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Abstract—This paper examines the impact of approximation
steps that become necessary when particle filters are implemented
on resource-constrained platforms. We consider particle filters
that perform intermittent approximation, either by subsampling
the particles or by generating a parametric approximation.
For such algorithms, we derive time-uniform bounds on the
weak-sense Lp error. We motivate the theoretical analysis by
considering the leader-node particle filter and present numerical
experiments exploring its performance and the relationship to
the error bounds.

I. INTRODUCTION

Particle filters have proven to be an effective approach

for addressing difficult tracking problems. In this paper, we

focus on examining the impact of additional intermittent

approximation steps which become necessary when particle

filters are implemented on resource-constrained platforms. The

approximations we consider include subsampling of the par-

ticle representation and the generation of parametric mixture

models. The main results of the paper are time-uniform bounds

on the weak-sense Lp-error induced by the combination of

particle sampling error and the additional intermittent approx-

imation error. We will motivate the theoretical analysis by

considering the example of the “leader-node” particle filter,

an algorithm for distributed tracking in sensor networks.

A. Leader-node particle filter for sensor network tracking

The leader node particle filter, proposed in [1], [2] and

refined and analyzed in [3], [4], strives to reduce the com-

munication overhead. It is a local, distributed collaborative

algorithm. At any time-step only one node performs the

particle filtering (the leader node), and this node changes

over time. The leader node is responsible for performing

local tracking based on the data acquired by a set of satellite

sensor nodes. The satellite nodes have sensing capabilities and

locally transmit the acquired data to the nearest leader node.

Sensor management strategies are used to determine when to

change leader node [3]. When there is a change of leader-node,

information must be exchanged so that the new leader node

can reconstruct the particle filter. In attempting to alleviate the

communication cost of transmitting all particle values (which

can involve thousands of bits), the filtering distribution is more

coarsely approximated, either by transmitting only a subset of

the particles or by training a parametric model.

B. Paper Organization

Section II overviews the analysis framework, describes the

algorithms, and states the regularity conditions. Section III

presents the main results. Section IV describes numerical

experiments and Section V concludes the paper.

II. ANALYSIS FRAMEWORK

We consider a discrete-time non-linear filtering task in

which the target dynamics and observations can be described

by the following general state-space signal model:

Xt = ft(Xt−1, ̺t) (1)

Yt = gt(Xt, ζt). (2)

Here Xt is the target state vector at time t, Yt is the measure-

ment vector, ̺t and ζt are system excitation and measurement

noises; ft, ft : R
dx → R

dx , and gt, gt : R
dx → R

dy , are

nonlinear system and measurement maps.

In order to conduct stability (error propagation) analysis,

we need to introduce slightly more rigorous mathematical

notation. Let (Et, Et), t ∈ N be a sequence of measurable

spaces. The target state vector evolves according to a non-

homogeneous (discrete-time) Markov chain Xt with transi-

tions Mt+1 from Et into Et+1. Associated with a measurable

space of the form (E, E) is a set of probability measures

P(E) and the Banach space of bounded functions Bb(E) with

finite supremum norm. We define a convex set Osc1(E) of E-

measurable test functions with finite oscillations:

osc(h) = sup(|h(x) − h(y)|; x, y ∈ E)

Osc1(E) = {h : osc(h) ≤ 1}
A. Feynman-Kac models

The results we present in this paper are based on the

representation of particle filters as N -particle approximations

of a Feynman-Kac model. We now briefly review such models;

see [5] for detailed discussion.

The evolution of the unconditional signal distribution in (1)

is completely defined by the Markov transition kernel M(·, ·)
Pr{Xt ∈ dxt|Xt−1 = xt−1} = Mt(xt−1, dxt) (3)

and the initial signal distribution µ0:

Pµ,t(d(x0, . . . , xt)) = µ(dx0)M1(x0, dx1) . . . Mt(xt−1, dxt).

Bounded and non-negative potential functions Gt : Et →
[0,∞) characterize the properties of the observation process in

(2). This leads to the following definition of the unnormalized

prediction Feynman-Kac model, for ht ∈ Bb(Et) and t ∈ N.

