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Motivation

Modern deep learning algorithms require lots of data.

Typically obtaining labels is costly.

Some options to address this:

1 Fewer data and more expert knowledge (informative priors).

2 Weak supervision.
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What is Multiple Instance Learning?

Multiple Instance Learning (MIL) is a weakly supervised method.

In a MIL problem, the labels are assigned to bags, i.e., a set of
instances, rather than individual instances.
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What is Multiple Instance Learning?

Basic mathematical description:

y = f (X) =

{
1, if ∃ xi ∈ X s.t. g(xi ) = 1 ,

0, otherwise.
(1)

Equivalent definition:

y = f (X) = min
(∑

i

g(xi ), 1
)
, (2)
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Brief Literature Review

Approaches fall in three main categories:

1 Instance space methods

2 Bag space methods

3 Embedded space methods
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Review - Instance Space Approaches

Following from eq. (2):

1 Learn instance classifier g(xi ),

2 Plug it in f (X) = min
(∑

i g(xi ), 1
)
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Review - Instance Space Approaches

+ Intuitive and explainable.

+ Can trivially apply existing learning methods to learn g(.).

− Difficult to apply without instance labels.

− Treats instances as i.i.d.

Well known algorithms: axis-parallel rectangles (APR)1, mi-SVM2 and
MI-VLAD3.

1T. Dietterich et al., ”Solving the multiple instance problem with axis-parallel rectangles,” Artificial Intelligence, 1997

2S. Andrews et al., ”Support Vector Machines for Multiple-Instance Learning,” in Proc. Advances Neural Information Processing Systems (NIPS) Dec. 2002

3X. S. Wei et al., ”Scalable algorithms for multi-instance learning,” IEEE Trans. Neural Networks and Learning Systems, pp.975-987, 2016
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Review - Bag Space Approaches

1 Create a bag descriptor.

2 Learn a mapping from bag descriptors to labels.
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Review - Bag Space Approaches

+ Do not need instance labels.

+ Can model non-i.i.d. instances.

− Cannot learn complex feature representations.

− Hard to model bag relations.

Some key baselines: MI-Kernel4, CCE5 and MI-Graph6.

4T. Gärtner et al., ”Multi-instance kernels,” in Proc. Int. Conf. Machine Learning (ICML), 1997

5Z. Zhou et al., ”Solving multi-instance problems with classifier ensemble based on constructive clustering,” in Proc. Knowledge and Information Systems (KDD), 2007

6Z. Zhou et al., ”Multi-instance learning by treating instances as non-iid samples,” in Proc. Int. Conf. Machine Learning (ICML), 2009
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Review - Embedding Space Approaches

1 Use pooling to combine instances into a bag embedding.

2 Learn bag representations.
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Review - Embedding Space Approaches

+ Does not need instance labels.

+ Models instance relations of arbitrary complexity.

+ Outperforms other paradigms in practice - scales with data.

− No modelling of inter-bag relations (we will change that!)

Some key methods: mi-Net7, Attention-Based-MIL8.

7X. Wang et al., ”Revisiting multiple instance neural networks,” Pattern Recognition, 2018

8M. Ilse et al., ”Attention-based deep multiple instance learning,” in Proc. Int. Conf. Machine Learning (ICML), 2018
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Background: Deep Sets

Deep Sets9: learns set representations.

Architecture: ρ
(∑

x∈X ϕ(x)
)
, where ϕ and ρ are neural networks.

Works for sets that are order invariant and of arbitrary size.

9M. Zaheer et al., ”Deep sets,” in Proc. Advances in Neural Information Processing Systems (NIPS), 2017
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Background: Set Transformer

The Set Transformer10: Standard trans. without position encoding.

Set Attention Blocks have form: SAB(X) = λ(H+ X) +H+ X,
where λ is a NN, and H = MHA(X,X,X).

Pooling by Multi-head Attention:
PMA(Z) = θ

(
H′ + κ(Z)

)
+H′ + κ(Z), where θ, κ are NNs and

H′ = MHA(S, κ(Z), κ(Z)).

