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Computationally-tractable approximate PHD and
CPHD filters for superpositional sensors
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Abstract—In this paper we derive computationally-tractable
approximations of the Probability Hypothesis Density (PHD) and
Cardinalized Probability Hypothesis Density (CPHD) filters for
superpositional sensors with Gaussian noise. We present imple-
mentations of the filters based on auxiliary particle filter approx-
imations. As an example, we present simulation experiments that
involve tracking multiple targets using acoustic amplitude sensors
and a radio-frequency tomography sensor system. Our simulation
study indicates that the CPHD filter provides promising tracking
accuracy with reasonable computational requirements.

Index Terms—Moment based filters, PHD, CPHD, superposi-
tional sensors, random set theory, multi-target tracking.

I. INTRODUCTION

WE address the problem of tracking multiple targets
within a surveillance region based on measurements

obtained from monitoring sensors. The targets can possibly
enter and leave the region over time and we would like to
accurately estimate the location and number of targets present
at any given time. Sensors periodically provide measurements
of the network which are used for the estimation of targets.
Although we focus on the problem of target tracking, some
other filtering problems, for example, wireless channel estima-
tion, can also be formulated in a similar fashion [1] and the
solutions discussed here can be extended to solve them.

Much of the multi-target tracking literature, particularly
that component involving moment-based filters, employs the
following modelling assumptions: (i) each target causes either
one or no measurement; and (ii) each measurement is either
caused by a single target or clutter. We refer to sensors that
satisfy these assumptions to within a reasonable approximation
as standard sensors [2]. These sensors form an important
class of sensors but are not exhaustive. We are interested
in sensors where measurements are functions of all the tar-
gets present rather than one of them. Specifically, in this
environment (i) each target can contribute to any number of
measurements; (ii) each measurement is potentially affected by
multiple targets in an additive fashion; and (iii) measurements
are not independent. We refer to this class of sensors as
superpositional sensors [2]. Examples of systems belonging
to this class are direction-of-arrival sensors for linear antenna
arrays [3], antenna arrays in multi-user detection for wireless
communication networks [1], acoustic amplitude sensors [4],
and radio frequency (RF) tomographic tracking systems [5].
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The recursive Bayes filter provides a systematic approach to
solve the multi-target tracking problem optimally for standard
or superpositional sensors. But the mathematical intractability
and computational complexity of the solutions render them
practically infeasible. To model and analyze the multi-target
tracking problem, Mahler introduced the random finite set
notation and finite set statistics (FISST) [6]. The system state
is modeled as a random finite set instead of a random vector.
The Bayes recursion is still intractable within this framework,
but approximate solutions can be derived based on the first
order moments of the posterior distribution defined over the
random finite sets. The Probability Hypothesis Density (PHD)
filter [7] and the Cardinalized Probability Hypothesis Density
(CPHD) filter [8] are the first moment based filters derived by
Mahler for the case of standard sensors.

Many different implementations of the PHD and CPHD
filters have been proposed and these have been successfully
used in numerous practical applications. Vo et al. derived a
Gaussian mixture PHD filter in [9] under linear, Gaussian
assumptions on the dynamics and birth process. A sequential
Monte Carlo PHD filter which can be used in more general
situations is proposed in [10]. In [11], Clark et al. use a particle
PHD filter for tracking in sonar images. An analytical CPHD
filter based on linear, Gaussian assumptions was developed
in [12] and used for tracking multiple targets in [13].

The original PHD and CPHD filter equations are valid
for standard sensors but are not applicable to superpositional
sensors. Considering the specific structure of the measurement
model, alternate filter equations must be derived. CPHD filter
equations for superpositional sensors were first derived in [2],
but the equations involve multi-dimensional integrals, which
are computationally intractable. The sensors used by Balaku-
mar et al. in [3] for direction-of-arrival tracking are superpo-
sitional sensors, but the approach adopted is to approximate
the model to obtain separable observations and then use the
PHD filter for standard sensors.

