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Abstract

Microwave breast screening has been proposed as a complementary modality to the current
standard of X-ray mammography. In this work, we design three ensemble classification
structures that fuse information from multiple sensors to detect abnormalities in the breast.
A principled Neyman-Pearson approach is developed to allow control of the trade-off be-
tween false positive rate and the false negative rate. We evaluate performance using data
derived from measurements of heterogeneous breast phantoms. We also use data collected
in a clinical trial that monitored 12 healthy patients monthly over an eight-month period.
In order to assess the efficacy of the proposed algorithms we model scans of breasts with
malignant lesions by artificially adding simulated tumour responses to existing scans of
healthy volunteers. Tumour responses are constructed based on measured properties of
breast tissues and real breast measurements, thus the simulation model takes into account
the heterogeneity of the breast tissue. The algorithms we present take advantage of breast
scans from other patients or tissue-mimicking breast phantoms to learn about breast con-
tent and what constitutes a “tumour-free” and “tumour-bearing” set of measurements. We
demonstrate that the ensemble selection-based algorithm, which constructs an ensemble
of the most informative classifiers, significantly outperforms other detection techniques
for the clinical trial data set.
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1. Introduction

Early detection of breast cancer is vital for successful treatment [1]. Microwave imag-
ing and detection methods have been intensely researched in recent years as a comple-
mentary modality for breast cancer screening. Such methods are based on the reported
inherent contrast of dielectric properties of healthy and malignant breast tissues over the
microwave frequency range [2, 3]. Microwave techniques promise non-invasive screening
with low-cost system fabrication and operation and have been applied to other fields in-
cluding stroke detection [4]. Scans do not require breast compression and can be repeated
frequently since no ionizing radiation is used. The aim is not to replace mammography,
ultrasound, or MRI, but to develop an alternative approach that can act as an early warning
system to flag the need for more comprehensive testing.

Most of the previous work on microwave breast cancer screening has concentrated on
imaging. Algorithms are applied to measurement data to generate images that can be inter-
preted by a clinical expert. Microwave radar and microwave tomography are two common
techniques in the microwave imaging field. Tomographic methods are used to reconstruct a
dielectric profile of breast tissues [5] by solving an ill-conditioned inverse problem. Radar
methods, on the other hand, generate a map of scattering regions within the breast. To-
mography methods have been applied in experimental imaging of both phantoms [6, 7]
and patients [8, 5]. Radar imaging approaches include beamforming algorithms [9, 10, 11]
and hypothesis testing techniques [12]. Results have been reported for delay-and-sum and
other beamforming algorithms on data collected in clinical trials [13, 14, 11].

Recently, some research has explored the application of machine learning techniques,
in particular classifiers, to measurements collected from microwave breast cancer screen-
ing systems [15, 16, 17, 18, 19]. Classification techniques have been applied to charac-
terize a tumour using microwave backscatter [15, 16] with the assumption that the tumour
has already been detected. In [15], architectural tissue features such as shape and size
are inferred from the backscatter by using linear classifiers with local discriminant bases
and principal component analysis (PCA). Conceição et al. introduce a support vector ma-
chine (SVM)-based classifier that distinguishes between benign and malignant tumours
according to their shape [16].

There has also been some recent work towards the detection task for microwave breast
cancer screening systems. In [17], a discrete cosine transform (DCT) is applied to the
received signal for feature extraction, and neural networks are used to detect the tumour
existence, size and location. In [18], Byrne et al. apply SVM to features extracted from
backscattered signals using PCA. A separate SVM classifier is applied to each measured
signal; a tumour is detected for the breast if the majority of the classifiers decided that it
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was present. Building on this work, we described a strategy in [19] that fused data from
random antenna pairs to improve the SVM classifier accuracy.

Our work focuses on the development of a microwave breast cancer screening sys-
tem and the associated algorithms that can process measurements to make a decision as
to whether a tumour is present in the breast. This system could offer women the option
of self-screening at home on a regular (e.g., monthly) basis. The monthly (as opposed to
annual) tests would be especially beneficial to those in the high-risk category, as frequent
monitoring increases the chance of early-stage tumour diagnosis and, consequently, suc-
cessful treatment. We envision that the system will track breast health by comparing the
current breast scan to past scans of the same patient and to other patient scans, stored in a
clinical database.

With this long-term goal and motivation in mind, several essential milestones have
been reached to date. We have developed a time-domain microwave radar system for breast
screening. Time-domain measurements potentially offer advantages over frequency-domain,
including faster scan times and more cost-effective equipment solutions, with the draw-
back of a slightly lower signal-to-noise ratio [6]. We have demonstrated successful imag-
ing of tumours in realistic tissue phantoms [20]. Recently, we have conducted a clinical
trial with 12 patient volunteers for breast health monitoring [21].

This paper presents a novel application of classification methods to clinical data col-
lected from a microwave breast screening system to detect the presence of a tumour. Our
main contributions compared to state-of-the-art work in this domain are the following: (i)
we employ a principled Neyman-Pearson approach to select algorithmic parameters in or-
der to control the false positive rate while minimizing the false negative rate (most past
work in microwave breast cancer detection did not differentiate between these two types
of errors); (ii) we design three ensemble classification architectures to fuse information
from different antenna pairs; (iii) we demonstrate the performance of our classification
techniques using data collected in a clinical trial that monitored patients monthly over an
eight-month period. Preliminary results concerning this work and the efficacy of imaging-
based algorithms with clinical trial data have been published in abbreviated forms [22, 23].
This paper extends our previous work by proposing the ensemble selection-based classifi-
cation method which significantly outperforms existing methods. It also provides a more
detailed description of our algorithms, a new data-adaptive tumour response simulation
procedure that factors in the heterogeneous propagation environment inside the breast,
and a more complete performance evaluation involving both a breast phantom data set and
a clinical trial data set.

