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oday’s Internet is a mas-
sive, distributed network
which continues to explode
in size as e-commerce and

related activities grow. The heterogeneous and
largely unregulated structure of the Internet ren-

ders tasks such as dynamic routing, optimized ser-
vice provision, service-level verification, and

detection of anomalous/malicious behavior increas-
ingly challenging tasks. The problem is compounded by

the fact that one cannot rely on the cooperation of individ-

ual servers and routers to aid in the col-
lection of network traffic measure-
ments vital for these tasks. In many ways,
network monitoring and inference prob-
lems bear a strong resemblance to other “in-
verse problems” in which key aspects of a sys-
tem are not directly observable. Familiar signal
processing problems such as tomographic image re-
construction, system identification, and array process-
ing all have interesting interpretations in the networking
context. This article introduces the new field of network
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tomography, a field which we believe will benefit
greatly from the wealth of signal processing theory and
algorithms.

Introduction

The Internet has evolved from a small tightly controlled
network serving only a few users in the late 1970s to the
immense multilayered collection of heterogeneous termi-
nals, routers, and other platforms that we encounter to-
day when web-surfing. Unlike the telephone network
which evolved in a slower and more controlled manner,
the Internet has evolved very rapidly in a largely unregu-
lated and open environment. The lack of centralized con-
trol and the heterogeneous nature of the Internet leads to
a very important problem: mapping network connectiv-
ity, bandwidth, and performance as functions of space
and time. A wide variety of Internet maps have been pro-
duced using existing networking tools such as ping and
traceroute. Information on these tools, along with a
collection of interesting Internet mapping projects, can
be found on the CAIDA (Cooperative Association for
Internet Data Analysis) website [1]. The popular science
book Atlas of Cyberspace [2] contain a survey of many
Internet mapping projects and their results. The mapping
techniques described in the references above, however,
usually provide only a partial picture of the Internet be-
cause they do not produce quantitative performance in-
formation. The decentralized nature of the Internet
makes quantitative assessment of network performance
very difficult. One cannot depend on individual servers
and routers to freely transmit vital network statistics such
as traffic rates, link delays, and dropped packet rates. The
collection of network statistics at servers and internal
routers can impose an impracticable overhead expense in
terms of added computing, communication, and hard-
ware requirements. Even if such statistics can be col-
lected, an Internet service provider (ISP) may regard such
information as highly confidential. Moreover, the trans-
mission of statistics to a central processing point may
consume considerable bandwidth, adding to network
load and congestion.

In certain cases, however, useful network statistics can
be indirectly acquired without special-purpose coopera-
tion from servers and routers and with little or no impact
on network load. These statistical quantities can reveal
hidden network structure and help to detect and isolate
congestion, routing faults, and anomalous traffic. The ac-
quisition of the statistics relies on the application of so-
phisticated methods of active network probing or passive
traffic monitoring. These methods do not directly pro-
vide the desired information. The problem of extracting
the hidden information from active or passive traffic mea-
surements falls in the realm of statistical inverse problems,
an area which has long been of interest to signal and im-
age processing researchers. Signal processing know-how,
acquired in areas such as image reconstruction, pattern
recognition, system identification, and sensor array signal
processing, can provide tremendous insight into net-
working inverse problems.

This article deals with network monitoring and infer-
ence for wired networks such as the Internet. The word
“inference” is intended to more sharply delineate the field
of study addressed in the article, precluding approaches
that directly measure network statistics or rely on com-
plete cooperation from the network. The task of inferen-
tial network monitoring gives rise to problems that
involve the estimation of a potentially very large number
of spatially distributed parameters, e.g., link-by-link loss
rates, delay distributions, connectivity, and traffic flow.
To tackle such large estimation problems, researchers
adopt the simplest possible models for network traffic
and ignore many intricacies of packet transport such as
feedback and latency. These simpler models, although not
suitable for fine-grain analysis of individual queuing
mechanisms and network traffic behavior, are generally
adequate for the inference of gross-level performance
characteristics. Focus is shifted from detailed mathemati-
cal modeling of network dynamics [3], [4] to careful han-
dling of measurement and probing strategies, large-scale
computations, and model validation. The measurement
methodologies require software tools for monitoring
traffic flow and generating probe traffic, statistical model-
ing of the measurement process, and sampling strategies
for online data collection. The underlying computational
science involves complexity reducing hierarchical statisti-
cal models, moment and likelihood based estimation; ex-
pectation-maximization algorithms, Markov chain
Monte Carlo algorithms, and other iterative optimization
methods. Model validation includes study of parameter
identifiability conditions, feasibility analysis via
Cramér-Rao bounds and other bounding techniques, im-
plementation of network simulation software such as the
ns-2 network simulation environment [5], and applica-
tion to real network data.

Many in the network community have long been inter-
ested in measuring internal network parameters and in
mathematical and statistical characterization of network
behavior. Researchers in the fields of computer science,
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network measurement, and network protocols have de-
veloped software for measuring link delays, detecting in-
truders and rogue nodes, and isolating routing table
inconsistencies and other faults. Researchers from the
fields of networking, signal processing, automatic con-
trol, statistics, and applied mathematics have been inter-
ested in modeling the statistical behavior of network
traffic and using these models to infer data transport pa-
rameters of the network. Previous work can be divided
into three areas: i) development of software tools to mon-
itor/probe the network, ii) probabilistic modeling of net-
works of queues, and iii) inference from measurements of
single stream or multiple streams of traffic.

Computer scientists and network engineers have devel-
oped many tools for active and passive measurement of the
network. These tools usually require extra cooperation (in
addition to the basic cooperation required for routine
packet transmission) among the nodes of the network. For
example, in sessions running under RTCP (real-time con-
trol protocol), summary sender/receiver reports on packet
jitter and packet losses are distributed to all session partici-
pants [6]. Active probing tools such asping, pathchar
(pchar), clink, and traceroute measure and re-
port packet transport attributes of the round-trip path
(from sender to receiver and back) of a probe (see [1] for a
survey of these and other measurement tools). Trajectory
sampling [7] is another example of an active probing soft-
ware tool. These methods depend on accurate reporting by
all nodes along the route and many require special assump-
tions, e.g., symmetric forward/reverse links, existence of
store-and-forward routers, nonexistence of fire walls. As
the Internet evolves towards decentralized, uncooperative,
heterogeneous administration and edge-based control,
these tools will be limited in their capability. In the future,
large-scale inference and tomography methods such as
those discussed here will become of increasing importance
due to their ability to deal with uncooperative networks.

Network queueing theory offers a rich mathematical
framework which can be useful for analyzing small-scale
networks with a few interconnected servers. See recent
books [3] and [4] for overviews of this area. The limita-
tions of queuing network models for analyzing real,
large-scale networks can be compared to the limited util-
ity of classical Newtonian mechanics in complex
large-scale interacting particle systems: the macroscopic
behavior of an aggregate of many atoms appears qualita-
tively different from what is observed at a microscopic
scale with a few isolated atomic nuclei. Furthermore, de-
tailed information on queuing dynamics in the network is
probably unnecessary when, by making a few simple ap-
proximations, one can obtain reasonably accurate esti-
mates of average link delays, dropped packet
probabilities, and average traffic rates directly from exter-
nal measurements. The much more computationally de-
manding queuing network analysis becomes necessary
when addressing a different set of problems that can be
solved off-line. Such problems include calculating accu-

rate estimates of fine grain network behavior, e.g., the dy-
namics of node traffic rates, service times, and queue
lengths.