γt(ht) =

∫

E[0:t]

ht(Xt)

t−1
∏

i=0

Gi(Xi)Pµ,t(d(x0, . . . , xt))



The normalized prediction Feynman-Kac model is then:

ηt(ht) = γt(ht)/γt(1)

The Boltzmann-Gibbs transformation Ψt reflects the effect

of the likelihood function Gt (cf. Bayes update for some ν):

Ψt(ν)(dxt) =
1

ν(Gt)
Gt(xt)ν(dxt).

This transformation is used to construct the key operator Φt :
P(Et−1) → P(Et), which is used to update the predictive

posterior distribution from time step t − 1 to time step t:

Φt(ηt−1) = Ψt−1(ηt−1)Mt

ηt = Φt(ηt−1)

We can define a particle filter by developing an N -particle

approximation to the Feynman-Kac model. Let the sampling

operator SN : P(E) → P(EN ) be defined as:

SN(η)(h) =
1

N

N
∑

i=1

h(ξi) . (4)

where (ξ1, . . . , ξN ) is the i.i.d sample from η. With this

notation, the standard particle filter can be expressed using

the recursion ηN
t = SN (Φt(η

N
t−1)).

B. Regularity Conditions

The analysis we present relies on certain assumptions about

the regularity and mixing properties of the Markov kernels

and likelihood potential functions. For deriving time-uniform

bounds, we adopt assumptions similar to the ones used in [5].

We define the following condition on the Markov kernels.

(M)
(m)
u : There exists an integer m ≥ 1 and strictly positive

number ǫu(M) ∈ (0, 1) such that for any i ≥ 0 and xi, yi ∈ Ei

we have

Mi,i+m(xi, ·) = Mi+1 . . .Mi+m(xi, ·) ≥ ǫu(M)Mi,i+m(yi, ·).

The following regularity condition is defined for the likeli-

hood potentials:

(G)u: There exists a strictly positive number ǫu(G) ∈ (0, 1]
such that for any t ≥ 0 and xt, yt ∈ Et

Gt(xt) ≥ ǫu(G)Gt(yt)

We now define the class of bounded parametric densities,

φθi
(x), indexing it by time-step i to emphasize that the

parameterization can be time-varying:

Hi =

{

φθi
(x) : θi ∈ Θi, ai ≤ inf

θi,xi

φθi
(xi), sup

θi,xi

φθi
(xi) ≤ bi

}

where 0 < ai < bi < ∞ and Θi ⊂ R
di defines the parameter

space, and inf and sup are taken over Θi and Ei.

The following condition on the Markov kernels is employed

when developing the bound on the error propagation of the

parametric-approximation particle filter.

(H)u: The Markov kernels associated with target dynamics

are absolutely continuous and can be expressed in the form

Mi(xi−1, dxi) = pϑi
(xi)dxi. The class of densities associated

with Mi is defined as Mi =
{

pϑi
(xi) : ϑi ∈ Θi ⊂ R

di
}

. For

each Mi there exists an approximation class Hi and strictly

positive numbers au = infi≥0 ai, bu = supi≥0 bi satisfying

0 < au < bu < ∞ such that for any i ≥ 0 we have

Mi ⊆ Hi and hence Mi(xi−1, ·) ≥
au

bu

Mi(yi−1, ·)

C. Description of Algorithms

Denote by δt a binary variable indicating whether approxi-

mation (subsampling or parametric) is performed at time-step

t. In our analysis, we will assume that this variable is the

outcome of a decision function based on the set of particles

{ξj
t−1}N

j=1 and observations Yt−1. We define δ0 = 0, and we

assume there exists probability characterizing the frequency

of approximation at time-step t: E{δt} = P{δt = 1} = qt

The expectation is with respect to the Monte-Carlo sampling,

measurement noise and the possible target trajectories.