The multi-Bernoulli filter proposed by Mahler [14] is also
based on a random finite set formulation and approximately
propagates the full multi-target distribution for standard sen-
sors. Vo et al. in [15] present a modified version of the filter
which corrects for the cardinality bias of the original formula-
tion. The multi-Bernoulli filter has been adapted for estimation
and detection of multiple objects from image observations
in track-before-detect applications [16] under the assumption
that the likelihood has a separable form. This assumption is
valid when the objects are non-overlapping. Hoseinnezhad
et al. [17] used this filter for tracking multiple targets in
background subtracted image sequences. The superpositional
sensor likelihood is a more general formulation because it
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allows for overlapping targets. Developing multi-Bernoulli
recursion equations for superpositional sensors is a promising
research direction.

A computationally tractable approximation of the PHD filter
for superpositional sensors with Gaussian noise was derived
by Thouin et al. in [18], where it was called the Additive
Likelihood Moment (ALM) filter1. The authors applied the
filter in a simulation environment for tracking a fixed number
of targets using a radio-frequency tomography sensor system.
Tracking a dynamic number of targets using the ALM filter
was demonstrated in Thouin’s thesis [21]. Mahler and El-
Fallah derived the CPHD generalization of the ALM filter
in [20].

In this paper we summarize our earlier derivations of
computationally tractable approximations of the PHD and
CPHD filters for superpositional sensors and present imple-
mentations based on auxiliary particle filters. Simulation ex-
periments indicate that the approximate CPHD filter performs
promisingly. The paper is organized as follows. We formulate
the problem of multiple target tracking with superpositional
sensors in Section II. Section III summarizes the derivations
of the approximate PHD and CPHD filters for superpositional
sensors. Section IV discusses the auxiliary particle filter based
implementation of the two filters. Section V describes simu-
lation experiments in which the filters are applied for multi-
target tracking with acoustic amplitude sensors and a radio-
frequency tomography sensor system. Section VI summarizes
the current work and discusses future research directions.

II. PROBLEM FORMULATION

The state of the system is the collection of individual
target states xk,i ∈ R

nx and is denoted by the random finite
set Xk = {xk,1, . . .xk,nk

} where nk ≥ 0 is number of
targets present at time k. We assume that the individual target
dynamics are specified according to the Markovian model of
the form xk+1,i = fk+1∣k(xk,i,uk) where uk is the noise.
An example of the Markovian transition kernel fk+1∣k will
be presented in Section V.

Information about the state of the system is available
from the sensors as an M -dimensional measurement vector
zk = [z1

k . . . z
M
k ]. The relationship between the true state of the

system and the sensor observation is given by the likelihood
function hzk

(Xk). In the case of superpositional sensors it has
the following form,

hzk
(Xk) = hzk

(r(Xk))

= hzk

⎛

⎝
∑

x∈Xk

g(x)
⎞

⎠
(1)

where hzk
is a real-valued function and g and r are (potentially

non-linear) functions mapping to vectors of reals. The function
r operates on the random finite set whereas the function g
operates on the target states that are members of the set. Below
we present two examples of the functions r and g which are

1There was an error in the main update equation of the ALM filter in [18].
This was corrected in an errata [19]; the correct equations were also presented
in [20].

based on empirical models for acoustic amplitude sensors and
radio-frequency sensors, respectively.

In this paper we focus on the case where the likelihood
function has the following Gaussian form:

hzk

⎛

⎝
∑

x∈Xk

g(x)
⎞

⎠
= NΣr

⎛

⎝
zk − ∑

x∈Xk

g(x)
⎞

⎠
. (2)

where the notation NΣ(x) denotes evaluation at x of a zero-
mean Gaussian distribution with covariance matrix Σ. We will
use the notation Σr throughout to denote the covariance of the
measurement noise. Although the Gaussian noise assumption
is not essential for deriving update equations, it is an important
contributing factor for computational tractable approximations.

