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@ Modern deep learning algorithms require lots of data.

@ Typically obtaining labels is costly.

Some options to address this:
@ Fewer data and more expert knowledge (informative priors).

@ Weak supervision.
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What is Multiple Instance Learning?

e Multiple Instance Learning (MIL) is a weakly supervised method.

@ In a MIL problem, the labels are assigned to bags, i.e., a set of
instances, rather than individual instances.
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What is Multiple Instance Learning?

Basic mathematical description:

1, if3x;eXst g(x;)=1,

0, otherwise.

y=f(X)= {
Equivalent definition:

y = f(X) = min (Zg(x,')a 1), (2)
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Brief Literature Review

Approaches fall in three main categories:

@ Instance space methods
@ Bag space methods
© Embedded space methods
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Review - Instance Space Approaches

Following from eq. (2):
@ Learn instance classifier g(x;),
@ Plug it in £(X) =min (Y, g(x),1)

Instance Label
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Review - Instance Space Approaches

+ Intuitive and explainable.

+ Can trivially apply existing learning methods to learn g(.).

Difficult to apply without instance labels.
— Treats instances as i.i.d.

Well known algorithms: axis-parallel rectangles (APR)!, mi-SVM? and
MI-VLAD?.

' T. Dietterich et al., " Solving the multiple instance problem with axis-parallel rectangles,” Artificial Intelligence, 1997
25. Andrews et al., " Support Vector Machines for Multiple-Instance Learning," in Proc. Advances Neural Information Processing Systems (NIPS) Dec. 2002

3X.S. Wei et al,, "Scalable algorithms for multi-instance learning,” IEEE Trans. Neural Networks and Learning Systems, pp.975-087, 2016
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Review - Bag Space Approaches

© Create a bag descriptor.

@ Learn a mapping from bag descriptors to labels.

Bag Descriptor Label
@, =>[0110...]=>0

Q@ =>[1101...] => 0
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Review - Bag Space Approaches

+ Do not need instance labels.

+ Can model non-i.i.d. instances.

Cannot learn complex feature representations.

Hard to model bag relations.

Some key baselines: MI-Kernel*, CCE® and MI-Graph®.

“T. Gartner et al., "Multi-instance kernels,” in Proc. Int. Conf. Machine Learning (ICML), 1997
5Z. Zhou et al., " Solving multi-instance problems with classifier ensemble based on constructive clustering,” in Proc. Knowledge and Information Systems (KDD), 2007

©Z. Zhou et al., " Multi-instance learning by treating instances as non-iid samples,” in Proc. Int. Conf. Machine Learning (ICML), 2009
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Review - Embedding Space Approaches

@ Use pooling to combine instances into a bag embedding.

@ Learn bag representations.
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Review - Embedding Space Approaches

+ Does not need instance labels.
+ Models instance relations of arbitrary complexity.

+ Outperforms other paradigms in practice - scales with data.

No modelling of inter-bag relations (we will change that!)

Some key methods: mi-Net”, Attention-Based-MILE,

7X. Wang et al., " Revisiting multiple instance neural networks,” Pattern Recognition, 2018

BM. lise et al, " Attention-based deep multiple instance learning,” in Proc. Int. Conf. Machine Learning (ICML), 2018
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Background: Deep Sets

o Deep Sets®: learns set representations.
o Architecture: p( Y, x ¢(x)), where ¢ and p are neural networks.

@ Works for sets that are order invariant and of arbitrary size.

| 12

M. Zaheer et al., "Deep sets,” in Proc. Advances in Neural Information Processing Systems (NIPS), 2017
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Background: Set Transformer

@ The Set Transformer'®: Standard trans. without position encoding.

e Set Attention Blocks have form: SAB(X) = A(H + X) + H + X,
where A is a NN, and H = MHA(X, X, X).

o Pooling by Multi-head Attention:

PMA(Z) = 6(H' + k(Z)) + H' + k(Z), where 0, x are NNs and
H' = MHA(S, k(Z), x(Z)).

x

Multi H Multi
head head

Y X

Figure: Reproduced from J. Lee et al.10

10). Lee et al, "Set Tr A for At based Invariant Neural Networks,” in Proc. Int. Conf. Machine Learning (ICML), 2019
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Background: Graph Convolutional Neural Networks (GCN)

GCN!! layers :
H® = o(AgXwW()
HFD = o (AgHOW®)

X : feature matrix

Ag : normalized adjacency

l) . 2
w weights of layer £ aggregation of features in the first and
second layer of a GCN at a node
H® . output at layer £ — 1

o : non-linear activation

1T, Kipf and M. Welling et al., " pervised CI with Graph Convol Networks," in Proc. Int. Conf. Learning Representations, 2017
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Problem Setting

Problem Definition

Given:

@ Set of sets BB partitioned to Bp and By.