Figure: Reproduced from J. Lee et al.10

10J. Lee et al., ”Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks,” in Proc. Int. Conf. Machine Learning (ICML), 2019
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Background: Graph Convolutional Neural Networks (GCN)

GCN11 layers :

H(1) = σ(ÃGXW
(0))

H(ℓ+1) = σ(ÃGH
(ℓ)W(ℓ))

X : feature matrix

ÃG : normalized adjacency

W(ℓ) : weights of layer ℓ

H(ℓ) : output at layer ℓ− 1

σ : non-linear activation

aggregation of features in the first and
second layer of a GCN at a node

11T. Kipf and M. Welling et al., ”Semi-Supervised Classification with Graph Convolutional Networks,” in Proc. Int. Conf. Learning Representations, 2017
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Problem Setting

Problem Definition

Given:

Set of sets B partitioned to BO and BU .

Access to the individual instance matrices X inside each set and the
labels YL of the observed sets.

Optional: G(V, E) that summarizes relations between sets. Each
vertex vi corresponds to set Bi ∈ B. If sets Bi ,Bj are related then
edge eij connects vi , vj .

The goal is to predict ȲL for the unobserved sets.
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Methodology

Idea: First analyze locally (set level), then globally (graph level).

1 Get local set level representation.

2 De-noise given graph or learn one outright.

3 Aggregate information from neighbouring set representations.

4 Make neighbourhood cognizant prediction.

Some advantages of this approach:

Ability to model relations both at the instance and the bag level.

Does not require a graph to be given.

GNN and set learning algorithm agnostic.
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Architecture

Elegantly handles variable size inputs.

End-to-end trainable.
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BGCN Model

Goal: approximate posterior distribution of the unknown labels yL
conditioned on the training labels yL, the node (bag) features
XV = {Xi}i∈V , and (possibly) the observed graph Gobs .

How? Compute expectation of model likelihood w.r.t. posterior
distributions of the true graph G, the GNN weights W = {W(ℓ)}L−1

ℓ=0
and the MIL model parameters Θ as follows:

p(yL|yL,XV ,Gobs) =∫
p(yL|W,G,ZV)p(W|yL,ZV ,G)p(G|Gobs ,ZV , yL)p(ZV |XV ,Θ)p(Θ) dΘ dZV dW dG .

(3)
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Learning the Graph Topology via BGCN

Recall Eq. (3):

p(yL|yL,XV ,Gobs) =∫
p(yL|W,G,ZV)p(W|yL,ZV ,G)p(G|Gobs ,ZV , yL)p(ZV |XV ,Θ)p(Θ) dΘ dZV dW dG

(4)

p(ZV |XV ,Θ) can be dropped since: ẐV = MIL
(
XV , Θ̂

)
is a deterministic function.

We use maximum likelihood estimate Θ̂ rather than integrating p(Θ) dΘ.

Obtain Ĝ using a non parametric graph learning technique12.

Integral is still intractable, so we apply Monte Carlo approximation:

p(yL|yL,XV ,Gobs) ≈
1

S

S∑
s=1

p(yL|Ws , Ĝ, ẐV) . (5)

12S. Pal et al., ”Bayesian graph convolutional neural networks using non-parametric graph learning,” in Proc. Uncertainty in Artificial Intelligence Conf. (UAI), 2019.
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(
XV , Θ̂

)
is a deterministic function.

We use maximum likelihood estimate Θ̂ rather than integrating p(Θ) dΘ.
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Experiments

MIL Classification Baselines:

Instance space methods: mi-SVM and MI-SVM, EM-DD,
MI-VLAD and miFV.

Bag space methods: MI-Kernel, mi-Graph.

Embedding space methods: mi-Net and MI-Net, Attention Neural
Network and Gated Attention Neural Network

Non Bayesian Graph Baseline: Model ablation - remove the
Bayesian graph learning model and replace with vanilla GNN.
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Experiments

Common MIL Benchmarks:

Chemical compound property prediction (MUSK & MUSK2)13

Image recognition (Elephant, Fox, Tiger)14

20NewsGroups dataset15.