A. Example: acoustic amplitude sensors

The likelihood model of acoustic amplitude sensors is
adapted from [4]. These sensors can be used in an active
tracking system in which each target emits an acoustic signal
of known amplitude A. Every sensor in the surveillance region
receives the signal. Sensor j at location ζj receives the acoustic
signal which has a reduced strength of gj(x) = A/∣∣x − ζj ∣∣

κ

where x denotes the location of target and κ is the path
loss exponent. Here gj refers to the jth component of the
vector-valued function g. When multiple targets are present,
the strength of the combined signal received by each of the
sensors is the sum of the strength of the signals due to each of
the individual targets. The observation when multiple targets
are present is given by:

zjk = r
j
(Xk) + vjk (3)

= ∑
x∈Xk

A

∣∣x − ζj ∣∣κ
+ vjk (4)

where vjk is the measurement noise, assumed to be Gaussian.

B. Example: radio-frequency tomography

Radio-frequency (RF) tomography systems strive to pas-
sively track moving objects within a surveillance region by
iteratively transmitting RF signals from each sensor and mea-
suring the attenuations at all of the other sensors. At every
time instant k, the sensors communicate with each other and
record the Received Signal Strength (RSS) values. The N
sensors form a total of M = N(N − 1)/2 communication
links generating M measurements in every time step. During
a period with an empty surveillance region, the sensor system
learns background RSS values for each link. The objective of
RF tomography is to use the measured deviations from these
background RSS values to track moving targets.

In [22], a single target measurement model was proposed
for RF tomography based on experimental analysis. The mean
RSS attenuation on the link j due to a target at position x is
modelled as:

gj(x) = φ exp(−
λj(x)

σλ
) (5)

where λj(x) is an elliptical distance measure between a target
located at x and link j (see [22] for more details); φ and σλ are
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fixed parameters based on physical properties of the sensors
that have been learned empirically. A target located far from
link j has a large associated λj(x) and hence causes minimal
additional attenuation gj(x); when the target is close to the
link it has a much greater impact.

Multi-target extensions of this model have been successfully
used for tracking based on measurements collected from real
sensor networks. Tracking of up to four targets was demon-
strated for an outdoor RF sensor network deployment in [23];
and successful tracking was achieved, with a slightly modified
model, for three targets using indoor sensor networks [24]. The
multi-target models for outdoor and indoor environments differ
in the choice of g but have the same superpositional form:

zjk = r
j
(Xk) + vjk = ∑

x∈Xk

gj(x) + vjk (6)

where vjk is the sensor noise for link j, assumed Gaussian.

III. PHD AND CPHD FILTERS FOR SUPERPOSITIONAL
SENSORS

At time k, given all the measurements up to time k, the
complete system state is specified by the multi-target posterior
pk∣k(Xk ∣Z

[k]) where Z[k] = [z1, . . .zk]. The optimal Bayes
filter solves for the posterior distribution in a recursive manner:

pk+1∣k(Xk+1∣Z
[k]

) = ∫ fk+1∣k(Xk ∣W )pk∣k(W ∣Z[k]
) δW

(7)

pk+1∣k+1(Xk+1∣Z
[k+1]

) =
hzk+1(Xk+1)pk+1∣k(Xk+1∣Z

[k])

∫ hzk+1(X)pk+1∣k(X ∣Z[k]) δX
(8)

The above equations involve evaluation of set integrals and
cannot be analytically solved except for very few special cases.
To alleviate this problem Mahler suggested propagating the
first-order moment of the multi-target posterior rather than
the complete posterior. The first-order moment of the multi-
target posterior, also called the Probability Hypothesis Density
(PHD) is defined as the following set integral:

Dk+1∣k+1(x∣Z
[k+1]

) = ∫ pk+1∣k+1({x} ∪W ∣Z[k+1]
) δW (9)

The filter equations which recursively solve for the PHD are
known as the PHD filter. When the distribution of the cardi-
nality of system state, i.e., pck∣k(∣Xk ∣ = n), is also propagated
along with the PHD Dk∣k, the resulting filter is known as
the CPHD filter. The PHD [7] and the CPHD [8] filters
were derived for the case of standard sensors by Mahler. For
the case of superpositional sensors, computationally tractable
approximations of the PHD [19] and CPHD [20] filters have
been recently developed.