@ Access to the individual instance matrices X inside each set and the
labels Y, of the observed sets.

e Optional: G(V, &) that summarizes relations between sets. Each
vertex v; corresponds to set B; € B. If sets B;, B; are related then
edge ejj connects vj, v;.

The goal is to predict Y, for the unobserved sets.
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Methodology

Idea: First analyze locally (set level), then globally (graph level).
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Methodology

Idea: First analyze locally (set level), then globally (graph level).
© Get local set level representation.
@ De-noise given graph or learn one outright.
© Aggregate information from neighbouring set representations.

@ Make neighbourhood cognizant prediction.
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Methodology

Idea: First analyze locally (set level), then globally (graph level).
© Get local set level representation.
@ De-noise given graph or learn one outright.
© Aggregate information from neighbouring set representations.

@ Make neighbourhood cognizant prediction.

Some advantages of this approach:
@ Ability to model relations both at the instance and the bag level.
@ Does not require a graph to be given.

@ GNN and set learning algorithm agnostic.
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o Elegantly handles variable size inputs.

o End-to-end trainable.
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BGCN Model

@ Goal: approximate posterior distribution of the unknown labels y
conditioned on the training labels y., the node (bag) features
Xy = {X;}icy, and (possibly) the observed graph Gps.

20/37



BGCN Model

@ Goal: approximate posterior distribution of the unknown labels y
conditioned on the training labels y., the node (bag) features
Xy = {X;}icy, and (possibly) the observed graph Gps.

@ How? Compute expectation of model likelihood w.r.t. posterior

distributions of the true graph G, the GNN weights W = {W(E)}é:_g
and the MIL model parameters © as follows:
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BGCN Model

@ Goal: approximate posterior distribution of the unknown labels y
conditioned on the training labels y., the node (bag) features
Xy = {X;}icy, and (possibly) the observed graph Gps.

@ How? Compute expectation of model likelihood w.r.t. posterior
distributions of the true graph G, the GNN weights W = {W(E)}é:_g
and the MIL model parameters © as follows:

P(Yzlyc, Xv, Gobs) =

/ p(YzIW, G, Zv)p(Wlyz, Zv,G)p(G|Gobs, Zv, ¥ )P(Zv| Xy, ©)p(©) dO© dZy, dW dG .
(3)
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Learning the Graph Topology via BGCN

Recall Eq. (3):

p(yf‘yL:? XVa gobs) -
[ P92, 6. 20)p Wiy, 20, Op(G1Gs Zv, Y0 )P(ZoIX5, ©)p(8) 40 625 AW dg
(4)

125, Pal et al., "Bayesian graph convolutional neural networks using non-parametric graph learning,” in Proc. Uncertainty in Artificial Intelligence Conf. (UAI), 2019.
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Learning the Graph Topology via BGCN

Recall Eq. (3):

p(yf‘yL:? XVa gobs) -
[ P92, 6. 20)p Wiy, 20, Op(G1Gs Zv, Y0 )P(ZoIX5, ©)p(8) 40 625 AW dg
(4)

@ p(Zy|Xy,®) can be dropped since: Zy = MIL(XV,@)) is a deterministic function.

125, Pal et al., "Bayesian graph convolutional neural networks using non-parametric graph learning,” in Proc. Uncertainty in Artificial Intelligence Conf. (UAI), 2019.
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Learning the Graph Topology via BGCN

Recall Eq. (3):

p(yf‘yL:? XVa gobs) -
/P(Yz\W~ G.Zv)p(Wlycz, Zv, G)p(G|Gobs; Zv,y2)p(Zv Xy, ©)p(©) dO© dZy dW dG
(4)

@ p(Zy|Xy,O) can be dropped since: Zy = MIL(XV,@)) is a deterministic function.

@ We use maximum likelihood estimate © rather than integrating p(©) dO©.

125, Pal et al., "Bayesian graph convolutional neural networks using non-parametric graph learning,” in Proc. Uncertainty in Artificial Intelligence Conf. (UAI), 2019.
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Learning the Graph Topology via BGCN

Recall Eq. (3):

p(yf‘yﬁ7 XVa gobs) -
/P(Yz\W~ G.Zv)p(Wlycz, Zv, G)p(G|Gobs; Zv,y2)p(Zv Xy, ©)p(©) dO© dZy dW dG
(4)

@ p(Zy|Xy,O) can be dropped since: Zy = MIL(XV,@)) is a deterministic function.
@ We use maximum likelihood estimate © rather than integrating p(©) dO©.

@ Obtain G using a non parametric graph learning technique®?.

125, Pal et al., "Bayesian graph convolutional neural networks using non-parametric graph learning,” in Proc. Uncertainty in Artificial Intelligence Conf. (UAI), 2019.
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Learning the Graph Topology via BGCN

Recall Eq. (3):

p(yf‘yﬁ7 XVa gobs) -
/P(Yz\W~ G.Zv)p(Wlycz, Zv, G)p(G|Gobs; Zv,y2)p(Zv Xy, ©)p(©) dO© dZy dW dG
(4)

@ p(Zy|Xy,O) can be dropped since: Zy = MIL(XV,@)) is a deterministic function.
@ We use maximum likelihood estimate © rather than integrating p(©) dO©.