The remainder of the paper is organized as follows: Section 2 introduces our system,
data, and the ensemble classifier. We report and discuss experiment results in Section 3
and Section 4, and provide a summary in Section 5.
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2. Materials and Methods

2.1. System overview
The system uses multiple antenna sensors to collect the transmitted and reflected sig-

nals from the breast. The core of the system (Figure 1) is a hollowed-out hemispherical
dielectric radome, which houses both the breast under test and the 16-element antenna
array. The radome is a ceramic dielectric made from alumina (with relative permittiv-
ity εr = 9.6) [24]. The antennas are travelling-wave, resistively-loaded sensors that are
designed for operation in the vicinity of breast tissues [25]. When a breast scan record-
ing begins, a short-duration Gaussian-modulated pulse is generated and shaped, using a
passive microwave filter, such that its frequency content is concentrated in the 2-4GHz
range [26]. The pulse is amplified and then input into an automated 16 × 2 switching
matrix that selects each antenna as the transmitter in turn. The pulse is scattered off of
the breast tissues, i.e., at all interfaces between tissue types, and is then collected by the
selected receiving antenna. An equivalent-time sampling oscilloscope records the data.
Then, a different transmit-receive antenna pair is selected until all possible combinations
have been cycled through. With 16 antennas, a total of 240 signals are obtained per breast
scan.

For performing breast scans on patients, the system is integrated in a way that it can be
easily used to collect patient measurements in clinical trials. All equipment is placed under
a table and the patient lies facing down on the table with their breast in the radome, which
protrudes through an aperture in the table. This setup allows for a comfortable breast scan.
As the radome is designed for the largest possible breast size, a gel or liquid is required
to fill air gaps between the skin and the radome walls. We use ultrasound gel because it
conforms easily when under light pressure and is approved for medical applications [21].
The gel, with relative permittivity εr = 68 and conductivity σ = 3 S/m at the centre
frequency 3 GHz, also provides a lossy background such that multiple reflections from the
skin or radome walls are attenuated. The total duration of a scan is less than 2 minutes.

2.2. Data
We collected data with both tissue-mimicking breast phantoms and volunteers to eval-

uate proposed algorithms.

2.2.1. Breast phantom data collection
We constructed 9 breast phantoms with varying dielectric properties. The breast phan-

toms are created from a mixture of polyurethane, graphite, and carbon black. We con-
structed four different mixtures. These are designed to mimic the dielectric properties of
skin, gland, fat, and tumour. The description of the construction process of the phantoms
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Figure 1: Top: the experiment system we use to collect the data. Bottom: a graphical illustration of the
system prototype for this experiment.
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and also the properties of the used materials are given in [27]. We adapted the proce-
dure described in [28], adding acetone as a thinning agent to improve the mixability and
increase the overall permittivity of the samples.

Among these phantoms, three are heterogeneous. They contain a mixture of glandular-
and fat-mimicking solids, surrounded by a thin (2.5 mm) layer of the skin-mimicking
material. The three phantoms have varying proportions of glandular structures (approxi-
mately 25%, 35%, and 50% of the total volume, respectively). The other six phantoms are
comprised of a fat-mimicking mixture surrounded by skin-mimicking material. Note that
even in these “homogeneous” phantoms, the nature of the mixing process means that there
is still substantial variation in the dielectric properties in different parts of the phantom. In
eight of the phantoms, We can insert a fat plug to mimic the tumour-free cases and we can
insert a tumour plug to mimic the tumour-bearing cases, respectively. A tumour plug con-
tains a kernel of tumour-mimicking mixture, of approximately spherical shape and 1 cm in
diameter. It is found that malignant tumours are more irregular shaped and benign tumours
would be more round and regular shaped [29]. The spherical-shaped tumor is not fully re-
alistic, however it is a well-accepted design for simulation and early experiments [12, 30].
The phantoms and plugs are shown in Figure 2.

The heterogeneous phantoms can be rotated to present the measurement system with
a different structure. We rotated the three heterogeneous phantoms by 120◦ and 240◦ to
mimic 6 new phantoms, as the rotation changes the relative distances between the antenna
array and breast structure. Although the rotated phantoms are not completely independent,
the rotation changes the paths presented to all antenna pairs. We thus have 15 phantoms
in total. We collected 10 sets of baseline scans for each of the 15 phantoms, and 10 sets
of tumour scans for each phantom except Phantom 1 (no plug). Different scans were
performed on different days, to mimic a real clinical trial scenario. In all, we have 150 sets
of baseline scans and 140 sets of tumour scans. The sample length is N = 2048 and the
sampling rate is 200 GHz.

2.2.2. Clinical trial
In addition to the breast phantom data, we also performed breast scans on 12 healthy

volunteers using our radar system. The clinical trial lasted 8 months, and involved 48
patient visits, with each volunteer visiting approximately once per month. The patient
volunteers visited a minimum of two and a maximum of six times. The volunteers ranged
in age from 21 to 77, with bra cup sizes from A to D. Data were recorded by an oscilloscope
with a sampling rate of 40 GHz and a signal length of 1024 samples. Table 1 shows the
number of visits obtained from each of the 12 volunteers.

We collected measurements of the left breast and the right breast from the same person
at each visit. Thus, there are 48 × 2 = 96 measurements collected. Since we only have
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Figure 2: The breast phantoms and plugs constructed to collect the phantom measurements in controlled
experiments.

Table 1: Number of visits for each volunteer.
Volunteer index 1 2 3 4 5 6 7 8 9 10 11 12 total
Number of visits 3 3 4 5 2 6 6 4 4 4 3 4 48

clinical data from healthy volunteers, there are no tumour-bearing measurements in our
original data set. However, we can simulate the tumour responses for each volunteer,
based on the transmitted pulses from the antennas and the dielectric properties of breast
tissue and tumour.

For a given volunteer, we randomly choose half of the visits as nominal visits, i.e.,
measurements from those visits form the tumour-free data set for that volunteer. Measure-
ments from the other half of the visits are injected with artificial tumour responses, and we
call these visits the “tumour-bearing” visits. We end up with 48 nominal measurements
and 48 tumour-bearing measurements in total.

To simulate the tumour response, we need to first calculate the antenna positions of the
16-element antenna array system. The antennas are located on a hemisphere defined by
x2/a2 + y2/b2 + z2/c2 = 1, where z ≥ 0 is the depth information, a = b = c = 7.3 cm.
The antenna positions match those in our multistatic radar system prototype. The breast is
modelled as a smaller hemisphere, with a′ = b′ = c′ = 7 cm. This geometry (Figure 3)
is chosen to approximate that of the physical system from which the clinical data were
collected.