The area of statistical modeling of network traffic is a
mature and active field [8]-[12]. Sophisticated fractal and
multifractal models of single traffic streams can account for
long-range dependency, non-Gaussian distributions, and
other peculiar behaviors. Such self-similar behavior of traf-
fic rates has been validated for heavily loaded wired net-
works [13]. For a detailed overview of these and other
statistical traffic models we refer the reader to the compan-
ion articles in this special issue. To date these models are
overly complicated to be incorporated into the large-scale
network inference problems discussed in this article. Sim-
plifying assumptions such as spatial and temporal inde-
pendence are often made to devise practical and scalable
inference algorithms. By making these assumptions, a fun-
damental linear observation model can be used to simplify
the inference process. While some progress has been made
on incorporating simple first order spatio-temporal de-
pendency models into large-scale network inference prob-
lems [14] much work remains to be done.

This article attempts to be fairly self-contained; only a
modest familiarity with networking principles is required
and basic concepts are defined as necessary. For more
background information, some recent textbooks
[15]-[21] provide an excellent introduction to the field of
networking. The article is organized as follows. First we
briefly review the area of large-scale network inference
and tomography. We then discuss link-level inference
from path measurements and focus on two examples: loss
rate and delay distribution estimation. We consider the
problem of determining the connectivity structure or to-
pology of a network and then turn to origin-destination
traffic matrix inference from link measurements in the
context of both stationary and nonstationary traffic.
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� 1. An arbitrary network topology. Each node represents a com-
puter or a cluster of computers or a router. Each edge in the
graph represents a direct link between two nodes. The topol-
ogy here depicts “clusters” corresponding to local area net-
works or other subnetworks connected together via the
network “backbone.” The width of each edge reflects the band-
width of the corresponding connection (thicker edge implies
higher bandwidth).



Network Tomography
Network Tomography Basics

Large-scale network inference problems can be classified
according to the type of data acquisition and the perfor-
mance parameters of interest. To discuss these distinc-
tions, we require some basic definitions. Consider the
network depicted in Fig. 1. Each node represents a com-
puter terminal, router, or subnetwork (consisting of mul-
tiple computers/routers). A connection between two
nodes is called a path. Each path consists of one or more
links—direct connections with no intermediate nodes.
The links may be unidirectional or bidirectional, depend-
ing on the level of abstraction and the problem context.
Each link can represent a chain of physical links connected
by intermediate routers. Messages are transmitted by
sending packets of bits from a source node to a destina-
tion node along a path which generally passes through
several other nodes.

Broadly speaking, large-scale network inference in-
volves estimating network performance parameters
based on traffic measurements at a limited subset of the
nodes. Vardi was one of the first to rigorously study this
sort of problem and coined the term “network tomogra-
phy” [22] due to the similarity between network infer-
ence and medical tomography. Two forms of network
tomography have been addressed in the recent literature:
i) link-level parameter estimation based on end-to-end,
path-level traffic measurements [23]-[32] and ii)
sender-receiver path-level traffic intensity estimation
based on link-level traffic measurements [22], [33]-[36].

In link-level parameter estimation, the traffic measure-
ments typically consist of counts of packets transmitted
and/or received between nodes or time delays between
packet transmissions and receptions. The time delays are
due to both propagation delays and router processing de-
lays along the path. The measured path delay is the sum of
the delays on the links comprising the path; the link delay
comprises both the propagation delay on that link and the
queuing delay at the routers lying along that link. A
packet is dropped if it does not successfully reach the in-
put buffer of the destination node. Link delays and occur-
rences of dropped packets are inherently random.
Random link delays can be caused by router output buffer
delays, router packet servicing delays, and propagation
delay variability. Dropped packets on a link are usually
due to overload of the finite output buffer of one of the
routers encountered when traversing the link, but may
also be caused by equipment down-time due to mainte-
nance or power failures. Random link delays and packet
losses become particularly substantial when there is a
large amount of cross-traffic competing for service by
routers along a path.

In path-level traffic intensity estimation, the measure-
ments consist of counts of packets that pass through
nodes in the network. In privately owned networks, the
collection of such measurements is relatively straightfor-
ward. Based on these measurements, the goal is to esti-

mate how much traffic originated from a specified node
and was destined for a specified receiver. The combina-
tion of the traffic intensities of all these origin-destination
pairs forms the origin-destination traffic matrix. In this
problem not only are the node-level measurements inher-
ently random, but the parameter to be estimated (the ori-
gin-destination traffic matrix) must itself be treated not as
a fixed parameter but as a random vector. Randomness
arises from the traffic generation itself, rather than pertur-
bations or measurement noise.

The inherent randomness in both link-level and
path-level measurements motivates the adoption of sta-
tistical methodologies for large-scale network inference
and tomography. Many network tomography problems
can be roughly approximated by the (not necessarily
Gaussian) linear model

y A= +θ ε, (1)

where y is a vector of measurements, e.g., packet counts
or end-to-end delays, taken at a number of different mea-
surement sites; A is a routing matrix; θ is a vector of
packet parameters, e.g., mean delays, logarithms of
packet transmission probabilities over a link, or the ran-
dom origin-destination traffic vector; ε is a noise term
which can result from random perturbations ofθabout its
mean value and possibly also additive noise in the mea-
sured data y (in the origin-destination traffic matrix esti-
mation problem ε is generally assumed to be zero.
Typically, but not always, A is a binary matrix (the i j, th el-
ement is equal to one or zero) that captures the topology
of the network. The problem of large-scale network infer-
ence refers to the problem of estimating the network pa-
rameters θ given y and either a set of assumptions on the
statistical distribution of the noiseε or the introduction of
some form of regularization to induce identifiability. Spe-
cific examples are discussed below.

What sets the large-scale network inference problem
(1) apart from other network inference problems is the
potentially very large dimension of A which can range
from a half a dozen rows and columns for a few packet
parameters and a few measurement sites in a small local
area network, to thousands or tens of thousands of rows
and columns for a moderate number of parameters and
measurements sites in the Internet. The associated
high-dimensional problems of estimating θ are specific
examples of inverse problems. Inverse problems have a
very extensive literature in signal processing [37], statis-
tics [38], and in applied mathematics [39]. Solution
methods for such inverse problems depend on the na-
ture of the noise ε and the A matrix and typically require
iterative algorithms since they cannot be solved directly.
In general, A is not full-rank, so that identifiability con-
cerns arise. Either one must be content to resolve linear
combinations of the parameters or one must employ sta-
tistical means to introduce regularization and induce
identifiability. Both tactics are utilized in the examples in
later sections of the article. In most of the large-scale
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Internet inference and tomography problems studied to
date, the components of the noise vector ε are assumed
to be approximately independent Gaussian, Poisson, bi-
nomial, or multinomial distributed. When the noise is
Gaussian distributed with covariance independent of
Aθ, methods such as recursive linear least squares can be
implemented using conjugate gradient, Gauss-Seidel,
and other iterative equation solvers. When the noise is
modeled as Poisson, binomial, or multinomial distrib-
uted more sophisticated statistical methods such as
reweighted nonlinear least squares, maximum likeli-
hood via expectation-maximization (EM), and maxi-
mum a posteriori (MAP) via Monte Carlo Markov chain
(MCMC) algorithms can be used. These approaches will
be illustrated in later sections.