@ Obtain G using a non parametric graph learning technique'?

Integral is still intractable, so we apply Monte Carlo approximation:

1

S
P(yzlye, Xy, Govs) zgz p(yzIWs, G, Zy). (5)

125, Pal et al., "Bayesian graph convolutional neural networks using non-parametric graph learning,” in Proc. Uncertainty in Artificial Intelligence Conf. (UAI), 2019.
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MIL Classification Baselines:

@ Instance space methods: mi-SVM and MI-SVM, EM-DD,
MI-VLAD and miFV.

o Bag space methods: MI-Kernel, mi-Graph.

o Embedding space methods: mi-Net and MI-Net, Attention Neural
Network and Gated Attention Neural Network

o Non Bayesian Graph Baseline: Model ablation - remove the
Bayesian graph learning model and replace with vanilla GNN.
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Experiments

Common MIL Benchmarks:

e Chemical compound property prediction (MUSK & MUSK2)'3

o Image recognition (Elephant, Fox, Tiger)4
o 20NewsGroups dataset'®.
@ Task: Text categorization.

. MI- Mi- Mi- Mi-  MI- MI- MI- Res+pool- B-Res+pool-
Algorithm |\ el Graph FV || Net Net Net (DS) Net (RC) || RestPool gen GCN
Average rank | 10.00 8.70 7.50 || 460 3.70 4.05 4.50 4.05 4.55 3.35
Median rank 10.00 9.00 8.00 5.00 4.00 4.00 4.00 3.50 4.50 2.50

13T, Dietterich et al., " Solving the multiple instance problem with axis-parallel rectangles,” Artificial Intelligence, 1997
145, Andrews et al., " Support Vector Machines for Multiple-Instance Learning,” in Proc. Advances Neural Information Processing Systems (NIPS) Dec. 2002

157. Zhou et al., " Multi-instance learning by treating instances as non-iid samples,” in Proc. Int. Conf. Machine Learning (ICML), 2009
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Figure: Boxplot of ranks of the algorithms across the 20 text datasets. The
medians and means of the ranks are shown by the vertical lines and the black
triangles respectively; whiskers extend to the minimum and maximum ranks.
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Task: Given demographic data from US census per county and some
voting results can we predict how the rest of the country will vote?

o Dataset source: Flaxman et al. (2016)'6
@ Instances: Voters sampled per neighborhood.
o Features: Census data.

@ Bags: Neighborhoods.

185, Flaxman et al., " Understanding the 2016 US Presidential Election using ecological inference and distribution regression with census microdata,” arXiv preprint (2016).
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Table: Experimental verification of results for various sample sizes. Mean
accuracy over 100 trials reported with standard error.

Method 50 samples 100 samples 400 samples
MISVM 60.67+5.90 61.25+ 5.50 61.274+5.52
MI-Kernel  63.764+5.90 63.45+ 6.10 63.31+5.73
miSVM 67.234+12.1 72.17+ 9.10 73.41+8.14
Deep Sets 67.554+3.28 73.22+ 3.22 73.42+3.18
DS-GCN 67.86+4.24  74.05+ 4.56 75.354+3.16
B-DS-GCN  70.26+3.22 74.29+3.15 76.04+3.11
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@ 50,000 rental properties with features such as interest level, etc.
@ Set adjacency is defined by direct geographical proximity.
@ Goal: Predict mean rental price per NYC neighbourhood.

40.8 4

40.7 4

40.5 q
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Induced neighbourhoods by proximity to centroid

-74.2 —74.1 -74.0 -73.9 -73.8 -73.7 -743  -742  -741 740  -73.9  -738  -737

@ 50,000 rental properties with features such as interest level, etc.
@ Set adjacency is defined by direct geographical proximity.

@ Goal: Predict mean rental price per NYC neighbourhood.

35/37



@ We separate the neighborhood labels in a 70/15/15 split.

@ We sample a small number of properties per neighborhood.

Algorithm RMSE MAE  MAPE (%)
Deep Sets 86.37+20.41 65.10+15.72 2.24:0.36
DS-GCN 78.57+16.06 59.21+10.20 1.92+0.24

B-DS-GCN 67.51+16.39 47.24+10.21 1.83£0.20

Set Transformer 76.34+15.04 56.094+9.10 2.02+0.22
ST-GCN 71.86+£14.65 53.564+9.11 1.81+0.22
B-ST-GCN 69.44+16.23 49.724+9.60 1.83+0.22
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Conclusion

@ We proposed a framework that for modelling bag relations.

o Tested on MIL datasets (classification) and set learning tasks
(regression).

@ Framework is not model specific.

o Future work: Inductive setting.

Code: https://github.com/networkslab/BagGraph
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https://github.com/networkslab/BagGraph