In practice, the antennas will be immersed in a medium which will couple the signals
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Figure 3: The model used to construct tumour responses. The breast surface is approximated as a hemi-
sphere. Positions of antennas A1 to A16 (blue) correspond to the locations in our experimental system. In
this example, we position a tumour (pink) at (1, 1, 1) cm.
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optimally for their propagation into the breast. In our phantom experiments, the radome,
which houses the antennas, has been fabricated from a ceramic material which represents
this matching medium. It is lossless and its relative permittivity has been selected to be
that of the average reported value for the human breast tissue across the frequency range
of interest (~1 - 6 GHz).

To generate a tumour response for one antenna pair, let’s first denote the measured re-
ceived signal from that antenna pair by r(t) with a corresponding frequency representation
R(ω).

R(ω) = G(ω)H(ω) , (1)

where G(ω) is the frequency domain representation of the transmitted signal, H(ω) is the
response of the healthy breast in our measurement system [31].

When a tumour exists at location p0, the frequency domain representation Rt(p0, ω) of
the tumour response rt(p0, ω) is given by

Rt(p0, ω) = ΓG(ω)Ht(p0, ω)

= ΓR(ω)Ht(p0, ω)/H(ω) (2)

where the superscript t indicates the tumour response, Ht(p0, ω) is the response of the
tumour-bearing breast, and the factor Γ introduces additional attenuation to the tumour
response. If Γ = 1, the channel model assumes that the entire signal is reflected at the
interface with the tumour. In practice the dielectric contrast between the tumour and the
surrounding tissue is limited, so part of the signal will not be reflected, which we account
for by setting Γ to a smaller value, e.g. 0.5 as in Section 3.

The simulated tumour response Rt(p0, ω) is a function of the received pulse R(ω),
which experiences attenuation and delay through the real breast environment. Thus, the
heterogeneity of the breast tissue has been accounted for in the tumour response model.

Denote by H̃(ω) and H̃t(p0, ω) theoretical models for the responses of the healthy
breast and the tumour, respectively.

H̃(ω) = e−j(kimd
d
im+kbrd

d
br) . (3)

ddim and ddbr are lengths of the direct path for antenna pairm, in the immersion medium and
the breast tissue, respectively. The superscript d denotes the direct path. The wavenumber
for the immersion medium kim(ω) = 2π/λim(ω) =

√
εim(ω)ω/c, where λim(ω) is the

wavelength at frequency ω in the immersion medium and c is the speed of light. The
wavenumber for the breast tissue kbr = 2π/λbr(ω) =

√
εbr(ω)ω/c , where εbr is the

average breast tissue complex relative permittivity (see (8)). Similarly,

H̃t(p0, ω) = e−j(kim(ω)dtim+kbr(ω)dtbr) . (4)
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dtim and dtbr are the lengths of the shortest path between the antenna pair through the tumour
position p0, in the immersion medium and the breast tissue, respectively.

We model H(ω) by
H(ω) = H̃(ω)S(ω) , (5)

where S(ω) captures all of the aspects of the response from the healthy breast not ade-
quately described by the Debye model. And we approximate Ht(p0, ω) by assuming that
the tumour response has a common S(ω) which capture all effects not described by the
Debye model with the healthy breast

Ht(p0, ω) = H̃t(p0, ω)S(ω). (6)

.
By combining equations (2)-(6), we have the complete tumour response generation

model
Rt(p0, ω) = ΓR(ω)e−j(kim(dtim−ddim)+kbr(dtbr−d

d
br)) . (7)

For different breasts, the received signals will experience different delays and atten-
uations, due to different breast sizes and shapes, as well as different dielectric properties
of the breasts. Since the simulated tumour response is a function of R(ω), which is the
frequency content of the received signals, as shown in Equation (7), the simulated tumour
responses are different due to variation in sizes, shapes, and dielectric properties of real
breasts.

The average breast tissue complex relative permittivity εbr(ω) used to calculate kbr
varies with ω and we adopt the Debye model [32]:

εbr(ω) = ε∞ +
∆ε

1 + jωτ
+

σs
jωε0

. (8)

ε0 = 8.854× 10−12 F/m is the permittivity of free space, and the other four model param-
eters – the dielectric constant of the material at infinite frequency ε∞, ∆ε = εs− ε∞ where
εs is the static dielectric constant, the pole relaxation constant τ , and the static conductivity
σs are chosen to approximate the dielectric properties of breast tissue, as described below.

We estimated average relative permittivity values for the patients who participated in
our clinical trial and observed a range of [25, 40] at 3 GHz. We use the data provided
in [2] as a starting point for identification of suitable Debye parameters. Lazebnik et al.
conducted permittivity measurements of excised tissues, and identified four tissue groups.
The first three groups corresponded to different ratios of adipose (fatty) tissue to fibrocon-
nective or glandular tissue. The fourth group corresponded to malignant tissue. In [33],
Lazebnik et al. fit Debye parameters for each group using the median measured values.
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Based on our range of estimated average relative permittivity values at 3 GHz from clini-
cal trial data [21], the most appropriate models are the group 2 (31%-84% adipose tissue)
and group 3 (85%-100% adipose tissue) models.

We specify suitable ranges for each of the four Debye model parameters. First, we
set ∆ε ∈ [20, 32.08]. The upper value corresponds to the group 2 model from [33], and
the lower value ensures that εbr ≥ 25 at 3 GHz. The value of ε∞ has noticeable impact
on the complex permittivity only above 4 GHz, which is beyond the operational regime
for our system. We therefore set it to 5.57, the group 2 value. The data reported in [2]
and [3] provide an indication of the expected broadband conductivity for a heterogeneous
breast composed of both adipose and glandular tissue. For the observed range of permit-
tivities, we expect a range of 1–2 S/m at 3 GHz. With this range in mind, we choose
σs ∈ [0.36, 0.52] S/m and τ ∈ [8.68, 13] ps. The upper bound of σs and the lower bound of
τ match the group 2 values; the other bounds are selected to ensure the conductivity σ ≥ 1
S/m at 3 GHz.

