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ABSTRACT

We describe an algorithm for tracking an object using par-
ticle filtering in a sensor network comprised of smart dust-
type motes. We investigate the situation where the motes are
equipped with binary proximity sensors, low-power lasers
and optical receivers for communication with nearby motes,
and corner-cube arrays for communication with a central
transceiver. The particle filter we describe is largely decen-
tralized; a central transceiver performs no processing be-
yond a summation and weighted average. Individual motes
act as the particles in that they represent candidate positions
of the object. Propagation of the particle filter is performed
through activation of appropriate neighbouring nodes with
“weighted” messages. We provide simulation results of track-
ing a maneuvering object, comparing performance with a
centralized particle filter.

1. INTRODUCTION

Smart dust networks, proposed in [1, 2], consist of many
millimetre-scale motes, each equipped with a small power
supply and capable of sensing, communication and limited
computation. Due to the extreme constraints on energy avail-
ability, optical line-of-sight communication is attractive in
such networks, because it can be designed to consume much
less energy than radio-frequency wireless communication.
An external querying transceiver, consisting of steerable lasers
and a directionally sensitive optical receiver array, can fur-
ther reduce mote power requirements, because motes can
reflect light in a controlled fashion for long-range commu-
nication, rather than generating it themselves. Networking
procedures such as localization, routing, synchronization
and clustering can be very difficult to perform in a smart
dust environment, so any distributed signal processing al-
gorithm should avoid them as much as possible.

In this paper, we focus on the problem of using a smart
dust-type network to track an object maneuvering through a
region. Each mote of the network is equipped with a prox-
imity sensor with relatively weak detection capability. We
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develop a tracking algorithm that is a type of (approximate)
distributed particle filter [3] and explore the performance of
the algorithm relative to a centralized particle filter. Our ob-
jective is to achieve reasonably accurate estimation whilst
minimizing the amount of network configuration overhead
and maximizing network lifetime by reducing the number
of active sensors and the network communication.

The paper is structured as follows. In Section 2 we de-
scribe the architecture of the sensor network and the com-
munication model. Section 3 specifies the dynamic model
for object motion and the measurement framework. Sec-
tion 4 describes the tracking problem we address and pro-
vides a high-level review of particle filters. Section 5 dis-
cusses issues with distributed particle filtering in sensor net-
works and then details our proposed approach. Section 6
describes the simulations we have performed to explore the
performance of the algorithm and examines the results. Fi-
nally, Section 7 discusses related work, limitations of the
approach and intended extensions.

2. NETWORK ARCHITECTURE AND
COMMUNICATION

We consider a sensor network comprised of a set of motes,
each equipped with a binary proximity sensor, a control-
lable reflective device (a corner-cube array) for communi-
cation with a global querying transceiver, and low-power
lasers and direction-sensitive optical receivers for commu-
nication with neighbouring motes. Using such a network,
we design an architecture and algorithm for tracking an ob-
ject moving through a monitored region. Figure 1 depicts
the main properties of the global architecture. The binary
proximity sensor attached to each mote has a detection re-
gion; there is an associated probability of detection when
the object is in this region and a probability of false-alarm
when the object is outside the region.

Each mote has a set of low-power lasers for communi-
cation with neighbouring motes; these can be steered in any
of eight directions. Motes transmit at different wavelengths;
the number of unique wavelengths is such that within any
communication neighbourhood there is no duplication. This



Fig. 1. Architecture of the sensor network. The binary sen-
sor of each mote has a detection region, and an associated prob-
ability of detection and false-alarm. Communication between
motes is accomplished through the use of a small set of lasers
and directionally-sensitive optical receivers. The central query-
ing transceiver communicates with the network by projecting light
onto the network; very low bit-rate signals are embedded by mod-
ulation. Communication back to the transceiver is performed by
controlled reflection at the motes.

prevents interference of transmissions and removes the need
for accurate synchronization. The motes are also equipped
with optical receivers that can determine the direction of
incident communication (to within a forty-five degree re-
gion that corresponds to one of the eight directions). Dur-
ing the particle filter operation, a mote must be capable of
restricting its communication to a small region of the sen-
sor field (see Figure 2). This is achieved by setting mini-
mum and maximum thresholds on the power level at a re-
ceiver for recognition of a valid transmission. The commu-
nication rate between motes is very low, since a mote must
only transmit a few weights (each weight is several bytes) at
any measurement instant. Communication with the central
transceiver is achieved solely through reflection. Each mote
modulates the power of the reflected light according to its
current total weight.

