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ABSTRACT

This paper addresses the evaluation of causal relationships
in large-scale wireless sensor/actuator networks (WSANs).
WSANs consist of nodes that can monitor the environment
(sensors), actively interact with the environment (actuators),
or perform both functions. Such networks, together with the
monitored environment, form complex, large-scale dynamic
systems. It can be important to identify the causal relation-
ships between variables in these systems; this provides in-
dividual actuator nodes with information about the probable
consequences of local action on the global monitored envi-
ronment. Such knowledge is critical to the formation of co-
ordinated action plans, as might be required, for example,
in distributed treatment strategies in medical or agricultural
applications.

1. INTRODUCTION

Sensor networks have been successfully deployed for pas-
sively monitoring environments [1, 2], but there has been
relatively little work towards developing networks that make
changes to the environment. Wireless sensor and actuator
networks (WSANs) represent an important extension, al-
lowing nodes within the network to make autonomous deci-
sions and perform actions (actuation) in response to sensor
measurements and shared information. The potential appli-
cations of such WSANs are widespread, including agricul-
tural maintenance and localized delivery of medication.

Causal assessment is an important step in the develop-
ment of WSANs, enabling us to determine whether an ac-
tuation has an effect upon the monitored system, and if so,
whether it is positive or negative. The formulation of dis-
tributed actuation strategies (or treatment plans) in the med-
ical or agricultural context relies on an understanding of
how the environment responds. We are interested in the
problem of formulating a dynamic actuation strategy for
achieving a desired response from the environment. In this
paper we restrict our attention to an important first step in

the development of such a strategy: the estimation of the
expected response of the system if a given strategy were ap-
plied.

The strategy is simply a procedure for deciding at the
start of each time-interval t whether or not a given node
should actuate; the decision is represented by the binary
variable At. We consider that the WSAN measures at the
start of the time interval a set of environmental state vari-
ables Vt. At the end of the time interval, the WSAN mea-
sures both the response of the system Yt(a) (for the actu-
ation decision At = a) and an additional set of environ-
mental factors Wt. These additional factors may or may
not have a causal effect on the outcome Yt. The WSAN
makes these measurements whilst operating under a strategy
g, which specifies a probability of actuation conditioned on
actuation history and current environmental measurements.
Our goal in this paper is to estimate the (counterfactual)
expected response of the system if an alternative actuation
strategy g̃ had been applied, and hence we conduct our anal-
ysis within a counterfactual causality framework [3–5].

The paper is organized as follows. Section 2 speci-
fies the problem we address and clarifies models the as-
sumptions we impose. In Section 3, we describe a semi-
parametric estimator that is founded on complexity-penalized
(weighted) log-likelihood maximization using dyadic CART
principles. Section 4 presents simulation results for an ex-
ample WSAN system. Section 5 makes some concluding
remarks and indicates future research directions.

Related work: Our problem formulation and estimator
development is based on the work studying dynamic treat-
ment regimes in [5–8] (the treatment regimes are equiva-
lent to the actuation strategies explored in this paper). We
depart from this work in adopting a semi-parametric model
for the expected marginal response under a specific strategy.
This is a similar approach to the semi-parametric estimation
of the (static) treatment-specific mean response described
in [9]. Therein a cross-validation approach is adopted for
constructing a functional representation from a fixed set of
basis functions. In this paper, we use a penalized likeli-
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hood formulation and evaluate the estimator using dyadic
CART with polynomial regression at the leaf nodes, effec-
tively using a weighted version of the techniques described
in [10, 11].

2. PROBLEM FORMULATION

We consider a WSAN comprised of joint sensor-actuator
nodes labelled i = 1, . . . , N . At the beginning of the dis-
crete time interval t, node i measures a set of environmen-
tal variables V

(i)
t , and decides whether to actuate (indicated

by the binary random variable A
(i)
t ). In this paper we fo-

cus on probabilistic actuation decisions; the probability of
actuation for node i at time t is determined by a function
g(V (i)

t , S
(i)
t ), where S

(i)
t is a set of summary statistics of

the actuation history A
(i)
0:t. At the end of the time interval,

the WSAN node senses the environment to record a local
response variable Y

(i)
t , together with system state variables

W
(i)
t . Measurements are made at the discrete time-intervals

t = 0 : T . We denote the observed data at the end of the t-th
interval as {X0:t, Y0:t}, where X0:t = {A(i)

0:t, V
(i)
0:t ,W

(i)
0:t }N

i=1.
We aim to estimate Ψg̃(at, Lt, St) = E(Y (at)|Lt, St, g̃),

a function that maps a subset Lt of the current system state
variables Vt, the actuation history summary statistics St,
and the current actuation decision at to an expected marginal
response, under the condition that the dynamic actuation
strategy were counterfactually specified by the function g̃.
Note that the expectation here is over the probability distri-
bution of being in state (at, Lt, St) at any time throughout
the history t = 0 : T ; this distribution is determined by the
probability of the initial conditions p(L0), the counterfac-
tual actuation decision strategy g̃ and the system dynamics
p(Xt|X0:t−1). In order to ensure that Ψg̃ is identifiable and
to make the estimation exercise tractable, we make several
assumptions on the causal relationships of system variables
and on the nature of the actuation and measurement pro-
cesses.