To generate tumour signals for each patient, we drew values uniformly at random from
the identified ranges of the Debye parameters. The generated electrical permittivity and
conductivity curves are plotted in Figure 4. Different εbr(ω) values produce different
wavenumbers kbr used in (7), which lead to tumour responses with different time delay
(determined by the real parts of kim and kbr) and different attenuation (determined by the
imaginary parts of kim and kbr).

The final part in the generation of the tumour responses is the tumour position. For
each patient volunteer, we randomly selected a location in the upper outer quadrant of the
breast model, where the majority of breast cancer tumours are located [34, 35, 36]. One
sample nominal measurement and tumour-bearing measurement of Volunteer 1 are shown
in Figure 5.

We can also simulate tumour response for breast phantoms and verify the simulation
model with the tumour response recovered from real tumour-bearing measurements, which
indicates measurements collected with a tumour plug. The recovered tumour response
is obtained by subtracting the tumour-bearing measurement from an aligned calibration
measurement, where the aligned measurement is the first measurement collected from the
same phantom with a fat plug, to be used as the reference measurement. Figure 6 shows
one sample recovered tumour response for A1A4, and the simulated tumour response with
attenuation factor Γ = 0.5, which is shifted to achieve the maximal correlation with the
recovered tumour response. We can see that the simulated tumour response is a reasonable
approximation of the recovered tumour response in this example (a close match is not
expected near the end of the signals where noise tends to dominate the recovered response).

For the clinical trial data, a calculation of the range of tumour response delay based
on the electrical permittivity at the central frequency 3 GHz and breast model geometry
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Figure 4: The relative permittivity and conductivity curves generated using the Debye model, as used for
generation of the tumour signals based on (3)-(8). Each curve corresponds to a different patient volunteer.
Different curves arise because the Debye model parameters are drawn uniformly at random from specified
ranges.

12



50 100 150 200 250 300 350 400

Sample Index

-100

0

100

V
o

lt
a

g
e

 (
m

V
)

Nominal measurement (nominal visit), A1A4

50 100 150 200 250 300 350 400

Sample Index

-100

0

100

V
o
lt
a
g
e
 (

m
V

)

Nominal measurement (from a different visit) & tumor response, A1A4

nominal measurement
tumour response

50 100 150 200 250 300 350 400

Sample Index

-100

0

100

V
o

lt
a

g
e

 (
m

V
)

Tumor-bearing measurement (from the ”tumour-bearing” visit), A1A4

Figure 5: Top: The A1A4 signal from the first nominal visit of Volunteer 1. Middle: The A1A4 nominal
signal from the first “tumour-bearing” visit of Volunteer 1 and the generated tumour response with the
attenuation factor Γ = 1. Bottom: The artificial tumour-bearing signal generated by adding the two signals
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Figure 6: Red: the A1A4 tumour response, recovered from tumour-bearing measurement from Phantom
7. Blue: the simulated tumour response generated for Phantom 7 with Γ = 0.5, shifted by 39 samples to
obtain the maximal correlation with the recovered tumour response. They are windowed to display only the
possible tumour response range. The sampling rate is 200 GHz.

reveals that all tumour response peak amplitudes should span no more than 200 samples
for the 40 GHz sampling rate. Moreover, tumour response delays larger than 140 samples
are rare and only happen for a few tumour locations and a small subset of antenna pairs.
To reduce interference caused by fluctuations of measurements among different visits, we
window clinical trial scans to concentrate on the region where tumour responses are most
likely to appear, using measurements between the 61st and 200th sample for feature ex-
traction. The starting value 61 samples is an empirical value that are used to roughly align
data from different scans. Since the system has undergone updates during the 8 months
of scans, scans between some volunteer visits can have offsets. Data are thus first roughly
aligned by applying a window staring from 60 samples before the peak amplitude of the
antenna pair A1A2 measurement. Since A1 and A2 are one of the closest antenna pairs,
we do not expect any tumour responses to happen before the arrival of the received mea-
surement of A1A2. Thus, we apply a window [61, 200] to the data. A detailed description
of calculation steps for the window is provided in the appendix.
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2.3. Classification methods
2.3.1. Cost-sensitive classification

Suppose we have collected K labelled training measurements, which we denote by
Z1:K . These different measurements come from different patients taken on different scan
occasions. We also obtained T test measurements ZK+1:K+T . A single measurement Zk =
[z1
k, z

2
k, . . . , z

M̃
k ]T includes the received signals from all antenna pairs, where zmk is the Ñ -

sample signal measured by antenna pair m during the k-th scan. In a practical setting,
labels could be assigned by diagnosticians, using the microwave scans in conjunction with
other breast cancer screening techniques such as mammography and ultrasound. A positive
label indicates that there is no tumour in scan k, and a negative label indicates the existence
of a tumour. Our task is to assign a label to each test measurement.

We aim to minimize the false negative rate PM of the system, subject to the constraint
that the false positive rate PF is less than a specified value α. This is because although
minimizing the false negative rate reduces the chance of missed early detection, it is also
important to prevent overdiagnosis and overtreatment of the breast cancer [37]. When
training a classifier, we try to control the false positive rate and bound its value. Since we
can only calculate the empirical false positive rate and the empirical false negative rate,
these empirical rates can exhibit high variation around the true value unless the training
and testing sets are large, so we should not automatically eliminate classifiers that exhibit
P̂F larger than α. Scott et al. propose a scalar performance measure ê in [38] that can be
used to gauge the performance of a classifier that is required to control the false positive
rate to lie below α:

ê =
1

α
max{P̂F − α, 0}+ P̂M . (9)

We use this metric as the parameter selection criterion in the training stage and for evalu-
ation of the proposed classifier.

The three primary components of our cost-sensitive ensemble classifier are feature
extraction, classification, and fusion. We describe how we address each of these tasks as
follows.

2.3.2. Feature extraction
The R-antenna multistatic radar system transmits an ultrawideband pulse from each

antenna and measures the response at every other antenna. It thus collects measurements
from M̃ = R(R − 1) directed antenna pairs. Each received signal contains the unwanted
direct pulse and skin reflections, as well as any possible tumour responses. Low-power
signals can be recorded when the transmitting and receiving antenna are far apart from
each other, e.g. on opposite sides of the breast. These signals can be very weak due
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to attenuation, as well as varying significantly between visits. Through data inspection,
we observe that the signal variations are considerably large with respect to its amplitude.
Thus, incorporating these into the processing is effectively just adding noise and can de-
grade classification performance. We therefore discard the signals from an antenna pair if
the median peak amplitude across all training data is less than a threshold (see Section 3
for the choice of the threshold value).