Examples of Network Tomography
Let us consider three concrete examples of the linear
model (1). First, consider the problem of estimating the
packet success probability on each link given end-to-end,
origin-to-destination (OD) counts of packet losses (the
loss probabilities or “loss rates” are simply one minus the
probability of successful transmission.). Let θ denote the
collection of log success probabilities for each link. The
OD log success probability is simply A θ, where A is the
binary routing matrix described above. Assuming a
known number of packets sent from each source to desti-
nation, a binomial measurement model can be adopted
[25]. When the number of packets sent and received are
large, then the binomial model can be approximated with
a Gaussian likelihood, leading to the classical linear model
above (1). Second, suppose that end-to-end, OD delays
are measured and the goal is estimation of the delay prob-
ability distributions along each link. In this case, let θ be a
vector composed of the cumulant generating functions of
the delay densities on each link. Then, with appropriate
approximation arguments [31], y is again related to θ ac-
cording to the linear model (1). Third, in the OD traffic
matrix estimation case, y are link-level packet count mea-
surements and θ are the OD traffic intensities. Gaussian
assumptions are made on the origin-destination traffic
with a mean-variance relationship in high count situa-
tions in [17] leading to the linear equation (1) without
the error term ε. In each of these cases, the noise ε may be
correlated and have a covariance structure depending on
A and/orθ, leading to less than trivial inference problems.
Moreover, in many cases the limited amount of data
makes Gaussian approximations inappropriate and dis-
crete observation models (e.g., binomial) may be more
accurate descriptions of the discrete, packetized nature of
the data. These discrete observation models necessitate
more advanced inference tools such as the EM algorithm
and Monte Carlo simulation schemes.

Let us consider two further embellishments of the ba-
sic network inference problem described by the linear
model (1). First, all quantities may, in general, be
time-varying. For example, we may write

y At t t t= +θ ε , (2)

where t denotes time. The estimation problems now in-
volve tracking time-varying parameters. In fact, the
time-varying scenario more accurately reflects the dy-
namical nature of the true networks. There have been sev-
eral efforts aimed at tracking nonstationary network
behavior which involve analogs of classical Kalman-filter-
ing methods [34], [26]. Another variation on the basic
problem (1) is obtained by assuming that the routing ma-
trix A is not known precisely. This leads to the so-called
“topology identification” problem [30], [40]-[44] and is
somewhat akin to blind deconvolution or system identifi-
cation problems.

Link-Level Network Inference

Link-level network tomography is the estimation of
link-level network parameters (loss rates, delay distribu-
tions) from path-level measurements. Link-level parame-
ters can be estimated from direct measurements when all
nodes in a network are cooperative. Many promising tools
such as pathchar (pchar), traceroute, clink,
and pipechar use Internet control message protocol
(ICMP) packets (control packets that request information
from routers) to estimate link-level loss, latencies, and
bandwidths. However, many routers do not respond to or
generate ICMP packets or treat them with very low prior-
ity, motivating the development of large-scale link-level
network inference methods that do not rely on coopera-
tion (or minimize cooperation requirements).

In this article we discuss methods which require coop-
eration between a subset of the nodes in the network,
most commonly the edge nodes (hosts or ingress/egress
routers). Research to date has focused on the parameters
of delay distributions, loss rates and bandwidths, but the
general problem extends to the reconstruction of other
parameters such as available bandwidths and service dis-
ciplines. The Multicast-based Inference of Network-in-
ternal Characteristics (MINC) Project at the University
of Massachusetts [23] pioneered the use of multicast
probing for network tomography and stimulated much
of the current work in this area [23]-[27], [29]-[32],
[45], [31].
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We now outline a general framework for the link-level
tomography problems. Consider the network depicted in
Fig. 2(a). This illustrates the scenario where packets are
sent from a set of sources to a number of destinations.
The end-to-end (path-level) behavior can be measured
via a coordinated measurement scheme between the
sender and the receivers. The sender can record whether a
packet successfully reached its destination or was
dropped/lost and determine the transmission delay by
way of some form of acknowledgment from the receiver
to the sender upon successful packet reception. It is as-
sumed that the sender cannot directly determine the spe-
cific link on which the packet was dropped nor measure
delays or bandwidths on individual links within paths. A
network can be logically represented by a graph consist-
ing of nodes connected by links. Potentially, a logical link
connecting two nodes represents many routers and the
physical links between them, as depicted in Fig. 2.

Each node is numbered j m=0, ,K , and each link is as-
signed the number of the connected node below it. Let
there be n distinct measurement paths (from a sender to a
receiver) through the network, enumerated i n=1, ,K .
Define a ij to be the probability that the ith measurement
path contains the jth link. In most cases a ij will take val-
ues of zero or one, but it is useful to maintain a level of
generality which can handle random routing. A is the
routing matrix having ijth element a ij . The rows of A
correspond to paths from the sender to the receivers and
the columns correspond to individual links in those paths.
Fig. 3 illustrates a simple network consisting of a single
sender (node 0), two receivers (the leaves of the tree,
nodes 2 and 3), and an internal node representing a router
at which the two communication paths diverge (node 1).
Only end-to-end measurements are possible, i.e., the
paths are (0,2), and (0,3), where ( , )s t denotes the path
between nodes s and t. There are three links and two
paths/receivers, and therefore the matrix A is 2 3× dimen-
sional and has the form

A= 







1 1 0
1 0 1 .

(3)

Note that in this example, A is not full rank. We discuss
the ramifications in later sections.

A number of key assumptions underpin current
link-level network tomography techniques, determining
measurement frameworks and mathematical models. The
routing matrix is usually assumed to be known and con-
stant throughout the measurement period. Although the
routing tables in the Internet are periodically updated,
these changes occur at intervals of several minutes. How-
ever, the dynamics of the routing matrix may restrict the
amount of data that can be collected and used for infer-
ence. Most current methodologies usually assume that
performance characteristics on each link are statistically
independent of all other links; however this assumption is
clearly violated due to common cross-traffic flowing
through the links. Assumptions of temporal stationarity
are also made in many cases. In link-level delay tomogra-
phy, it is generally assumed that synchronized clocks are
available at all senders and receivers. Although many of
the simplifying assumptions do not strictly hold, such
“first-order” approximations have been shown to be rea-
sonable enough for the large-scale inference problems of
interest here [23]-[32].

There are two common modes of communication in
networks: multicast and unicast. In unicast communica-
tion, each packet is sent to one and only one receiver. In
multicast communication, the sender effectively sends
each packet to a group of subscribing receivers. At inter-
nal routers where branching occurs, e.g., node 1 in Fig. 3,
each multicast packet is replicated and sent along each
branching path. We now overview the different ap-
proaches to link-level network tomography that are en-
abled by the two modes of communicat ion.
Subsequently, we provide two detailed examples of
link-level network tomography applications.

Multicast Network Tomography
Network tomography based on multicast probing was
one of the first approaches to the problem [24]. Consider
loss rate tomography for the network depicted in Fig. 3.
If a multicast packet is sent by the sender and received by
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� 2. Physical and logical networks. The “cloud” indicates portions of the network that are
inaccessible by direct measurement. (a) Physical structure for single sender multiple re-
ceiver network. (b) Logical topology.
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node 2 but not by node 3, then it can be immediately de-
termined that loss occurred on link 3 (successful recep-
tion at node 2 implies that the multicast packet reached
the internal node 1). By performing such measurements
repeatedly, the rate of loss on the two links 2 and 3 can be
estimated; these estimates and the measurements enable
the computation of an estimate for the loss rate on link 1.

To illustrate further, let θ1 , θ2 , and θ3 denote the log
success probabilities of the three links in the network,
where the subscript denotes the lower node attached to
the link. Let $

|
p

2 3
denote the ratio of the number of

multicast packet probes simultaneously received at both
nodes 2 and 3 relative to the total number received at
node 3. Thus, $

|
p

2 3
is the empirical probability of success

on link 2 conditional upon success on link 3, which pro-
vides a simple estimate ofθ2 . Define $

|
p

3 2
in a similar fash-

ion, and also let $pi , i=2 3, , denote the ratio of the total
number of packets received at node i over the total num-
ber of multicast probes sent to node i. We can then write

log $

log $

log $

log $
|

|

p
p
p
p

2

3

2 3

3 2

1 1 0
1 0 1
0



















≈ 1 0
0 0 1

1

2

3



































θ
θ
θ

.

