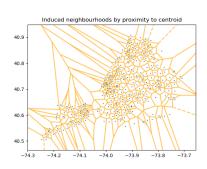
Experiments

- 50,000 rental properties with features such as interest level, etc.
- Set adjacency is defined by direct geographical proximity.
- Goal: Predict mean rental price per NYC neighbourhood.



Experiments





- 50,000 rental properties with features such as interest level, etc.
- Set adjacency is defined by direct geographical proximity.
- Goal: Predict mean rental price per NYC neighbourhood.

Results

- We separate the neighborhood labels in a 70/15/15 split.
- We sample a small number of properties per neighborhood.

Algorithm	RMSE	MAE	MAPE (%)
Deep Sets	86.37±20.41	65.19±15.72	2.24±0.36
DS-GCN	78.57 ± 16.06	59.21 ± 10.20	$1.92 {\pm} 0.24$
B-DS-GCN	$67.51 {\pm} 16.39$	$47.24 \!\pm\! 10.21$	1.83 ± 0.20
Set Transformer	76.34±15.04	56.09±9.10	2.02±0.22
ST-GCN	71.86 ± 14.65	53.56 ± 9.11	$1.81 {\pm} 0.22$
B-ST-GCN	69.44±16.23	49.72 ± 9.60	1.83±0.22

Conclusion

- We proposed a framework that for modelling bag relations.
- Tested on MIL datasets (classification) and set learning tasks (regression).
- Framework is not model specific.
- Future work: Inductive setting.

Code: https://github.com/networkslab/BagGraph