We do not assume any alignment of the motes or knowl-
edge of position. We do implicitly assume some level of
coarse synchronization in this paper, primarily for ease of
exposition, but the algorithm can be readily implemented in
an asynchronous fashion with some minor changes.

3. OBJECT DYNAMICS AND MEASUREMENT

In this paper, we consider the situation where the dynamics
of the object can be adequately captured by a jump Markov
model [4], but the observations (binary proximity measure-
ments) are non-linear functions of the object state. Our ap-

proach is generalizable to more other Markovian dynamic
models (those that have sufficient mixing properties [5]).

Let rt, t = 1, 2, . . . denote a discrete-time Markov chain
with a finite set of states and known transition probabilities.
The object dynamics of a general jump Markov linear sys-
tem can be modelled as:

xt+1 = A(rt+1)xt + B(rt+1)ηt+1 + F (rt+1)ut+1 (1)

Here ut denotes an exogenous input and ηt is an indepen-
dent white Gaussian noise sequence. In the particular case
we consider in this paper, we use rt to model the maneu-
vering of the object (straight, left-turn, right-turn) and xt to
model the position.

Our observations consist of binary variables yt collected
at a set Nt of active sensor motes. We model the observa-
tions as conditionally independent given object position, so
for any active mote j:

p(y(j)
t = 1) =

{
pd if xt ∈ D(j),

pf if xt /∈ D(j).
(2)

where D(j) is the detection region of the sensor of mote j.
We denote the mote positions as {v(j); j = 1, . . . , N}.

When the mote measurements are modelled as independent,
the likelihood function is equal to the product of the obser-
vation probabilities. For a position xt, the likelihood func-
tion is:

L(yt|xt) = pnt

d (1 − pd)st(1 − pf )gtpft

f (3)

Here nt + st is the number of active sensors whose detec-
tion region includes the position xt; nt is the number of
these which record a positive detection. In a similar fash-
ion, gt + ft is the number of active sensors whose detec-
tion regions exclude xt, and ft is the number recording a
positive detection. If there are Nt active sensors at time t,
Nt = nt + st + ft + gt.

In this paper, we focus on the case where the detection
capability of the sensor has been maximized at the expense
of a high false alarm rate. In particular, we assume that
when the object is not in range, a sensor has equal probabil-
ity of reporting either result, i.e. pf = 0.5. This model im-
plies that a sensor can calculate the likelihood of the object
being at its location (to within a proportionality constant)
based solely on neighbourhood measurements. It does not
need to know the number of active motes, but requires a
(conservative) upper bound nmax on the maximum number
of motes in the detection region of any position. The likeli-
hood evaluation is:

L̂(yt|xt = v(j)) = p
n

(j)
t

d (1 − pd)s
(j)
t 0.5nmax−n

(j)
t −s

(j)
t (4)

where n
(j)
t and s

(j)
t are, respectively, the number of sensors

in the detection neighbourhood of sensor j that report posi-
tive and negative responses.



4. PARTICLE FILTERS AND TRACKING

Our goal is to sequentially estimate (or track) the position of
the object. The state of the object includes its position, di-
rection and current maneuver. The non-linear nature of the
measurements means that a decentralized Kalman filter [6]
is an inappropriate choice for performing this task. Alter-
native approaches include extended Kalman filters, grid-
based methods and Gaussian-sum filters [7, 8, 9], but these
all have serious limitations on estimation performance, and
information exchange between motes is not a simple mat-
ter. Particle filtering methods [10, 11] are attractive be-
cause of their tracking power and modelling flexibility, but
they have substantial computational requirements, impose a
potentially high communication overhead, and can require
careful sensor network configuration.