The unprocessed breast scan data reside in a high-dimensional space (RN×M ). Here N
is the window length (see Section 2.2.2) and M is the number of retained directed antenna
pairs. If a classifier is applied directly to data in a high dimensional space, training is
challenging and the performance is likely to be very poor. The standard approach is to
extract features that capture the key information embedded in the received signals. This
achieves substantial reduction in the dimension of the training data that is passed to the
classifier.

The signals collected by different antenna pairs vary greatly, but our experiments indi-
cate that the baseline signals for a specific pair have similar content for different scans and
different patients. We therefore apply principal component analysis (PCA) individually to
the ensemble of training signals for each antenna pair (Figure 7(a)). Principal component
analysis successively identifies orthogonal components (N × 1 vectors). The variability
of the different signals comprising the data set is maximized in the direction of the first
component. Successive components also maximize the variability, but they must satisfy
the constraint of being orthogonal to all earlier components. For each measured signal,
there is a score associated with each component; this corresponds to the projection of the
signal onto the component. We denote the vector of d scores by xmk for antenna pair m
and scan k. The first score xmk,1 corresponds to the projection of zmk onto the first principal
component vm1 , i.e., xmk,1 = 〈zmk , vm1 〉, where 〈·, ·〉 denotes the dot-product.

In training our classifier, we only retain the first d scores associated with each measure-
ment (see Section 3 for a discussion on the choice of d). By doing so, we hope to eliminate
from consideration all of the signal elements that are common to all measurements arising
from a specific antenna pair, whether there is a tumour present or not. These elements
include the direct pulse between the antennas and artefacts generated by reflections at the
skin interface.

The inputs to the classifier for training purposes are the score vectors xmk for k =
1, . . . , K and m = 1, . . . ,M . The labels for the test data are derived by applying the
classifier to the score vectors xmk for k = K + 1, . . . , K + T . These vectors are derived by
projecting the test data onto the principal components identified from the training data.
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2.3.3. 2ν-SVM classifier
Support vector machines [39] have proven to be a very effective method for binary

classification. Given a set ofK labelled training samples (xk, yk)
K
k=1, where xk is a feature

vector of dimension d, and the label yk indicates the class of xk, an SVM first transforms
the d-dimensional input vector xk into a higher dimensional space through a mapping
function h(). The mapping aims to make the transformed data easier to classify with a
decision boundary defined by f(x) = wTh(x) + b = 0, where w is the normal vector to
the separating hyperplane, and b is the bias term of the decision boundary.

In general the two classes cannot be separated, so slack variables εk ≥ 0 need to be
introduced. A value εk > 0 indicates that the k-th data element lies on the wrong side of
the decision boundary. To allow assignment of different costs to different types of errors,
Chew et al. introduced the 2ν-SVM with the following objective function [40, 41]:

min
w,b,ε,ρ

1

2
||w||2 − νρ+

w+

K

∑
k∈k+

εk +
1− w+

K

∑
k∈k−

εk (10)

subject to εk ≥ 0, ρ ≥ 0, ykf(xk) ≥ ρ− εk,∀k .

Here k+ denotes the set of data elements with yk = +1, and k− denotes the set of data
elements with yk = −1. We can have different penalties for margin errors depending on
whether the data label is positive or negative, and the parameter w+ controls the relative
weight of the penalties. We can express the problem in a different way by introducing
parameters ν+ ∈ [0, 1] and ν− ∈ [0, 1] (hence the name 2ν-SVM). These parameters
bound the fractions of margin errors and support vectors from each class. Using these
parameters we can replace ν and w+:

ν =
2ν+ν−K+K−

(ν+K+ + ν−K−)K
(11)

w+ =
ν−K−

ν+K+ + ν−K−
=

νK

2ν+K+

, (12)

where K+ and K− are the numbers of positively- and negatively- labelled data, respec-
tively. We can assign different costs to different types of errors by adjusting (ν+, ν−).

In training a classifier, our aim is to minimize ê from (9) for a specified bound α on
the false positive rate. We apply a cross validation procedure to choose ν+, ν−, and γ. The
K̄-fold cross validation procedure partitions the training set into K̄ folds (disjoint groups).
For each candidate parameter set, the model is trained on all but the k̄-th fold, and is then
tested on the k̄-th fold. We iterate through this process until every fold has been used
once as the testing data. The empirical Neyman-Pearson measures obtained from each
fold are then averaged to generate ê for each candidate choice of parameters. We select
the parameter values that minimize ê.
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2.3.4. Fusion architecture
The feature extraction procedure outlined above generates M vectors (one for each

retained antenna pair) for each scan, with each vector containing d elements. We must
choose how to use these vectors in a classification architecture.

Feature fusion approach A simple approach is to combine all of the score vectors as-
sociated with a single scan into a large vector with Md elements. This is then the
feature vector associated with that scan and can be used as an element in a single
2ν-SVM classifier. This approach is illustrated in Figure 7(b).

Although simple, this approach has some drawbacks; even if we use a relatively
small d, we have a feature vector in RMd. For example, if we retain 10 scores per
antenna pair and keep measurements from every antenna pair, we still have an input
vector containing 2400 elements for our system. The dimension has been reduced
dramatically (from 1024 × 240 = 245760) but it is still classification in a high-
dimensional feature space. This may lead to poor classification results when there
are limited training data.

Classifier fusion approach An alternative approach is to use feature vectors from each
antenna pair to directly train multiple 2ν-SVM classifiers. The dimension of the
feature space for each classifier is then only d. We average classifier outputs and
apply a threshold to obtain a final decision. The architecture is shown in Figure 7(c).
The threshold η also provides us with a straightforward control over the false positive
rate and the false negative rate of the ensemble classifier. We use common ν+, ν−,
and γ for all of the classifiers, and select these parameter values and η during the
cross validation process described in Section 2.3.3.