(4)

A least squares estimate of { }θ i is easily computed for
this overdetermined system of equations. Sophisticated
and effective algorithms have been derived for large-scale
network tomography in [24], [46], [25], and [47].

Similar procedures can be conducted in the case of de-
lay distribution tomography. There is a certain minimum
propagation delay along each measurement path, which
is assumed known. Multicast a packet from node 0 to
nodes 2 and 3, and measure the delay to each receiver. The
delay on the first link from 0 to 1 is identical for both re-
ceivers, and any discrepancy in the two end-to-end delay
measurements is solely due to a difference in the delay on
link 1 to 2 and the delay link 1 to 3. This observation al-
lows us to estimate the delay distributions on each indi-
vidual link. For example, if the measured end-to-end
delay to node 2 is equal to the known minimum propaga-
tion delay, then any extra delay to node 3 is incurred on
link 1 to 3. Collecting delay measurements from repeated
experiments in which the end-to-end delay to node 2 is
minimal allows construction of a histogram estimate of
the delay distribution on link 1 to 3. In larger and more
general trees, the estimation becomes more complicated.
Advanced algorithms have been developed for
multicast-based delay distribution tomography on arbi-
trary tree-structured networks [29], [46].

Unicast Network Tomography
Alternatively, one can tackle loss rate and delay distribu-
tion tomography using unicast measurements. Unicast
measurements are more difficult to work with than
multicast, but since many networks do not support

multicast, unicast-based tomography is of considerable
practical interest. The difficulty of unicast-based tomog-
raphy is that although single unicast packet measure-
ments allow one to estimate end-to-end path loss rates
and delay distributions, there is not a unique mapping of
these path-level parameters to the corresponding individ-
ual link-by-link parameters. For example, referring again
to Fig. 3, if packets are sent from node 0 to nodes 2 and 3
and nk and mk denote the numbers of packets sent to and
received by receiver node k, k=2 3, , then

log $

log $

p
p

A

2

3

1

2

3

1 1 0
1 0 1









 ≈ 














1 24 34

θ
θ
θ









(5)

where $ /p m nk k k= andθ j , j =1 2 3, , denotes the log success
probability associated with each link. Clearly, a unique so-
lution for { }θ j does not exist since A is not full rank.

To address this challenge in unicast loss tomography,
the authors of [25] and [28] independently proposed
methodologies based on measurements made using
unicast, back-to-back packet pairs. These measurements
provide an opportunity to collect more informative statis-
tics that can help to resolve the link-level loss rates and de-
lay distributions. A packet pair consists of two packets
sent one after the other by the sender, possibly destined
for different receivers, but sharing a common set of links
in their paths. In networks whose queues obey a standard
droptail policy, if two back-to-back packets are sent across
a common link and one of the pair is successfully trans-
mitted across the link, then it is highly probable that the
other packet is also successful. A droptail queuing policy
means that a packet is dropped by a queue only if it
reaches the queue and there is insufficient space in the
buffer. In active queuing strategies, such as ran-
dom-early-drop (RED) [48], packets can be dropped
with a certain probability even if they have already en-
tered the queue. Similarly, the two packets in each pair
will experience roughly the same delay through shared
links. These observations have been verified experimen-
tally in real networks [27], [49]. If one assumes that the
probability of success for one packet conditioned on the
success of the other is approximately unity, then the same
methodology developed for multicast-based tomography
(as described above) can be employed with unicast,
packet-pair measurements [27].

In the case of bandwidth tomography, the authors of
[50] addressed the challenge of nonuniqueness through
clever use of the header fields of unicast packets. The
time-to-live (TTL) field in each packet header indicates
how many hops the packet should traverse. At each router
the packet encounters the TTL counter is decremented by
one, and when the counter reaches zero the next router
discards the packet. The nettimer program described
in [50] uses “tailgating” to collect measurements: many
packet-pairs are sent from the source, each consisting of a
large packet followed by a small packet. The TTL field of
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the large packet is varied during the measurement period
so that it is propagated through only a portion of the
path. The end-to-end delay measured by the small packet
(in a relatively uncongested network) is primarily com-
prised of the propagation delay experienced by the large
packet, enabling inference of the bandwidth of the
subpath traversed by the large packet. Referring to the
simple triad network in Fig. 3 for illustration, nettimer
might send packet-pairs from node 0 along links 1 and 2.
If the TTL of the large packet is set to one, the tailgating
smaller packet measures the propagation delay on link 1.

Unicast measurement can be conducted either actively
or passively. In the case of active measurement, probe pack-
ets are sent by the senders specifically for the purpose of es-
timation. In passive monitoring, the sender extracts data
from existing communications (e.g., records of TCP ses-
sions) [47], [51]. Data transmission in the Internet is pri-
marily handled by the transmission control protocol
(TCP) and Internet protocol (IP). TCP/IP were devel-
oped by the Department of Defense to allow cooperating
computers to share resources across a network. IP is re-
sponsible for moving packets of data from node to node,
and TCP coordinates the delivery between the sender and
receiver (server and client). Loss rate and delay distribu-
tion tomography methods have been developed specifi-
cally for unicast packet pairs in [14], [25], [28],and [47].
Unicast packet stripes (triples, quadruples, etc.) have also
been investigated for loss rate tomography [27].

Example: Unicast Inference of Link Loss Rates
Link loss rates can be inferred from end-to-end,
path-level unicast packet measurements using the approx-
imate linear model given in (1) when the numbers packet
counts are large. As stated earlier, however, the discrete
process of counting the number of sent and received
packets suggests the use of a discrete probability distribu-
tion in our modeling and analysis. We give a brief intro-
duction and example of this approach here, and for more
details the interested reader is referred to related papers
[25], [26], and [52].

The successful traversal of a single packet across a link
can be reasonably modeled as a sequence of Bernoulli
events. Associate with the jth link in the network a single
parameter governing the Bernoulli model. This parameter
is the probability (rate) of successful transmission on the
link α j . The complete set for all m logical links in the net-
work is denoted byα α≡ ={ }j j

m
1 , which comprise the success

rates that network loss tomography strives to identify.

Measurements are collected by sending nk single pack-
ets along the path to receiver k and recording how many
successfully reach the destination, denoted as mk . Deter-
mination of the success of a given packet is handled by an
acknowledgment sent from the receiver back to the
sender. For example, such acknowledgments are a built-in
feature of TCP. The likelihood of mk given nk is binomial
(since Bernoulli losses are assumed) and is given by

l m n p
m
m p pk k k

k

k
k
m

k
n mk k k( | , ) ( )= 






 − −1 ,

(6)

where pk j P k j= ∈Π ( , )0 α and P k( , )0 denotes the sequence of
nodes in the path from the sender 0 to receiver k.

If the routing matrix A is full rank, then unique maxi-
mum likelihood estimates of the loss rates can be formed
by solving a set of linear equations. If A is not full rank,
then there is no unique mapping of the path success proba-
bilities to the success probabilities on individual links (be-
tween routers) in the path. To overcome this difficulty,
measurements are made using back-to-back packet pairs or
sequences of packets as discussed above [25], [27], [28].