Particle filtering methods keep track of a set of candi-
date state trajectories (particles) [11]. There is a weight as-
sociated with each of these particles; note that these weights
are not necessarily normalized. When a new measurement
becomes available, each particle’s state trajectory is aug-
mented based on the dynamic model (and possibly the mea-
surement) in a propagation step. Its weight is then updated
according to how well it conforms to the dynamic model
and the likelihood of it generating the current measurement
(the update step). The set of weighted particles forms a
weighted pointwise approximation to the filtering distribu-
tion, and this can be used to form estimates of the current
state of the object (the estimation step). In practice, an addi-
tional resampling step must be incorporated in the particle
filter; this step eliminates particles with very low weight and
duplicates those with large weight. In this manner, a reason-
able number of particles is sufficient to focus on the likely
region of the state-space.

5. SEMI-DISTRIBUTED PARTICLE FILTERING
ALGORITHM

There are a number of difficulties associated with a dis-
tributed implementation of particle filtering methods in sen-
sor networks. In this paper, we interpret a distributed im-
plementation as meaning that disjoint subsets of the particle
set are maintained at different motes. By distributing the
particles amongst different motes, we can reduce the com-
putational burden to within mote capability (computation is
linear in the number of particles). At any point in time there
is a relatively small number of active motes that maintain
particle sets, so we can conserve system energy by deacti-
vating the majority of motes.

In the sensor network, each mote only has access to its
own sensor measurements. In the propagation step of the
particle filter, this is not critical if augmentation is based
solely on the dynamic model (although imposing this limi-

tation can have a significant impact on the performance of
the particle filter). However, the update step requires evalu-
ation of the likelihood, which is in general dependent on all
measurements. Our model in this paper results in a likeli-
hood function that is only dependent on the binary measure-
ments in the local neighbourhood of the mote, so we can
achieve evaluation of the likelihood by requiring all active
sensors to broadcast their binary proximity measurement to
their neighbours. It is possible to evaluate (approximately)
the likelihood in this local fashion for a reasonably broad
range of measurement models, but we do not elaborate on
the model requirements here.

The estimation and resampling steps both require knowl-
edge of all particle weights. A minimum mean-squared er-
ror estimate of the object position is formed by the weighted
average of the particle positions. The resampling step re-
quires normalization of the weights of all particles in the
system. This implies that each active sensor mote must be
informed of the total particle weight. We do not propose
a method for distributed implementation of these steps in
this paper. The global transceiver is used to perform the
weighted averaging for estimation and also transmits the to-
tal weight to all active sensor motes whenever resampling is
performed.

We must also address the challenge of changing the set
of active motes over time. We want the active motes to be
clustered around the true position of the object, so that the
most informative sensor measurements are made. When the
object is about to leave the detection region of a currently
active mote, that mote should transfer its particle set to an-
other mote and deactivate.

5.1. Implementation

We adopt a semi-distributed approach in the particle filter-
ing algorithm we develop. Disjoint sets of particles are in-
dependently maintained at a small set of active motes, but
a global transceiver performs a few simple averaging oper-
ations to facilitate resampling and extract the estimate from
the network. An important innovation in our tracking algo-
rithm is that all the particles maintained at any given sensor
j have position xt = v(j), where v(j) is the position of the
sensor. This restricts the flexibility and accuracy of the par-
ticle filter, but with reasonable density of motes, it does not
impose a substantial tracking penalty (see Section 6).

At time t0, the system is initialized by activating all
motes in the system. In this initial phase, each mote is al-
lotted eight particles, one for each of the directions it is ca-
pable of signalling. The x0 value for each of these particles
is equal to the (uncalibrated) position of the sensor. The r0

value of all particles is set to “straight”. The weight of each
particle is initialized to one.