First, we assume that the function Ψg̃ is not time-varying.
We also assume that both actuation and system state vari-
ables have a completely local effect, i.e., conditioned on
V

(i)
t , W

(i)
t and A

(i)
t , the response variable Y

(i)
t is indepen-

dent of the state, actuation decision or response at another
sensor j. We assume that the response of the system at the
node Y

(i)
t is conditionally independent of {V (i)

0:t−1,W
(i)
0:t−1}

given the current state {V (i)
t ,W

(i)
t } and a set of sufficient

statistics S
(i)
t that are functions the actuation history A

(i)
0:t.

We assume that V
(i)
t , S

(i)
t and W

(i)
t are not affected by the

current actuation decision A
(i)
t .

Denote by ZT the complete data, which for each sensor
includes all outcomes (all but one counterfactual) Yt(a0:T )
for a0:T ∈ AT , where AT is the set of all possible actua-
tion histories to time T . As in [5, 7], we assume sequential

randomization, which specifies that for each t = 0 : T , A(i)
t

is independent of ZT given V
(i)
0:t ,W

(i)
0:t−1, A

(i)
0:t−1. This as-

sumption means that there is no systematic variation of the
actual actuation decisions according to potential (counter-
factual) past or future responses. In an alternative interpre-
tation, there are no unmeasured confounders that affect the
decision to actuate and the response of the system. Robins
has shown that sequential randomization is a necessary as-
sumption for the development of the G-computation estima-
tor for dynamic treatment regimes [5, 6], which is the foun-
dation of our estimator described in Section 3. We make
the further assumption that any actuation history achievable
through the adoption of the proposed actuation strategy g̃
has positive probability of occuring under the observed ac-
tuation strategy g [6, 7].

3. NON-PARAMETRIC ESTIMATION OF THE
MARGINAL EXPECTED RESPONSE

In this section we describe our estimator and the mechanism
for its computation. We model a response measurement Yt

to a specific actuation at as the expected response plus addi-
tive Gaussian noise. Dropping the sensor-specific notation,
we have,

Yt(at) = E(Yt|X0:t) + εt , (1)

where εt ∼ N (0, σ2) is zero-mean Gaussian with variance
σ2.

We are interested in estimating the marginal mean re-
sponse to an actuation decision at, when the system is in
state {St, Lt}, if the system dynamics were being driven by
an actuation decision function g̃. The probability of observ-
ing a sample X

(i)
0:t is equal to the product of the probability

of the initial conditions and the probability of the subse-
quent actuation history and the system conditions it induces.
We have:

p(X0:t) = p(X0)
s=t∏
s=1

p(Ws, Vs, Ss|X0:s−1)g(As|Vs, Ss)

(2)
where p(X0) = p(V0,W0)g(A0|V0, S0).

If we were interested in the response of the system under
g, then the set of samples {X(i)

t , Y
(i)
t } for t = 0 : T and

i = 1, . . . , N are drawn from the distribution over which we
wish to calculate our marginal mean response, so we could
form an estimate for Ψg by maximizing the likelihood of

observing Y
(i)
t given the samples X

(i)
0:t . In our formulation

this would amount to minimizing a loss function equivalent
to the sum of squared error between Y

(i)
t and our estimate

Ψ̂g(X
(i)
t ).

Since we are interested in the counterfactual decision
function g̃, each observed actuation pattern has a different
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counterfactual probability of occurrence. Our loss function
needs to change to a weighted sum of square errors:

L(Ψ̂g̃) =
N∑

i=1

T∑
t=0

w
(i)
t (Y (i)

t − Ψ̂g̃(X
(i)
t ))2 , (3)

where

w
(i)
t =

t∏
s=0

g̃(As|Ls, Ss)
g(As|Ls, Ss)

. (4)

This estimator is based on the G-computation formula for
mean response to a dynamic treatment regime [5].

We model the expected response Ψg̃(at|Lt, Vt) as a piece-
wise smooth function, and use a complexity-penalized dyadic
CART procedure to formulate an estimate of the function,
based on the approaches described in [10,11]. In a straight-
forward implementation of this procedure, we form a dyadic
partitioning of the (Lt, Vt) space. The partitioning is achieved
through the construction of a tree. The root represents a cell
encompassing the entire space. At each layer in the tree
we divide the cell in half in one of the dimensions; as we
progress through subsequent layers, we cycle through the
dimensions in turn. The resultant data structure is a tree of
depth L, with a small, possibly empty, subset of the samples
X

(i)
t residing at any given leaf-node.