For brevity of results, in the following subsections, we
drop the explicit notation of conditional dependence on the
observations. For example, we write:

Dk∣k(x) ∶=Dk∣k(x∣Z
[k]

), (10)

Dk+1∣k(x) ∶=Dk+1∣k(x∣Z
[k]

) (11)

pck∣k(n) ∶= p
c
k∣k(n∣Z

[k]
) (12)

pck+1∣k(n) ∶= p
c
k+1∣k(n∣Z

[k]
) (13)

We also define the normalized PHD s(x) =D(x)/ ∫ D(x)dx.
For the predictive PHD, this becomes:

sk+1∣k(x) =
Dk+1∣k(x)

Nk+1∣k
(14)

Nk+1∣k = ∫ Dk+1∣k(x)dx. (15)

The superpositional assumption on the likelihood model
does not affect the time prediction step of the filter. Hence
we can apply Mahler’s general law of motion for PHDs to
compute the predictive PHD [7],

Dk+1∣k(x) = bk+1∣k(x) + ∫ ps(w)fk+1∣k(x∣w)Dk∣k(w)dw

where ps(w) is the target survival probability located at w and
bk+1∣k(x) is target birth intensity at x. Spawning of targets is
not considered in our analysis.

The cardinality prediction equations for superpositional sen-
sors and standard sensors are also the same since the likelihood
function has no role. From [8]:

pck+1∣k(n) =
n

∑
j=0

pb(n − j)

×
⎛

⎝

∞
∑
l=j

(
l

j
)
⟪ps,Dk+1∣k⟫

j⟪1 − ps,Dk+1∣k⟫
l−j

⟪1,Dk+1∣k⟫l
pck∣k(l)

⎞

⎠

where

pb(j) = birth probability of j new targets (16)
ps(x) = survival probability of target at x (17)

⟪a, b⟫ = ∫ a(x) × b(x)dx (18)

When the target survival probability is constant, ps(x) = ps,
the above equation reduces to

pck+1∣k(n) =
n

∑
j=0

pb(n − j)
⎛

⎝

∞
∑
l=j

(
l

j
)pjs(1 − ps)

l−jpck∣k(l)
⎞

⎠

For the derivations provided in this paper, we assume that
there exists some n0 ≥ 0 such that for all n > n0, we have
pk∣k−1(n) < 1/n. This assumption holds in the common case
when there is a bound on the maximum number of targets.

A. Key ingredients

The primary steps in the derivations of computationally
tractable approximations of the filter update equations are
the application of (i) a change of variables formula; and (ii)
Campbell’s theorem [20], [25]. The PHD and CPHD filter
update equations for superpositional sensors can be expressed
as set integrals, but these are computationally intractable.
Application of suitable change of variables formulae allows
us to transform these set integrals into ordinary integrals.

For a real-valued function T and a multi-target distribution
f(X) we can apply the following change of variables for-
mula [26, Prop. 4, p. 180]

∫ T (r(X)) ⋅ f(X)δX = ∫ T (y) ⋅ P (y)dy (19)

where g has the superpositional form r(X) = ∑x∈X g(x) and
P (y) is the distribution induced by the change of variables
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y = r(X). Note that the left hand side of (19) is a set integral
whereas the right hand side is an ordinary integral.