Propagation step: Particles are propagated by activating
neighbouring motes in the direction of motion; a message is



sent containing the particle weight and discrete state. As an
example, if a given mote received a particle with a message
containing {straight, 0.2} as the state and weight from the
west (where west is simply a label that the mote associates
with one of its receivers), then on the next time-step the
mote may generate two particle descendants, one with mes-
sage {left, 0.15} that it transmits via its north-east laser,
and one with message {straight, 0.1} that it transmits via
its east laser.

These generated messages are sent to a region (see Fig-
ure 2) and are thus not necessarily confined to a single mote.
The number of descendants of a given particle in the rep-
resentation is dependent on the number of motes that lie
within the communication region. If motes are uniformly
distributed in the region of observation, this does not present
a problem, aside from imparting some additional variance to
the estimate.

Fig. 2. Particle propagation in the sensor network. Motes acti-
vate new motes in the predicted direction of object travel. These
become the new particles in the filter.

When choosing the size and location of the communi-
cation region, we attempt to match the possible region of
movement determined by the dynamic model. For instance,
if there is the potential for substantial variation in the di-
rection or distance moved then the region will be larger. If
we achieve a perfect match between the probability of com-
munication to a mote and the probability of movement to
that mote according to the dynamic model, then the impor-
tance sampling distribution (see [11]) is the prior. In our set-
up, the match is only very approximate, because the com-
munication cannot mimic any complicated distribution, but
given the limitations of the measurements, this approxima-
tion does not impart unduly large errors relative to other as-

pects of the monitoring system. If the dynamic model does
not have substantial uncertainty relative to the density of the
motes, then the communication region needs to be larger
than the region dictated by the prior, in order to ensure that
at least one mote is contacted.

Update step: The update step is performed in three stages.
First, a mote with particles broadcasts a message to acti-
vate all motes in its detection neighbourhood. Second, these
motes perform a proximity measurement and broadcast the
result. Third, each particle-maintaining mote calculates its
likelihood according to ( 4) and updates the weight of its
particles by multiplying by the likelihood (in the standard
manner of particle filters where the importance sampling
distribution is the prior [11]).

Estimation step: The global transceiver sends an inquiry
beam requesting all active motes to respond. Each active
mote modulates the reflected power according the total weight
of all its particles. The global transceiver is equipped with a
receiver array and can perform an averaging of the received
power to form an estimate of object location.

Resampling step: The global transceiver sends a mes-
sage to every active mote containing the total weight of
the system. Each mote can then normalize the weights of
its particles and perform resampling. Each individual mote
performs systematic resampling [12] on its own particle set.
This results in a variable number of total particles in the
system, but the propagation step is the dominant source of
variability in the number of particles.

6. SIMULATIONS

We conducted Matlab simulations to compare the perfor-
mance of the distributed algorithm relative to a centralized
particle filter. The simulations used a sensor network occu-
pying a 128 × 128 metre plane. The number of motes in
the sensor network was varied to explore the effect of mote
density on tracking performance.

The dynamic system of the object’s movement employs
a jump-state Markov model, described by an initial distri-
bution p(u0, θ0, x0) and update equations

ut ∼ p(ut|ut−1), (5)

θt = θt−1 + c(ut) + εt, (6)

xt = xt−1 + m[cos θt, sin θt], (7)

where ut ∈ {0, 1, 2} represents a discrete motion state of
the object (continuing straight, making a 0.3 radian left turn
or making a 0.3 radian right turn, respectively). c(ut) repre-
sents the angle of turn in radians. The angle of the motion is
represented by θt, which has a zero-mean Gaussian innova-
tion noise εt of variance 0.001. The object’s position is xt

and its speed is constant at m = 0.5. The update probability



matrix for the discrete state is

p(ut|ut−1) =

 0.75 0.65 0.65
0.125 0.3 0.05
0.125 0.05 0.03


Each sensor has a detection radius of 8 metres and a

probability of detection pd = 0.7. We do not model any
errors in communication. We use a communication region
of radius 2 metres for the propagation of particles, which is
substantially larger than the region of motion determined by
the dynamic model, but the increase is necessary because of
the sparse mote density.
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Fig. 3. The average percentage of active motes per time interval
as a function of the number of sensors in the network. Top panel:
the average percentage of motes that make a measurement. Bottom
panel: the average percentage of motes maintaining particles.