Subsample approximation particle filter

The subsample-approximation particle filter involves ap-

proximating the N -sample particle filter by a subsample of

size Nb whenever δt = 1. In the case of the leader-node

particle filter, this step is performed whenever there is a change

in leader-node. The new leader-node then re-builds an N -

sample particle representation by sampling1 from the Nb-

sample approximation. The algorithm can be expressed as:

ηN
t = SN ◦ SNb(Φt(η

N
t−1)) if δt = 1,

ηN
t = SN(Φt(η

N
t−1)) if δt = 0 (5)

Parametric approximation particle filter

The parametric-approximation particle filter involves gen-

erating a parametric approximation to the filtering density if

δt = 1. After transmission of this parametric approximation,

an N -particle representation is generated by sampling from it.

Denote by WNp
: P(E) → CNp

(E) an operator that represents

a parametric mixture approximation procedure that involves

Np mixture components. The parametric-approximation parti-

cle filter can then be expressed as:

ηN
t = SN ◦ WNp

(Φt(η
N
t−1)) if δt = 1,

ηN
t = SN (Φt(η

N
t−1)) if δt = 0 (6)

The approximation is restricted to a class of discrete Np-

component convex combinations of the form gi(x) =
∑Np

j=1 αi,jφθi,j
(x), where φθi,j

∈ Hi. To analyze the potential

performance of the parametric-approximation particle filter we

consider the scenario when gi is estimated using the greedy

maximum likelihood (GML) approach proposed in [6].

III. MAIN RESULTS

This section presents our main results — time-uniform

bounds on the weak-sense Lp error for the subsample- and

parametric-approximation particle filters. The theorems are

1Throughout the paper, we assume that the random sampling without
replacement is used.
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(a) Subsample leader-node particle filter
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Fig. 1. The deterioration of the dynamic approximation performance for varying number of transmitted particles (averaged over 5000 trials).

stated here without proofs (see details and discussion in [7]).

We first present the result for the subsampling particle filter:

Theorem 1. Suppose assumptions (G)u and (M)
(m)
u hold.

Suppose further that P{δi = 1} ≤ qu for any i ≥ 0 and

0 ≤ qu ≤ 2/3. Then for a positive integer χ such that N =
χNb, t ≥ 0, p ≥ 1 and ht ∈ Osc1(Et) we have time uniform

estimate

sup
t≥0

E
{

|[ηN
t − ηt](ht)|p

}
1
p ≤ ǫu,mc

1
p (p)√
N

[

q
1
p

u

√
χ + (1 − qu)

1
p

]

where the constant ǫu,m is given by:

ǫu,m = m(2 − ǫu(M)ǫm
u (G))/ǫ3u(M)ǫ(2m−1)

u (G). (7)

The following theorem specifies a time-uniform bound on

the weak-sense Lp error for the parametric-approximation

particle filter employing the GML algorithm.

Theorem 2. Suppose assumptions (G)u, and (H)u hold.

Suppose further that P{δi = 1} ≤ qu for any i ≥ 0 and

0 ≤ qu ≤ 2/3. Then for any Np, N ≥ 1, t ≥ 0, p ≥ 1 and

ht ∈ Osc1(Et) we have time uniform estimate

sup
t≥0

E
{

|[ηN
t − ηt](ht)|p

}1/p ≤ ǫu

[

c1/p(p)√
N

+ q1/p
u

[

16

a
√

N

(

2c2/p(p/2) + C(p/4)!E [F (H, dN )]
)

+ 8 log(3
√

e(b/a))
(b/a)2

Np

]1/2
]

where C is an absolute constant, ǫu is given by:

ǫu = (2 − (au/bu)ǫu(G))/(au/bu)
3ǫu(G),

and F (H, dN ) = sup
t≥0

∫ bt

0

√

log (1 + D(ε,Ht, dN ))dε

Here dN is the empirical semi-metric defined for h1, h2 ∈ H

d2
N (h1, h2) =

1

N

N
∑

i=1

(h1(xi) − h2(xi))
2

and D(ε,H, dN ) is the packing number — the maximum

number of ε-separated points in H under semi-metric dN .

IV. NUMERICAL EXPERIMENTS

In this section we present the results of numerical exper-

iments. We adopt the following information acquisition and

target movement models (see [7] for a detailed description

of the simulation scenario and the discussion of results). The

state of the target is two-dimensional with dynamics [4]

Xt = Xt−1 + r0([cos ϕt; sin ϕt]) + ut.