Ensemble selection approach We may expect that measurements from a subset of an-
tenna pairs contain more useful information than others, due to the antenna config-
uration and non-uniform tumour location distribution [34]. Instead of combining
classification results from all antenna pairs as in the classifier fusion approach, we
utilize an ensemble selection scheme to form an ensemble of more informative clas-
sifiers. Ensemble selection [42] has been shown for a variety of data sets to outper-
form most other ensemble learning techniques including stacking, bagged decision
trees, and boosted decision trees.

The ensemble selection algorithm first builds a model “library” by training different
base models. Each base model is a 2ν-SVMs trained using the data from a single
antenna pair. But many base models are trained using each antenna pair by varying
the hyperparameters used by the 2ν-SVM. The number of base models can thus be
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large, due to the large number of choices of hyper-parameters (see Table 2) and the
relatively large number of antenna pairs.

When we have a small data set, we can only form a small validation set, which can
lead to overfitting. A cross-validated base model is proposed in [42] to make use of
all training data available. It consists of K̄ “sibling” models trained on K̄ cross vali-
dation folds with the same model parameters. In the training stage, a cross-validated
model’s performance is the average of the performance of its K̄ sibling models. In
the prediction stage, a cross-validated model’s final decision is the average of the K̄
outputs from all siblings.

The algorithm then selects Q cross-validated base models from the model library
with the smallest values of Neyman-Pearson measures ê in the training stage. The
final classification output is a majority vote of outputs from those selected base
models. The architecture is presented in Figure 7(d).

3. Results

For the clinical data set, we use all of the data (nominal and tumour) from one vol-
unteer as the test data, and use all of the measurements from the other volunteers as the
training data. Since there are 12 volunteers, we have 12 training-testing pairs for the clin-
ical data set. We construct 15 training-testing pairs for the 15 phantoms following the
same approach. The median peak amplitude threshold for the antenna pair selection in-
troduced in the beginning of Section 2.3.2 is set to 20 mV, as we observe through data
inspection that direct pulses from the same antenna pair with peak amplitudes less than
20 mV can be highly distorted and vary significantly among different scans for the same
patient. Figures generated for data inspection are not included in the paper, for concise-
ness and keeping the focus of the paper on the detection methodology. As a result, 185
of the 240 antenna pairs are retained for the clinical trial set and 212 antenna pairs are
retained for the breast phantom data set. The number of principal components retained
is set to d = 30. This value was chosen based on earlier experimentation with breast
phantoms [22], and we do not observe significant performance variation between candi-
date values d ∈ {30, 50}. The number of best base models retained in ensemble selection,
is set to Q = 100, as again no notable performance differences are found among a set
of candidate values Q ∈ {50, 75, 100, 150, 200}. We perform parameter selection using
cross validation over values specified in Table 2 for other parameters in the feature fusion
and classifier fusion approaches. The SVM hyper-parameters are γ, ν+, ν−. As shown in
Table 2, there are 11 candidate values for γ, 18 for ν+ and 18 for ν−. Thus, there are
11 × 18 × 18 = 3564 different combinations of SVM hyper-parameters. For ensemble
selection, the 3564 different SVM hyper-parameters are used to produce a model library
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consisting of 3564 × 185 = 659340 base models for classification with the clinical trial
data set, where 185 is the number of antenna pairs retained. Constructing many base mod-
els ensures that we have a large pool from which to choose those that have high cross
validation accuracy. The number of folds of cross validation K̄ is set to the number of
volunteers or phantoms in the training set. So K̄ = 14 for the breast phantom data set and
K̄ = 11 for the clinical trial data set. Each fold contains data from one volunteer or one
breast phantom.

Table 2: Candidate parameter values used in the ensemble classifier.

γ 2−15, 2−13, . . . , 25

ν+
1× 10−5, 3× 10−5, 1× 10−4, 3× 10−4,

0.001, 0.003, 0.01, 0.03, 0.1, 0.2, 0.3, 0.4, . . . , 1

ν−
1× 10−5, 3× 10−5, 1× 10−4, 3× 10−4,

0.001, 0.003, 0.01, 0.03, 0.1, 0.2, 0.3, 0.4, . . . , 1

r −0.4,−0.3, . . . , 0.4

Table 3 reports the mean and the 10% and 90% quantiles of different types of er-
rors across different training-testing pairs for the three proposed architectures. For breast
phantom data, we report detection performance evaluated with the original 9 phantoms as
introduced in Section 2.2.1, as well as the 15-phantom data set which is obtained by rotat-
ing the heterogeneous phantoms. We also compare ensemble classifiers with classification
algorithms based on two imaging algorithms: delay-multiply-and-sum (DMAS) [9] and
the generalized likelihood ratio test (GLRT) [12]. To generate the images, we consider
the first measurement of each volunteer/phantom as a calibration measurement. Differ-
ential measurements are then created using the later scans (subtracting one signal from
the other after time-alignment). The maximum voxel intensity in the generated DMAS or
GLRT image is used as the classifier input, as proposed in [23]. We record the input pulse
from the microwave system for the GLRT algorithm to generate signal templates. The
Debye parameters or the permittivity values used in the imaging algorithms are based on
the estimated permittivity values from the clinical data or the phantom measurements [21].

Figure 8 to Figure 10 show the receiver operating characteristics (ROCs) for different
classification algorithms for the phantom and clinical data sets. Since we observe in Ta-
ble 3 that classification results with 9 phantoms and 15 phantoms are similar, we only plot
ROCs with 9 phantoms for the breast phantom data set. Different operating points of the
ROC are obtained by adjusting the desired false positive rate upper bound α in the training
stage. This leads to many different classifiers with different parameters; the depicted ROC
curves are then vertical averages of the operating points of these classifiers, calculated over
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Table 3: Average performance of the classification approaches (with 10% and 90% quantiles in square
brackets). The columns show the estimated the false positive rate, the false negative rate, the average error,
and the Neyman-Pearson error measure (Equation (9)), as evaluated on the test data. False positive rate
target α is set to 0.1. Shaded entries indicate the smallest Neyman-Pearson error for each data set.