At each node in the tree we fit a function to the de-
scendant data points using weighted least squares, where
the weights are determined by (4). This function may be a
wedgelet or a low-order polynomial; for the simulations re-
ported in this paper, we adopt the computationally simpler
estimate of a constant (the weighted mean) over each cell in
the partition. We associate with each node in the tree a loss
(or risk) value which is the sum of squared errors for the
chosen fitted function. This is appropriate for the Gaussian
model we have adopted.

The formulation of the final estimate is achieved by prun-
ing the tree using a complexity penalty. The leaf nodes of
the tree are at layer L. Commencing at layer L−1, we check
if the loss value of a node in this layer is less than the sum
of the loss values of its two children nodes and a constant
complexity penalty α. If so, we prune the children from the
tree. The process is repeated for each node j at layer L− 2,
but the comparison is now with the |Dj | descendants of j in
the pruned tree and the complexity penalty is α(|Dj | − 1).
Continuing to the root of the tree, we have constructed the
optimal complexity-penalized tree under the specified loss
function. The choice of the constant α, which is related to
the number of data points and the noise variance σ2, is dis-
cussed in more detail in [11].

The form of this estimate is reasonably well-suited to
distributed implementation. Each WSAN node updates the
weight appropriate for its measurements at each time inter-
val. In [12], we describe in detail a distributed algorithm for

evaluation of the estimate, and analyze the computational
and communication requirements.

4. AN EXAMPLE: SIMULATION RESULTS

We perform simulations to illustrate the performance of the
proposed estimation method for an example scenario. We
consider a model of an agricultural system, in which actua-
tion corresponds to the release of a pesticide. Each WSAN
node measures the carbon dioxide level Lt at the start of
a day t and makes a decision At about the release of the
pesticide. At the end of the day, it measures the change in
weed-density Yt, estimating it from digital images of the
surrounding environment. It also records the change in soil
moisture content Wt. The response of the system Yt is de-
pendent on the variables At, St, Lt, Wt−1 and Wt. Here
St =

∑t−1
s=t−K As is a statistic indicating the number of ac-

tuations in the recent history, and is related to the residual
level of pesticide in the soil.

The current WSAN system employs an actuation strat-
egy g(Vt, St), where Vt = {Wt−1, Lt}. The actuation strat-
egy is designed with the intent of matching the expected
response function (choosing actuation when the expected
response is significantly higher if pesticide is released). The
lifetime of the sensor network can be increased substantially
by turning off the cameras and soil-moisture sensors, so we
would like to form an estimate of the expected marginal re-
sponse of the system if we adopted an alternative actuation
strategy g̃(Lt, St) that is only dependent on the carbon diox-
ide level and the actuation history.

The model of the system is described by the following
equations (these are used to generate the measurements in
our simulations).

Yt = −2 + 2At cos(πSt)(1 − 2Lt) + L2
t +

0.1AtWt−1 + 0.3Wt + 0.2εt (5)

E(Yt|Vt, St) = −2 + 2At cos(πSt)(1 − 2Lt) + L2
t (6)

g(Vt, St) = cos2(
πSt

2
) e−Lt logit−1(−2 − Wt−1

2
) (7)

g̃(Lt, St) = cos2(
πSt

2
)e−Lt (8)

Figures 1 and 2 provide an example of the performance
of the estimator for a trial of 64 sensors measuring over 256
time instants. In the trial shown in the figures, 6388 data
points were available in the estimated response region. Of
these, 2224 corresponded to actuation decisions and 4164
to non-actuation decisions. Figure 2 indicates that the se-
lected actuation function g̃ is not a good match to the mean
response; the probability of actuation is relatively high in
regions where actuation is a poor choice.
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Fig. 1. A comparison between the estimated difference in
expected response for the two cases At = 1 and At = 0 for
an example trial and the true difference. The upper panel is
Ψ̂g̃(St, Lt, at = 1) − Ψ̂g̃(St, Lt, at = 0). The lower panel
is the expected difference as determined from the generating
equations of the simulation.

5. CONCLUSIONS

We have addressed the problem of estimating the expected
marginal response of a system monitored by a wireless sensor-
actuator network if a counterfactual actuation policy were
implemented. Our estimator is based heavily on work as-
sessing the response to dynamic treatment strategies [5–8].
The primary contribution of the paper is the identification
of an approach for evaluating a specific semi-parametric es-
timator of the response. We have selected this estimator be-
cause its evaluation can be performed in a distributed fash-
ion with relatively minor computational expense and com-
munication overhead, critical aspects for any algorithm in
a WSAN. In future work, we will focus on developing dis-
tributed algorithms addressing the task of identifying opti-
mum actuation policies.
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