If two back-to-back packets are sent to node j from its
parent node ρ( )j , then define the conditional success
probability as

β ρj j≡ →Pr st packet( ( )1 j j j| ( )2nd packet ρ → ),

where ρ( )j j→ is shorthand notation denoting the suc-
cessful transmission of a packet from ρ( )j to j. That is,
given that the second packet of the pair is received, then
the first packet is received with probability β j and
dropped with probability 1− β j . It is anticipated that
β j ≈1 for each j, since knowledge that the second packet
was successfully received suggests that the queue for link
j was not full when the first packet arrived. Evidence for
such behavior has been provided by observations of the
Internet [49], [53]. Denote the complete set of condi-
tional success probabilities by β β≡ ={ }j j

m
1 .

Suppose that each sender sends a large number of
back-to-back packet pairs in which the first packet is des-
tined for one of its receivers k and the second for another
of its receivers l. The time between pairs of packets must
be considerably larger than the time between two packets
in each pair. Let nk l, denote the number of pairs for which
the second packet is successfully received at node l, and let
mk l, denote the number of pairs for which both the first
and second packets are received at their destinations.
With this notation, the likelihood of mk l, given nk l, is bi-
nomial and is given by

l m n p
n
m p pk l k l k l

k l

k l
k l

m

k l
k l( | , ) ( ), , ,

,

,
, ,

,=








 −1 n mk l k l, ,− ,

where pk l, is a product whose factors are β elements on the
shared links and α elements on the unshared links. The
overall likelihood function is given by
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involves estimating network
performance parameters based
on traffic measurements at a
limited subset of the nodes.



l m n p l m n p l m n pkk k k k lk l k l k l( | , ) ( | , ) ( | , ),, , ,≡ ×∏ ∏ . (7)

The goal is to determine the vectorsα and β that maxi-
mize (7). Maximizing the likelihood function is not a sim-
ple task because the individual likelihood functions
l m n pk k k( | , )or l m n pk l k l k l( | , ), , , involve products of the
β and/or α probabilities. Consequently, numerical
optimization strategies are required. The EM algorithm
is an especially attractive option that offers a stable, scal-
able procedure whose complexity grows linearly with
network dimension [25]. A closely related EM algorithm
can be employed in link-level delay density tomography
[26], [54].

The link-level loss inference framework is evaluated in
[47] and [52] using the ns-2 network simulation envi-
ronment [5]. Measurements were collected by passively
monitoring existing TCP connections. The experiments
involved simulation of the 12-node network topology
shown in Fig. 4(a), and the estimated success probabili-

ties determined using the network tomography algo-
rithm above are depicted in Fig. 4. This topology reflects
the nature of many networks—a slower entry link from
the sender, a fast internal backbone, and then slower exit
links to the receivers.

In the simulations, numerous short-lived TCP connec-
tions were established between the source (node 0) and
the receivers (nodes 5-11). In addition, there is cross-traf-
fic on internal links, such that in total there are approxi-
mately 30 TCP connections and 30 user datagram
protocol (UDP) connections operating within the net-
work at any one time. (UDP is a simpler protocol than
TCP. UDP simply sends packets and does not receive an
acknowledgment from the receiver.) The average utiliza-
tion of the network is in all cases relatively high. All the
TCP connections flowing from the sender to the receivers
are used when collecting packet and packet-pair measure-
ments (see [47] for details on the data collection process).
Measurements were collected over a 300-s interval.
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� 4. Performance of the link-level loss tomography framework examined through ns-2 simulation of the network in (a). Parts (b)-(d)
show true and estimated link-level success rates of TCP flows from the source to receivers for several traffic scenarios, as labeled
above. In (b)-(d), the three panels in each display for the success probability (vertical axis) versus link 1-11 (horizontal axis): (top) an
example of true and estimated success rates with droptail queues, (middle) true and estimated success rates with RED queues, and
(bottom) mean absolute error between estimated and true success rates over ten independent trials of a 300-s observation interval.



The experiments were designed to ascertain whether
the unicast link-level loss tomography framework is capa-
ble of discerning where significant losses are occurring
within the network. They assess its ability to determine
how extensive the heavy losses are and to provide accurate
estimates of loss rates on the better performing links.
Three traffic scenarios were explored. In Scenario 1, links
2 and 5 experience substantial losses, thereby testing the
framework’s ability to separate cascaded losses. In Sce-
nario 2, links 2 and 8 experience substantial loss (testing
the ability to resolve distributed losses in different
branches of the network). In Scenario 3, many more
on-off UDP and on-off TCP connections were intro-
duced throughout the topology. Fig. 4 displays the simu-
lation results for each of the different traffic scenarios.

Example: Unicast Inference of
Link Delay Distributions
When the link delays along a path are statistically inde-
pendent the end-to-end delay densities are related to the
link delay densities through a convolution. Several meth-
ods for unraveling this convolution from the end-to-end
densities are: 1) transformation of the convolution into a
more tractable matrix operator via discretization of the
delays [26], [29], [31]; 2) estimation of low-order mo-
ments such as link delay variance [46] from end-to-end
delay variances which are additive over the probe paths;
3) nonparametric density estimation methods in combi-
nation with EM tomography algorithms [54]; 4) estima-
tion of the link delay cumulant generating function
(CGF) [31], [31] from the end-to-end delay CGFs which
are also additive over the probe paths. Here we discuss the
CGF estimation method from which any set of delay mo-
ments can be recovered.

Let Yi denote the total end-to-end delay of a probe
sent along the ith probe path. Then

Y a X a X i ni i i im im= +⋅⋅⋅+ =1 1 1, ,K (8)

where X ij is the delay of the ith probe along the jth link in
the path and a ij ∈{ , }0 1 are elements of the routing matrix

A. Here { }X ij i
n
=1 are assumed to be i.i.d. realiza-

tions of a random variable X j associated with the
delay of the jth link.

The CGF of a random variable Y is defined as
K t E eY

tY( ) log [ ]= where t a real variable. When Y
is a sum of a set { }X j j

m
=1 of statistically independ-

ent random variables the CGF satisfies the addi-
tive property K t K tY Xj

m

j
( ) ( )= =∑ 1 . Therefore, in

view of the end-to-end delay representation (8)
and assuming independent X Xi im1 , ,K (spatial
independence), the vector of CGFs of the
end-to-end probe delays { }Yi i

m
=1 of the ith probe

satisfies the linear system of equations

K KY Xt A t( ) ( )= , (9)

where the n-element and m-element vector functions of t
are, respectively, K Y Y Y

Tt K t K t
n

( ) [ ( ), , ( )]=
1

K and
K X X X

Tt K t K t
m

( ) [ ( ), , ( )]=
1

K .
The linear equation (9) raises two issues of interest: 1)

conditions on A for identifiability of K X t( ) from K Y t( );
and 2) good methods of estimation of K X t( ) from
end-to-end delay measurements Yi , i n=1, ,K .

When A is not full rank, only linear combinations of
those link CGFs lying outside of the null space of Acan be
determined from (9). We call such a linear combination
an identifiable subspace of CGFs. Depending on the
routing matrix A, identifiable subspaces can correspond
to weighted averages of CGFs α jj

m

XK t
j=∑ 1 ( ) over a re-

gion of the network. This motivates a multiresolution
successive refinement algorithm for detecting and isolat-
ing bottlenecks, faults, or other spatially localized anoma-
lies. In such an algorithm, large partially overlapping
regions of the network are probed with a small number of
probes just sufficient for each of the CGF linear combina-
tions to be sensitive to anomalous behavior of the aggre-
gate regional delay distributions. An example of the
anomalous behaviors of interest is a sudden shift of the
mass of the delay distribution towards larger delay values,
possibly indicating an emerging region of congestion. If
one of the regions is identified as a potential site of anom-
alous behavior, a similar probing process can be repeated
on subregions of the suspected region. This process con-
tinues down to the single link level within a small region
and requires substantially fewer probe paths than would
be needed to identify the set of all link delay CGFs.