Data Classifier P̂F P̂M average error ê

Phantom
data
(9

phantoms)

feature
fusion

0.01
[0.00, 0.06]

0.02
[0.00, 0.12]

0.02
[0.00, 0.09]

0.02
[0.00, 0.12]

classifier
fusion

0.01
[0.00, 0.06]

0.04
[0.00, 0.16]

0.03
[0, 0.08]

0.04
[0.00, 0.16]

ensemble
selection

0.01
[0.00, 0.06]

0.03
[0.00, 0.10]

0.02
[0.00, 0.08]

0.03
[0.00, 0.10]

DMAS
0.01

[0.00, 0.07]

0.89
[0.40, 1.00]

0.45
[0.20, 0.53]

0.90
[0.40, 1.07]

GLRT
0.01

[0.00, 0.07]

0.89
[0.40, 1.00]

0.46
[0.27, 0.50]

0.90
[0.47, 1.00]

Phantom
data
(15

phantoms)

feature
fusion

0.01
[0.00, 0.10]

0.03
[0.00, 0.00]

0.02
[0.00, 0.10]

0.03
[0.00, 0.00]

classifier
fusion

0.02
[0.00, 0.10]

0.01
[0.00, 0.00]

0.01
[0, 0.05]

0.01
[0.00, 0.00]

ensemble
selection

0.09
[0.10, 0.10]

0.00
[0.00, 0.00]

0.05
[0.05, 0.05]

0.00
[0.00, 0.00]

DMAS
0.06

[0.00, 0.11]

0.90
[0.89, 1.00]

0.48
[0.44, 0.56]

1.02
[0.89, 1.11]

GLRT
0.01

[0.00, 0.00]

0.92
[0.78, 1.00]

0.47
[0.50, 0.50]

1.00
[1.00, 1.00]

Clinical
data

Γ = 1

feature
fusion

0.13
[0.00, 0.48]

0.78
[0.41, 1.00]

0.46
[0.25, 0.61]

1.75
[0.50, 4.14]

classifier
fusion

0.13
[0.00, 0.55]

0.76
[0.35, 1.00]

0.44
[0.18, 0.67]

1.76
[0.35, 5.05]

ensemble
selection

0.08
[0.00, 0.43]

0.39
[0.00, 1.00]

0.24
[0.00, 0.50]

1.06
[0.00, 3.67]

DMAS
0.08

[0.00, 0.30]

0.78
[0.18, 1.00]

0.47
[0.12, 0.83]

1.53
[0.18, 3.70]

GLRT
0.04

[0.00, 0.15]

0.92
[0.70, 1.00]

0.51
[0.18, 0.75]

1.25
[0.70, 2.20]

Clinical
data

Γ = 0.5

feature
fusion

0.14
[0.00, 0.77]

0.96
[0.0.76, 1.00]

0.55
[0.47, 0.83]

2.18
[0.94, 7.57]

classifier
fusion

0.11
[0.00, 0.35]

0.89
[0.50, 1.00]

0.50
[0.25, 0.64]

1.65
[0.50, 3.47]

ensemble
selection

0.06
[0.00, 0.29]

0.88
[0.47, 1.00]

0.47
[0.32, 0.50]

1.30
[0.90, 2.33]

DMAS
0.08

[0.00, 0.30]

0.92
[1.00, 1.00]

0.57
[0.31, 0.83]

1.75
[1.00, 3.70]

GLRT
0.04

[0.00, 0.15]

0.92
[0.70, 1.00]

0.51
[0.18, 0.75]

1.25
[0.70, 2.20]
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all the different training-testing pairs. Since the values in Table 3 correspond to a single
set of classification parameters determined by the Neyman-Pearson learning framework
for α = 0.1, they do not necessarily lie on the average ROC curves. The figures include
for comparison the ROCs obtained for the thresholded imaging methods, calculated by
varying the threshold and averaging the performance over different subsets of the data.
Each subset of the data is created using a leave-8-out approach, which includes all but 8
measurements.

We observe from Table 3 and Figure 8 that all three ensemble classifiers exhibit very
good performance when applied to the phantom data. The imaging-and-thresholding algo-
rithms, especially the one based on GLRT, perform much worse than the classifiers. This
is probably because the algorithmic assumptions of the imaging algorithms are poorly
matched to the phantom data. For the clinical data, when the attenuation factor Γ = 1,
indicating that we adopt tumour responses simulated from the propagation model and real
measurement, the ensemble selection-based algorithm has a clear performance advantage
over the other algorithms, as shown in Table 3 and Figure 9. When α = 0.1, the ensem-
ble classifier achieves an average false positive rate of 0.08 and a false negative rate of
0.39. When Γ = 0.5, which means that we impose further attenuation that may be un-
accounted for in the propagation model, all classifiers’ performance degrades due to the
lower signal-to-noise ratio, with the ensemble selection-based classification algorithm still
being the best one, as shown in Figure 10.

4. Discussion

We now discuss the proposed ensemble classifiers for cost-sensitive tumour detection
in the context of the obtained results. The low signal-to-noise ratio nature of the tumour
response requires a relatively large number of antennas in the microwave system. We in-
vestigated the effectiveness of fusion of information from these antenna pairs using several
architectures (Figure 7), including the fusion of features from different antenna pairs (the
feature fusion approach), the fusion of base classifiers from all antenna pairs (the classifier
fusion approach), and the fusion of the most informative base classifiers (the ensemble
selection approach). We demonstrate through Table 3 and Figure 8–10 that the ensemble
selection structure is the most effective.

The cost-sensitive aspect of the classifier is realized primarily through the 2ν-SVM.
The algorithms control the trade-off between the false positive rate and the false negative
rate by selecting algorithmic parameters to minimize a scalar Neyman-Pearson measure
(Equation 9). Classification results show that the ensemble classifiers are able to control
the two types of errors successfully, approximately restricting the false positive rate below
a specified maximum value.
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Figure 8: ROC curves of different algorithms for the phantom data (9 phantoms).
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Figure 9: ROC curves of different algorithms for the clinical data (Γ = 1).
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Figure 10: ROC curves of different algorithms for the clinical data (Γ = 0.5).
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We compare the proposed algorithms with traditional imaging-based algorithms. Imag-
ing algorithms are model-based approaches because they incorporate tumour response
propagation models. They also require calibration data or baseline measurements to en-
able extraction of the tumour responses from the raw signals during pre-processing. The
calibration process is difficult due to skin reflections, alignment accuracy, and other inter-
ference. The GLRT algorithm imposes stricter model assumptions than DMAS, and the
detection results in Figure 8 indicate that it leads to worse performance due to the mis-
match between the model and the phantom data. In contrast, ensemble classifiers perform
classification via a data-centric approach. They learn features from both tumour-free and
tumour-bearing measurements in the training data set, and construct a decision boundary
based on those features. No tumour response propagation models are required.