Task: Text categorization.

Algorithm
MI-

Kernel
Mi-

Graph
Mi-
FV

Mi-
Net

MI-
Net

MI-
Net (DS)

MI-
Net (RC)

Res+pool
Res+pool-

GCN
B-Res+pool-

GCN
Average rank 10.00 8.70 7.50 4.60 3.70 4.05 4.50 4.05 4.55 3.35
Median rank 10.00 9.00 8.00 5.00 4.00 4.00 4.00 3.50 4.50 2.50

13T. Dietterich et al., ”Solving the multiple instance problem with axis-parallel rectangles,” Artificial Intelligence, 1997

14S. Andrews et al., ”Support Vector Machines for Multiple-Instance Learning,” in Proc. Advances Neural Information Processing Systems (NIPS) Dec. 2002

15Z. Zhou et al., ”Multi-instance learning by treating instances as non-iid samples,” in Proc. Int. Conf. Machine Learning (ICML), 2009
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1 2 3 4 5 6 7 8 9 10
Rank

B-Res+pool
-GCN (ours)

MI-Net
MI-Net  
with DS

Res+pool
MI-Net  
with RC

Res+pool
-GCN

mi-Net

miFV

mi-Graph

MI-Kernel

Figure: Boxplot of ranks of the algorithms across the 20 text datasets. The
medians and means of the ranks are shown by the vertical lines and the black
triangles respectively; whiskers extend to the minimum and maximum ranks.
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Experiment

Task: Given demographic data from US census per county and some
voting results can we predict how the rest of the country will vote?

Dataset source: Flaxman et al. (2016)16

Instances: Voters sampled per neighborhood.

Features: Census data.

Bags: Neighborhoods.

16S. Flaxman et al., ”Understanding the 2016 US Presidential Election using ecological inference and distribution regression with census microdata,” arXiv preprint (2016).
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Results

Deep Sets DS-GCN

B-DS-GCN True Election Results
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Results

Table: Experimental verification of results for various sample sizes. Mean
accuracy over 100 trials reported with standard error.

Method 50 samples 100 samples 400 samples
MISVM 60.67±5.90 61.25± 5.50 61.27±5.52
MI-Kernel 63.76±5.90 63.45± 6.10 63.31±5.73
miSVM 67.23±12.1 72.17± 9.10 73.41±8.14
Deep Sets 67.55±3.28 73.22± 3.22 73.42±3.18
DS-GCN 67.86±4.24 74.05± 4.56 75.35±3.16
B-DS-GCN 70.26±3.22 74.29±3.15 76.04±3.11
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Experiments

50,000 rental properties with features such as interest level, etc.

Set adjacency is defined by direct geographical proximity.

Goal: Predict mean rental price per NYC neighbourhood.

34 / 37



Experiments

50,000 rental properties with features such as interest level, etc.

Set adjacency is defined by direct geographical proximity.

Goal: Predict mean rental price per NYC neighbourhood.

35 / 37



Results

We separate the neighborhood labels in a 70/15/15 split.

We sample a small number of properties per neighborhood.

Algorithm RMSE MAE MAPE (%)

Deep Sets 86.37±20.41 65.19±15.72 2.24±0.36
DS-GCN 78.57±16.06 59.21±10.20 1.92±0.24
B-DS-GCN 67.51±16.39 47.24±10.21 1.83±0.20

Set Transformer 76.34±15.04 56.09±9.10 2.02±0.22
ST-GCN 71.86±14.65 53.56±9.11 1.81±0.22
B-ST-GCN 69.44±16.23 49.72±9.60 1.83±0.22
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Conclusion

We proposed a framework that for modelling bag relations.

Tested on MIL datasets (classification) and set learning tasks
(regression).

Framework is not model specific.

Future work: Inductive setting.

Code: https://github.com/networkslab/BagGraph
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