As in the algorithmic description, a mote is activated
whenever it is required to make a measurement. In our sim-
ulations, this activation persists for 5 time intervals if no
subsequent activation messages are received. This deter-
mines the set of active motes at any time instant. A subset
of these motes maintain particles.

We conducted simulation experiments with 4000, 8000
and 16000 sensors, performing 25 trials in each case. These
values represent densities of approximately 0.25, 0.5 and
1 mote per square metre. We compared the tracking per-
formance of the distributed particle filtering algorithm de-
scribed in the previous section with a centralized particle
filter. The centralized particle filter propagates particles ac-
cording to the dynamic model and uses 2000 particles. The
distributed filter uses approximately 2000 particles, but this
number is subject to the variability discussed above, and
there is substantial duplication of particles because of quan-
tization effects.

Figure 3 displays the average percentage of active motes
in the system as a function of the number of sensors. Over
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Fig. 4. Examples of tracking performance for 16,000 sensors. Top
panel: centralized particle filter; bottom panel: distributed particle
filter.

the range from 4000 to 16000 sensors, the percentage is
reasonably constant, slowly decaying from approximately
7 to 5 percent. This corresponds to approximately 300,
400 and 800 motes respectively. The average percentage
of motes maintaining particles at any instant ranges from
1.5 to 0.5 percent, corresponding to approximately 60-80
motes in each case. Each one of these motes is thus respon-
sible (on average) for approximately 25 particles, although
it should be noted that there are only 24 possible particle-
types at any sensor (8 directions and 3 maneuvers). It is
clear that the distributed particle filter approach achieves a
dramatic reduction in the number of active motes (and hence
the energy expenditure of the system). It also provides an
effective distribution of the computational requirements of
the particle filtering algorithm.

Figure 4 shows examples of tracking behaviour for the
centralized and distributed algorithms in the case of 16000
motes. The distributed filter is much less smooth in its es-
timates, primarily due to the sparsity of motes. However,
in terms of average mean squared error, the performance of
the two algorithms for this density of motes is comparable,
as indicated by Figure 5. The relative performance of the
distributed algorithm deteriorates as the number of sensors
is decreased. Particle positions must correspond to the as-
sociated mote positions, and if there are too few motes, the
resultant particle distribution is a poor approximation to the
filtering distribution.

7. DISCUSSION
7.1. Related Work

The problem of tracking in sensor networks has been ad-
dressed by numerous authors, although most work has ei-
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Fig. 5. A comparison of the average mean-squared error in posi-
tion estimation as a function of the number of network motes.

ther proposed accumulation of the data at a central site or in-
vestigated the case of linear dynamics and observations [13,
14, 15, 16]. Distributed particle filters for sensor networks
have been proposed in [3, 17, 18], although these approaches
require substantial computational power and memory at some
motes. Distributed implementation of particle filters and re-
sampling algorithms has been explored in [19], but the focus
was on distributing computation; the communication over-
head of the proposed approach is unreasonable for a sensor
network application.

7.2. Conclusion, Limitations and Future Work

We have described a smart-dust type sensor network and an
associated distributed particle filtering algorithm for track-
ing an object maneuvering through the monitored region.
The approach is particularly novel in its strong linkage be-
tween motes and particles and particle propagation and com-
munication. The algorithm achieves good tracking perfor-
mance in relatively sparse networks with weak sensors and
requires only local communication and minimal network
configuration. Currently, the main disadvantage of the al-
gorithm is the need for a central transceiver for resampling.
Ideally, the network should perform tracking autonomously
and only respond to a mobile, querying transceiver periodi-
cally for estimation. This requires the development of com-
pletely distributed resampling, possibly through in-network
algorithms for weight aggregation and (approximate) nor-
malization. More extensive simulations and prototyped sys-
tems are required to properly examine system performance
when detection and communication behaviour do not match
the idealized models explored here.
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