To evaluate the performance of the proposed algorithms, we applied them to two data
sets, one generated from breast phantom measurements and the other from clinical mea-
surements combined with numerically-generated tumour responses. Few previous clas-
sification algorithms for microwave-based breast cancer screening have been validated
with any form of clinical data. Numerical simulations are used to validate the algorithms
in [15, 18], and the methods in [16, 17, 19] are assessed with breast phantom data.

To construct the breast phantom data set, we collected only one measurement of each
phantom each day. The system was switched off and the phantoms were taken out of
the radome after each day’s measurements. The data thus includes re-positioning errors,
which are likely to be unavoidable in a clinical setting. The re-positioning error, breast het-
erogeneity, and other measurement issues introduce distortions and unpredictable signal
delays. There is thus a mismatch between the models underpinning the imaging algo-
rithms and the data being analyzed. As a result the performance of the imaging algorithms
is relatively poor. The ensemble classifiers, on the other hand, exhibit very good detection
performance (Figure 8).

For the clinical data set, measurements were obtained from a clinical trial that resulted
in scans of healthy patients. In order to use this data to assess the performance of the
detection algorithms, we simulate tumour responses and add them to a subset of the mea-
surements. Our approach involves applying filters (frequency-dependent attenuation and
delay) to the signals recorded at the antennas. Because we process the clinically-recorded
measurements, we automatically incorporate many of the effects of the heterogeneous
propagation channel. Experiments with the heterogeneous breast phantoms provide quali-
tative support to this method of constructing a tumour response (see Figure 6). The results
suggest that the detection algorithms find the data based on clinical measurements more
challenging than the phantom data. There is more variability in the breast size and struc-
ture and there are additional challenges in the measurement procedure. As indicated by
the example Figure 5, the simulated tumour responses have a very small amplitude, and
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the training dataset is small. It is encouraging to see from Figure 9 and Figure 10 that the
proposed ensemble classifiers can detect approximately sixty-five percent of the tumours
for a small false-positive rate, but for practical application in a clinical setting, the perfor-
mance would require significant improvement. There are multiple avenues for achieving
this, including hardware improvements to obtain signals with reduced noise, better scan-
ning procedures, larger training sets (including historical scan data from the breast under
test), and more sophisticated processing algorithms.

The ensemble selection approach outperforms the other ensemble classifiers and imaging-
based algorithms, and this highlights the importance of fusing information from different
antenna pairs in an effective way. This is particularly essential when the signal-to-noise
ratio is very low, as is the case in the clinical data set. Some antenna pairs generate signals
that have limited information content and high levels of noise. Eliminating these antenna
pairs from consideration in the ensemble classifier via an ensemble selection procedure
leads to improved performance.

5. Conclusion

In this paper we presented cost-sensitive ensemble classification techniques for mi-
crowave breast screening. We evaluated their performance with two different sets of data,
one based on clinical experiments and one based on breast phantom measurements. In
the preliminary clinical trial, all participants were healthy, so to assess the detection per-
formance we added simulated tumour responses to some of the scan data. The tumour
responses were constructed by processing measured clinical data, and we validated the
response construction process using phantom experiments. Although the added tumour
is simulated, the background signal corresponds to what is measured in a clinical setting.
Thus, the impact of the heterogeneous breast tissue on signal propagation is incorporated
into the simulation model. This approach provides an alternative method for algorithmic
validation that complements the assessment based on breast phantom.

We described three fusion strategies to perform classification using cost-sensitive sup-
port vector machines. By employing cost-sensitive ensemble classification architectures,
the algorithms were able to choose thresholds in a principled manner to ensure that the
false positive rate lies below a specified maximum value. Among the three strategies we
presented, The ensemble selection procedure significantly outperformed the other ensem-
ble classifiers and imaging-based approaches. Classification performance degraded when
the algorithms were applied to the clinical data set which exhibits a lower signal-to-noise
ratio, with the ensemble selection-based algorithm being the only relatively effective ap-
proach. This motivates improvement of the measurement system and procedure, and the
further development of classification algorithms. In particular, it is of interest to construct
an algorithm that can make more effective use of a patient’s own past scans.
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Appendix

The windowing range from the 61st sample to the 200th sample for the clinical trial
data range can be calculated based on the electrical permittivity at the central frequency
3GHz. Here we briefly describe the calculation steps.

The speed of our signal is v = c√
εr

, where c = 3 × 108 m/s is the speed of light.
The average relative permittivity in the tissue is estimated to be in the range [27, 34] at 3
GHz [21]. A larger relative permittivity indicates a lower propagation speed, which should
be used to calculate the upper limit of the delay. Thus, we use εr = 34 for calculation.

Thus,

v =
c

εr
=

3× 108

√
34

= 5.145× 107m/s (13)

From the geometry of the antennas which are located in a hemisphere with radius 7.3 cm,
the distance from the transmitting antenna to the receiving antenna via the tumour, is at
most 25 cm. So the maximum travel time is

t1 =
0.25

v
= 4.859× 10−9 s = 4859 ps . (14)

Since the sampling rate for the clinical data set is 40 Gsa/s, the sample interval dt = 25

ps. This can lead to a tumour response delay
t1
dt
≈ 194 samples.

Moreover, based on the relative geometry between the antenna pairs and the tumour,
tumour responses from most antenna pairs should have much smaller traversal distances.
The rare signals with longer distances have very low amplitudes. Thus, we consider ap-
plying windowing to include only tumour responses with travel distance less than 18 cm.
So, the maximum travel time t2 is

t2 =
0.18

v
= 3.50× 10−9 s = 3500 ps . (15)

Since the sample interval dt = 25 ps, the maximum tumour response delay of these an-

tenna pairs is
t2
dt

= 140 samples. As the start of the window is the 61st sample as described

in the main text, the windowing range is set to between the 61st and 200th sample.
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