Here r0 is fixed r0 = 0.02 and ϕt, ut are independent

and uniformly distributed ut ∼ U [0, 1], ϕt ∼ U [−π, π].
Kl = 20 leader nodes and Ks = 200 satellite nodes are

distributed uniformly in the unit square. A satellite node j
with coordinates sj = [s1,j , s2,j] can transmit its measurement

to any active leader node within the connectivity radius rc.

The connectivity radius is set to rc =
√

2 log(Ks)/Ks. The

measurement equation of every satellite sensor is the binary

detector capable of detecting a target within radius rd with

probability pd and false alarm rate pf :

P{Y j
t = 1|Xt} =

{

pd if Xt ∈ X j
d

pf if Xt /∈ X j
d

,

where X j
d is the jth sensor detection region. To perform sensor

selection step we use the mutual information (MI) criterion [2]

(see [7] for implementation details). Rapid fluctuations of

leader node are avoided by only checking the MI criterion,

on average, every 5 time steps (a biased coin toss determines

whether checking is performed, resulting in qu ≤ 1/5). Sub-

sample generation is performed using the residual resampling

scheme [8]. The parametric-approximation particle filter is

implemented using the GML algorithm with Np components.

Each component consists of a 2D Gaussian density with

diagonal covariance matrix. The mean vector and covariance

matrix are estimated using the particle representation available

at the current leader-node (see details in [7]).

Figure 1(a) depicts how the L2 approximation performance

changes with respect to Nb, the size of the subsample. The

y-axis depicts the ratio of the L2 approximation error of the

leader-node particle filter using Nb subsamples and the L2 ap-

proximation error of the leader-node particle filter performing
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(a) Subsample-approximation leader-node particle filter. ◦ denotes
the proposed characterization based on Theorem 1 (see [7] for
details).
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(b) Parametric leader-node particle filter

Fig. 2. Box-plots showing the relationship between deterioration of approximation performance and compression factor.

no subsampling (Nb = N = 300). Figure 1(b) provides similar

results for the parametric-approximation particle filter as Np

varies. Initially (t ∈ [1, 50]), the particle representation of the

target location density is highly dispersed and multi-modal,

making it challenging to approximate. As time progresses,

t ∈ [51, 100], the particle representation of the target becomes

more localized and approximation performance improves.

Qualitatively, the performance deteriorates gracefully with

respect to reductions in Nb and Np, in line with the theoretical

performance bounds.

For the final performance analysis, we define a compression

factor as the ratio of the number of particles used during

regular particle filter computations to the number of values

transmitted during the hand-off. For the subsample approxi-

mation case, this is simply N/Nb. In our case of a Gaussian

mixture, variance information is transmitted, so the factor is

5N/2Np. Figure 2 presents a box-plot depicting performance

deterioration (ratio of the L2 approximation error of the leader-

node with Nb < N and the leader-node with Nb = N ) versus

the compression factor. Both the median and the maximal

deviations of the performance deterioration scale smoothly

with changing compression factor. Parametric approximation

clearly outperforms subsampling.

For the subsampling case, Theorem 1 provides an analyt-

ical bound on the expected approximation error. The curve

based on a corollary for this result (see [7], Corollary 3

and Sections IV,VI for details) is depicted in Figure 2(a)

and provides a meaningful characterization of the expected

performance deterioration. Indeed, the theoretical prediction

closely coincides with the maximal performance deterioration

observed for each compression factor.

V. CONCLUSION

We have presented two results bounding the weak-sense

Lp error for particle filters that perform intermittent ap-

proximation steps, using either subsampling or parametric

mixture modeling. The important conclusion is that these

approximation steps do not induce instability, and moreover,

the frequency of the approximation steps significantly affects

the extent of performance degradation. If the approximation

steps are rare, then the compression can be very high (very

few subsamples or very few mixture components) and the error

remains reasonable. Numerical experiments indicate that the

bound for the subsample-approximation particle filter provides

a meaningful characterization of performance.
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