Although much simpler, evaluation of the resultant ordinary
integrals remains an unpalatable computational challenge. Ap-
plication of Campbell’s theorem (the linear case for the PHD
and the more general quadratic version for the CPHD) allows
us to evaluate the mean and variance of the distribution P (y).
We can then use a Gaussian distribution as an approximation
of P (y). When combined with Gaussian sensor noise, this
leads to approximate update equations that involve much less
computational overhead.

In deriving update equations for the PHD filter, we apply
the linear version of Campbell’s theorem. Let µ and C denote
the mean and variance of the distribution P (y) above. When
the multi-target distribution f(X) corresponds to a Poisson
point process [25], we have the following relations

µ = ∫ g(x)D(x)dx (20)

C = ∫ g(x)g(x)TD(x)dx (21)

Derivation of the CPHD filter update equations requires the
quadratic version of Campbell’s theorem [20]. As before, let
C denote the variance of the distribution P (y) above. The
general quadratic Campbell’s theorem gives the relation:

C = ∫ g(x)g(x)TD(x) dx

+∬ g(x1)g(x2)
T
⋅ [D2(x1,x2) −D(x1)D(x1)]dx1 dx2

(22)

where D(x1) and D2(x1,x2) are, respectively, the PHD
and the second factorial moment density of the multi-target
distribution f(X). The latter is defined as

D2(x1,x2) = ∫ f({x1,x2} ∪W ) ⋅ δW (23)

In the special case when the multi-target distribution f(X) is
Poisson, D2(x1,x2) =D(x1)D(x1), which leads back to the
linear version of Campbell’s theorem.

Building on the generalized form of Campbell’s theorem,
Mahler and El-Fallah derive expressions for the mean and vari-
ance of P (y) in (19) for three key multi-target distributions
in [20]. The results are summarized in Table I.

The first result is for a general i.i.d.c. multi-target distri-
bution, i.e., one that can be written in the form f(X) =

∣X ∣! ⋅ p(X) ⋅ sX . Here s(x) = D(x)/ ∫ D(x)dx and sX

is the power functional of s, with sX = 1 if X = ∅ and
sX = ∏x∈X s(x) otherwise. In Table I, µ̃, σ2, and G(x)
are the expected value, variance and probability generating
function (p.g.f.) of the cardinality distribution p(n) of f(X).
We define:

ô = ∫ g(x)s(x)dx (24)

Ô = ∫ g(x)g(x)T ⋅ s(x)dx (25)

for the measurement function g(x).
The second result is for a multi-target distribution derived

from an i.i.d.c. f(X) but with fixed cardinality, fn(X) =

1
pc(n) ⋅ δ(∣X ∣ = n) ⋅ f(X). The third result is for the multi-

target distribution fx(X) =
f({x}∪X)
D(x) , again derived from the

i.i.d.c. f(X), where x is a fixed value.

Multi-target Mean Variance
distribution
f(X) = µ̃ ⋅ ô µ̃ ⋅ Ô + (σ2

− µ̃) ⋅ ôôT

∣X ∣! ⋅ pc(∣X ∣) ⋅ sX

fn(X) =
1

pc(n)
n ⋅ ô n ⋅ (Ô − ôôT )

⋅δ(∣X ∣ = n) ⋅ f(X)

fx(X) =
f({x}∪X)
D(x)

G2
(1)
µ̃
⋅ ô

G2
(1)
µ̃
⋅ Ô+

(
G3
(1)
µ̃
−
G2
(1)2

µ̃2 ) ôôT

TABLE I
MEAN µ AND VARIANCE C FOR P (y) IN (19) FOR THREE MULTI-TARGET

DISTRIBUTIONS.