Estimation of the CGF vector K X t( ) from an i.i.d. se-
quence of end-to-end probe delay experiments can be for-
mulated as solving a least squares problem in a linear
model analogous to (1):

$ ( ) ( ) ( )K KY Xt A t t= +ε (10)

where $K Y is an empirical estimate of the end-to-end CGF
vector and ε is a residual error. Different methods of solv-
ing for K X result from assuming different models for the
statistical distribution of the error residual. One model,
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discussed in [31], is obtained by using a
method-of-moments (MOM) estimator for
K Y and invoking the property that MOM esti-
mators are asymptotically Gaussian distributed
as the number of experiments gets large. The
bias and covariance of $K Y can then be approxi-
mated via bootstrap techniques and an approx-
imate maximum likelihood estimate of K X
may be generated by solving (10) using
iteratively reweighted least squares (LS).
Using other types of estimators of K Y , e.g.,
kernel-based density estimation or mixture models with
known or approximatable bias and covariance, would
lead to different LS solutions for K X .

The ns-2 network simulator was used to perform a
simulation of the four-link network shown in Fig. 5.

Each link was a drop-tail queue with buffer size of 50
packets. The internal “bottleneck” link, link 3 in Fig. 5,
was assigned bandwidth 5 Mb/s with latency 50 ms.
Links 1, 2, and 4 were assigned bandwidths 1 Mb/s and
latency of 10 ms. The background traffic consisted of
both exponential on-off UDP traffic and TCP traffic
(links 1-4 were assigned different numbers of back-
ground UDP and TCP traffic sources in UDP/TCP pro-
portions 6/3, 5/2, 8/4, and 4/2, respectively). Probes
were generated as 40-byte UDP packets at each sender
node according to a Poisson process with mean
interarrival time being 16 ms and rate being 20 Kb/s. The
number of probes per path was 3000. Probe-derived link
CGF estimators with and without bias correction were
computed and compared with the true link CGFs (com-
puted from direct link measurements of background traf-
fic alone). Differences between the true CGFs and the
estimated CGFs can be attributed to both statistical esti-
mation error and systematic bias due to probe-induced
perturbations of background traffic. The link CGF esti-
mate without bias correction was obtained by finding the
LS fit to the vector K X t( ) in relation (10) with $ ( )K Y t ob-
tained by straight empirical averaging over the N =3000
measured probe delays. Specifically, the ith element of
$ ( )K Y t is the raw sample average $ ( )K t N eY

tY
k

N

i

ik= −
=∑1
1 ,

where { }Yik k
N

=1 are the probe delays along the ith probe
path among those indicated in Fig. 5. The bias corrected
link CGF was estimated using the bootstrap procedure
described in [31]. In this procedure we aggregated 40
separate estimates of $ ( )K Y t each computed over a ran-
domly selected subset of 2800 probe delays taken from
the 3000 measured probe delays.

Fig. 6 shows the trajectories of the CGF estimates with
and without bias correction in addition to the true CGF
for links 1 and 3. Table 1 shows the average squared error
per unit t of the link CGF estimates over the range
t ∈ −[ , ]200 200 . These estimates were based on applying
ordinary LS to (10) with and without bootstrap bias cor-
rection. Note from the table that the average MSE of the
bias corrected CGF estimate is almost 9% lower than the
average MSE incurred by the raw CGF estimate.

We next illustrate the application of the CGF estima-
tion technique to bottleneck detection. Define a bottle-
neck as the event that a link delay exceeds a specified delay
threshold. The Chernoff bound specifies an upper bound
on the probability of bottleneck in the jth link in terms of
the CGF

( )P X e ej t
t t tX j( ) min

( )
≥ ≤ >

−δ δ
0

K
. (11)

In Table 2, we show the estimated Chernoff bounds Pj on
the bottleneck probability P X j( )≥δ . These were esti-
mated by plugging bias corrected CGF estimates into the
right hand side of (11). Hereδ=0005. s. Note that the esti-
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Table 1. MSE of $KX j
(Bias Correction) and $K X j

′
(No Bias Correction) for Estimated Link CGFs.

Link 3 Is Bottleneck Link.

Link 1 2 3 4

MSE of $K Xj
0.000909 0.000421 0.000974 0.000325

MSE of $K Xj
′ 0.001171 0.000327 0.001026 0.000363



mated Chernoff bounds correctly identify the bottleneck
link (link 3) as that link having probability close to one.
In particular if we set the following criterion for detection
of a bottleneck: “the probability that X j exceeds 0.005 s
is at least 0.5,” we see that the estimated Chernoff bound
correctly identifies link 3 as the bottleneck link.

Example: Topology Identification

Most of the network tomography problems addressed in
earlier sections dealt with the identification of network
performance parameters, with full knowledge of the net-
work (routing) topology. The network topology is ex-
pressed by the matrix A in (1). Knowledge of A is crucial
for most network tomography problems; such knowl-
edge, however, is not always readily available. Most exist-
ing tools for network topology mapping, such as
traceroute, rely on the cooperation of routers and
thus can only reveal those portions of the network that are
functioning properly and wish to be known. These coop-
erative conditions are often not met in practice and may
be increasingly uncommon as the network grows and pri-
vacy and proprietary concerns increase.

For situations in which common tools such as
traceroute are not applicable, a number of methods
have been proposed for the identification of network
(routing) topology based on end-to-end measurements
that measure the degree of correlation between receivers
[30], [40], [41], [42]-[44]. Most of these approaches
have concentrated on identifying the tree structured to-
pology connecting a single sender to multiple receivers. It
is assumed that the routes from the sender to the receiver
are fixed. With only end-to-end measurements, it is only
possible to identify the logical topology defined by the
branching points between paths to different receivers.

The key idea in most of the existing topology identifi-
cation methods is to collect measurements at pairs of re-
ceivers that behave (in an average sense) as a monotonic,
increasing function of the number of shared links or
queues in the paths to the two receivers. A simple exam-
ple is the case of delay covariance. If two receivers share
some portion of their paths, then the covariance between
the end-to-end delays to the two receivers is reflective of
the sum of the variances on the shared links (assuming the
delays are not correlated on unshared links). The more
shared links (larger shared portion of their paths), the
larger the covariance between the two.

Metrics possessing this type of monotonicity property
can be estimated from a number of different end-to-end
measurements including counts of losses, counts of zero

delay events (utilization), delay correlations, and delay
differences [30], [40]-[44]. Using such metrics, topol-
ogy identification can be cast as a maximum likelihood es-
timation problem as follows. The estimated metrics
x ≡{ },xi j , where the indices i j, refer to different pairs of
receivers, can be interpreted as observations of the true
metric values γ γ≡{ },i j contaminated by some random-
ness or noise. The estimated metrics are randomly distrib-
uted according to a density (whose precise form depends
on the contamination model) that is parameterized by the
underlying topology T and the set of true metric values,
written as p( | , )x γ T . The estimated metrics x are fixed
quantities and hence when p( | , )x γ T is viewed as a func-
tion of T and γ it is called the likelihood of T and γ . The
maximum likelihood tree is given by

T TT F G
* max max ( | , )= ∈ ∈arg γ γp x , (12)

where F denotes the forest of all possible tree topologies
connecting the sender to the receivers and Gdenotes the
set of all metrics satisfying the monotonicity property.

The likelihood optimization in (12) is quite formida-
ble, and we are not aware of any method for computing
the global maximum except by a brute force examination
of each tree in the forest. Consider a network with N re-
ceivers. A very loose lower bound on the size of the forest
F is N!/ 2. For example, if N =10 then there are more
than 18 106. × trees in the forest. This explosion of the
search space precludes the brute force approach in all but
very small (logical) networks. While determining the
globally optimal tree is prohibitive in most cases,
suboptimal algorithms based on deterministic and Monte
Carlo optimization methods can provide good estimates
of the topology. As far as deterministic algorithms are
concerned, the deterministic binary tree (DBT) classifica-
tion algorithm proposed in [40] is a representative exam-
ple. The DBT algorithm is a recursive selection and
merging/aggregation process that generates a binary tree
from the bottom-up (receivers to sender). The greedy na-
ture of the DBT algorithm can lead to very suboptimal re-
sults. To avoid this pitfall, an MCMC procedure has been
proposed to quickly search through the “topology space,”
concentrating on regions with the highest likelihood
[43]. The most advantageous attribute of the MCMC
procedure is that it attempts to identify the topology
globally, rather than incrementally (and suboptimally) a
small piece at a time.

To illustrate the topology identification problem, con-
sider the network topology depicted in Fig. 7(a). This is
the true topology connecting a sender (at Rice Univer-
sity) to a number of other computers in North America
and some in Europe. In this case, traceroutewas used
to obtain the true topology (in many cases this may not be
possible, but here it provides a convenient “ground-
truth” for our experiment). End-to-end measurements
using a special-purpose unicast probes called “sandwich”
probes were used to obtain a set of metrics satisfying the
monotonicity property [43]. The sandwich probing
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Table 2. Estimated Chernoff Bounds Pj on
P X j( . )≥ 0 005s . Bottleneck at Link 3 Is Correctly
Identified by Its High Probability of Large Delay.

Link 1 2 3 4

Pj 0.439 0.415 0.964 0.392



scheme is delay based, but it measures only delay differ-
ences, so that no clock synchronization is required. Fig.
7(b) depicts the most commonly identified topology
(over many different experiments on different days and at
different times of day). The identified topology generally
agrees with the true topology.

Origin-Destination Tomography

Origin-destination tomography is essentially the antithe-
sis of link-level network tomography: the goal is the esti-
mation of path-level network parameters from
measurements made on individual links. By far the most
intensively studied origin-destination network tomogra-
phy problem is the estimation of OD traffic from measur-
able traffic at router interfaces. In privately owned
networks, the collection of link traffic statistics at routers
within the network is often a far simpler task than per-
forming direct measurement of OD traffic. The OD traf-
fic matrix, which indicates the intensity of traffic between
all OD pairs in a network, is a key input to any routing al-
gorithm, since the link weights of the open shortest path
first (OSPF) routing protocol are related to the traffic on
the paths. Ideally, a data-driven OD matrix should be cen-
tral to the routing optimization program. (OSPF is a
link-state routing protocol developed for IP networks
that calls for the sending of link-state advertisements to all
other routers in the same hierarchical area. A link state
takes the form of a weight, effectively the cost of routing
via that link.)

There are currently two ways to obtain OD traffic
counts. Indirect methods collect sums of OD traffic
counts and are considered in [22], [33], [36], and [34]; a
direct method to measure OD traffic counts via software
such as NetFlow supported by Cisco routers is described
in [34], [55]. Both approaches need the cooperation of
the routers in the network, but this is not problematic for
privately owned networks. The link traffic counts at rout-
ers are much easier to collect relative to the direct ap-
proach via NetFlow and lead to a linear inverse problem.
There are noticeable features about this particular inverse
problem worthy of elaboration. First, the OD traffic vec-
tor to be estimated is not a fixed parameter vector, but a
random vector, denoted by x; secondly, the linear equa-
tion (1) is used without the error term ε (stochastic vari-
ability is captured in x). Although A is singular as in other
cases discussed, the techniques in [22], [33], [34], and
[36] use statistical means to induce a regularization en-
abling the recovery of the entire x (or the traffic intensities
underlying x). Moreover, the most recent work [34] ad-
dressing this problem also deals with the time-varying or
nonstationary aspect of the data.

Vardi was the first to investigate the OD network to-
mography problem. In [22] he studies a network with a
general topology, using an independent and identically
distributed (i.i.d.) Poisson model for the OD traffic byte
counts. He specifies identifiability conditions under the

Poisson model and develops a method that uses the EM
algorithm on link data to estimate Poisson parameters in
both deterministic and Markov routing schemes. To miti-
gate the difficulty in implementing the EM algorithm un-
der the Poisson model, he proposes a moment method
for estimation and briefly discusses the normal model as
an approximation to the Poisson. Related work treated
the special case involving a single set of link counts and
also employed an EM algorithm [36]. A Bayesian formu-
lation and MCMC estimation technique has also been
proposed [33].

Cao et al. [34] use real data to revise the Poisson model
and to address the nonstationary aspect of the problem.
Their methodology is validated through comparison with
direct (but expensive) collection of OD traffic. Cao et al.
represent link count measurements as summations of vari-
ous OD counts that were modeled as independent random
variables. (Even though TCP feedback creates depend-
ence, direct measurements of OD traffic indicate that the
dependence between traffic in opposite directions is weak.
This renders the independence assumption a reasonable
approximation.) Time-varying (or nonstationary) traffic
matrices estimated from a sequence of link counts were
validated on a small subnetwork with four origins/destina-
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tions by comparing the estimates with actual OD counts
that were collected by running Cisco’s NetFlow software on
the routers. Such direct point-to-point measurements are
often not available because they require additional router
CPU resources, which can reduce packet forwarding effi-
ciency, and involve a significant administrative burden
when used on a large scale.

Let x =( , , )x x n
T

1 K denote the unobserved vector of
corresponding byte counts for all OD pairs during a given
time interval in the network. Here T indicates transpose
and x is the “traffic matrix” even though it is arranged as a
column vector for convenience. One natural way to enu-
merate all the OD variables into a vector is to first enumer-
ate all the routers and then the end nodes or
origin-destination nodes by 1 through, say, I, and make
these indices blocked by routers: the end nodes connected
to the first router in the first block, and those connected to
the second router in the second block, and so forth. Then,
to form the OD vector, we put the OD traffic accounts in
the order ( , ),( , ),...,( , ),( , ),( , ),...,( , ),...,(1 1 1 2 1 2 1 2 2 2I I I , ),1
( , ),...,( , )I I I2 , where ( , )i j is the index of the OD traffic
from the ith end node to the jth end node. Let
y =( , , )y ym

T
1 K denote the observed column vector of in-

coming/outgoing byte counts measured on each router
link interface during a given time interval, again blocked
into first the link measurements on the interfaces of the
first router and so on. One element of x, for example, cor-
responds to the number of bytes originating from a speci-
fied origin node to a specified destination node, whereas
one element of y corresponds to bytes sent from the origin
node regardless of their destination. Thus each element of
y is a sum of selected elements of x, so

y Ax= (13)

where A is defined as before, an m n× routing matrix of
zeros and ones that is determined by the routing scheme
of the network. The orders of elements in x and y deter-
mine the positions of the zeros and ones of A accordingly.
The work of [34] only considers fixed routing, i.e., there
is only one route from an origin to a destination. The un-
observed OD byte counts are modeled as

xi i i
c~ ( , ),normal independentlyλ ϕλ , (14)

where c is a fixed power constant (its specification is
found to be robust in the sense that both c=1 and c=2
work well with the Lucent network data as shown in [34,
35]). This implies

y A A A~ ( , )normal λ Σ T , (15)

where

λ λ λ φ λ λ= =( , , ) , ( , , )1 1K Kn
T c

n
cand diagΣ .

Here λ >0 is the vector of OD mean rates. φ >0 is a
scale parameter that relates the variance of the counts to
their mean, since usually larger counts have larger vari-
ance. The mean-variance relationship is necessary to en-
sure the identifiability of the parameters in the model.
Heuristically, under this constraint, the covariances be-
tween the ys give the identifiability of the parameters up
to the scale parameter φ which can be determined from
the expectation of a y.

Cao et al. [34] address the nonstationarity in the data
using a local likelihood model (cf. [56]); that is, for any
given time t, analysis is based on a likelihood function de-
rived from the observations within a symmetric window of
size w h= +2 1 around t (e.g., in the experiments described
below, w=11corresponds to observations within about an
hour in real time). Within this window, an i.i.d. assump-
tion is imposed (as a simplified and yet practical way to
treat the approximately stationary observations within the
window). Maximum-likelihood estimation (MLE) is car-
ried out for the parameter estimation via a combination of
the EM algorithm and a second-order global optimization
routine. The component-wise conditional expectations of
the OD traffic, given the link traffic, estimated parameters,
and the positivity constraints on the OD traffic, are used as
the initial estimates of the OD traffic. The linear equation
y Ax= is enforced via the iterative proportional fitting al-
gorithm (cf. [57], [58]) to obtain the final estimates of the
OD traffic. The positivity and the linear constraints are
very important final steps to get reliable estimates of the
OD traffic, in addition to the implicit regularization intro-
duced by the i.i.d. statistical model.

To smooth the parameter estimates, a state-space model
is imposed in [34] on the logarithm of the parameters λ’s
and φ over the time windows of size w h= +2 1 (in our im-
plementation for the simple network of Router 1, we use
h=5 or w=11). Let θ λ φt t t=( , ) be the parameter vector
for the tth time window. We assume the following random
walk model for the evolution of the log parameters:

log( ) log( )θ θt t t= +−1 v ,

where v 0t D~ ( , )normal , independent for different t,
and D is a diagonal matrix obtained using estimates of θ t
in the MLE approach described earlier. Given the param-
eters, the link counts are assumed i.i.d. as before:

( ,..., ,..., ) | ~ ( , )Y Y Yt h t t h
T

t t t
T

− + θ λi.i.d.Normal A A AΣ .
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Origin-destination tomography is
the antithesis of link-level
network tomography: the goal is
the estimation of path-level
network parameters from
measurements made on
individual links.



This leads to a two-pass algorithm on the
data. For the second pass, inference at time
t is carried out in a sequential manner. We
first obtain the posterior probability den-
sity p t( )θ −1 based on the first t −1windows
of data, then the prior probability density
π θ( )t is updated via the random walk equa-
tion, and then the maximum a posterior
estimate of θ t via numerical optimization
using the observations in the tth time win-
dow and the prior.

This state-space model does improve
on the parameter estimates, but not so
much on the estimated OD traffic x t ,
which implies an insensitivity of the final
OD traffic estimates. This insensitivity or
robustness to changes in parameter estimates is proba-
bly due to the fact that even in the MLE approach,
positivity and linear constraints are imposed on the OD
estimates, and these constraints override the improve-
ments brought about by the state-space model.

Example: Time-Varying OD Traffic
Matrix Estimation
Fig. 8 is a network at Lucent Technologies considered in
[34], [35]. Figs. 9 and 10 are taken from [34]: traffic plots
only for the subnetwork around Router 1 with four OD end
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nodes. These plots show the validation (via NetFlow) and es-
timated OD traffic based on the link traffic. Fig. 9 gives the
full scale, and Fig. 10 is the zoomed-in scale (20×). It is obvi-
ous that the estimated OD traffic agrees well with the
NetFlow measured OD traffic for large measurements (> 50
Kbyte/s), but not so well for small measurements (< 20
Kbyte/s) where the Gaussian model is a poor approxima-
tion. From the point of view of traffic engineering, it is ade-
quate that the large traffic flows are inferred accurately.
Hence for some purposes such as planning and
provisioning activities estimates of OD traffic could be used
as inexpensive substitutes for direct measurements.

Even though the method described in [34] uses all
available information to estimate parameter values and
the OD traffic vector x, it does not scale to networks with
many nodes. In general, if there are N e end nodes, the
number of floating point operations needed to compute
the MLE is at least proportional to N e

5 . A scalable algo-
rithm that relies on a divide-and-conquer strategy to
lower the computational cost without losing much of the
estimation efficiency is proposed in [35].

Conclusion and Future Directions

This article has provided an overview of the area of
large-scale inference and tomography in communication

networks. As is evident from the limited scale of the simu-
lations and experiments discussed in this article, the field is
only just emerging. Deploying measurement/probing
schemes and inference algorithms in larger networks is the
next key step. Statistical signal processing will continue to
play an important role in this area, and here we attempt to
stimulate the reader with an outline of some of the many
open issues. These issues can be divided into extensions of
the theory and potential networking applications areas.

The spatiotemporally stationary and independent traf-
fic and network transport models have limitations, espe-
cially in tomographic applications involving heavily
loaded networks. Since one of the principal applications
of network tomography is to detect heavily loaded links
and subnets, relaxation of these assumptions continues to
be of great interest. Some recent work on relaxing spatial
dependence and temporal independence has appeared in
unicast [31] and multicast [24] settings. However, we are
far from the point of being able to implement flexible yet
tractable models which simultaneously account for long
time traffic dependence, latency, dynamic random rout-
ing, and spatial dependence. As wireless links and ad hoc
networks become more prevalent spatial dependence and
routing dynamics will become dominant.

Recently, there have been some preliminary attempts to
deal with the time-varying, nonstationary nature of net-
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work behavior. In addition to the estimation of time-vary-
ing OD traffic matrices discussed, others have adopted a
dynamical systems approach to handle nonstationary
link-level tomography problems [14]. Sequential Monte
Carlo inference techniques are employed in [14] to track
time-varying link delay distributions in nonstationary net-
works. One common source of temporal variability in
link-level performance is the nonstationary characteristics
of cross-traffic. Fig. 11 illustrates this scenario and displays
the estimated delay distributions at different time instances
(see [14] for further details).

There is also an accelerating trend toward network se-
curity that will create a highly uncooperative environ-
ment for active probing: firewalls designed to protect
information may not honor requests for routing informa-
tion, special packet handling (multicast, TTL, etc.), and
other network transport protocols required by many cur-

rent probing techniques. This has prompted investiga-
tions into more passive traffic monitoring techniques, for
example based on sampling TCP traffic streams [47].
Furthermore, the ultimate goal of carrying out network
tomography on a massive scale poses a significant com-
putational challenge. Decentralized processing and data
fusion will probably play an important role in reducing
both the computational burden and the high communi-
cations overhead of centralized data collection from
edge-nodes.

The majority of work reported to date has focused on
reconstruction of network parameters which may only be
indirectly related to the decision-making objectives of the
end-user regarding the existence of anomalous network
conditions. An example of this is bottleneck detection
which has been considered in [31] and [32] as an applica-
tion of reconstructed delay or loss estimation. However,
systematic development of large-scale hypothesis testing
theory for networks would undoubtedly lead to superior
detection performance. Other important decision-ori-
ented applications may be detection of coordinated at-
tacks on network resources, network fault detection, and
verification of services.

Finally the impact of network monitoring, which is the
subject of this article, on network control and
provisioning could become the application area of most
practical importance. Admission control, flow control,
service level verification, service discovery, and efficient
routing could all benefit from up-to-date and reliable in-
formation about link and router level performances. The
big question is: can signal processing methods be devel-
oped which ensure accurate, robust and tractable moni-
toring for the development and administration of the
Internet and future networks?
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