B. Approximate PHD filter update derivation

We now derive the update formulae for PHD filter. By
definition, the PHD at time k + 1 is given by

Dk+1∣k+1(x) = ∫ pk+1∣k+1(x ∪W )δW (26)

Applying Bayes rule we have:

Dk+1∣k+1(x) = ∫
pk+1(zk+1∣{x} ∪W )pk+1∣k({x} ∪W )

p(zk+1∣Z[k])
δW

=K−1
∫ pk+1(zk+1∣{x} ∪W )pk+1∣k({x} ∪W ) δW (27)

where the normalization constant K is given by

K = p(zk+1∣Z
[k]

) (28)

= ∫ pk+1(zk+1∣W )pk+1∣k(W )δW (29)

If we now assume that the predictive PHD pk+1∣k({x} ∪W )

is a Poisson process, we have

Dk+1∣k+1(x) =K
−1
×Dk+1∣k(x)×

∫ pk+1(zk+1 − g(x)∣W )pk+1∣k(W )δW (30)

Thus we have the pseudolikelihood function as

Lzk+1(x) =
∫ pk+1(zk+1 − g(x)∣W )pk+1∣k(W ) δW

∫ pk+1(zk+1∣W )pk+1∣k(W ) δW
(31)

Under the assumption of Gaussian sensor noise,

pk+1(zk+1 − g(x)∣W ) = NΣr(zk+1 − g(x) − r(W ))

and applying the change of variable y = r(W ) leads to:

Lzk+1(x) =
∫ NΣr(zk+1 − g(x) − y)P (y)dy

∫ NΣr(zk+1 − y)P (y)dy
(32)

If we approximate P (y) using a Gaussian distribution, then
using the linear version of Campbell’s theorem:

P (y) ≈ NNk+1∣kΣ̂k
(y −Nk+1∣kµ̂k)
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where

Σ̂k = ∫ g(x)g(x)T ⋅ sk+1∣k(x) (33)

µ̂k = ∫ g(x) ⋅ sk+1∣k(x) (34)

The pseudo-likelihood can then be simplified as:

Lzk+1(x)

=
∫ NΣr(zk+1 − g(x) − y)NNk+1∣kΣ̂k

(y −Nk+1∣kµ̂k)dy

∫ NΣr(zk+1 − y)NNk+1∣kΣ̂k
(y −Nk+1∣kµ̂k)dy

(35)

=
NΣr+Nk+1∣kΣ̂k

(zk+1 − g(x) −Nk+1∣kµ̂k)

NΣr+Nk+1∣kΣ̂k
(zk+1 −Nk+1∣kµ̂k)

(36)

The update equation for the PHD filter is then

Dk+1∣k+1(x) = Lzk+1(x) ⋅Dk+1∣k(x). (37)

C. Approximate CPHD filter update derivation

The Cardinalized PHD filter propagates a probability dis-
tribution of the cardinality of the random set representing the
state of the system along with the PHD. The derivation of
the approximate CPHD filter update equations proceeds along
similar lines as that of the PHD filter, although a more general
form of Campbell’s theorem must be applied. Here we provide
an outline of the derivation; for more detail, see [20].

The cardinality distribution is defined as:

pck+1∣k+1(n) = ∫∣X ∣=n
pk+1∣k+1(X)δX

=
∫∣X ∣=n pk+1(zk+1∣X) ⋅ pk+1∣k(X)δX

p(zk+1∣Z[k])
(38)

Define:

Σk = Nk+1∣k ⋅ Σ̂k + (σ2
k+1∣k −Nk+1∣k) ⋅ µ̂kµ̂

T
k (39)

Using the expression for the variance in the first row of Table I,
with µ̃ = Nk+1∣k, Ô = Σ̂k, σ2 = σ2

k∣k−1 and ô = µ̂k, we can
perform a change of variables y = r(W ) to approximate the
denominator of (38):

p(zk+1∣Z
[k]

) = ∫ pk+1(zk+1∣W )pk+1∣k(W ∣Z[k]
) δW

= ∫ NΣr(zk+1 − r(W ))pk+1∣k(W ∣Z[k]
) δW

= ∫ NΣr(zk+1 − y)P (y)dy

≈ NΣr+Σk
(zk+1 −Nk+1∣kµ̂k) (40)

The numerator of (38) can be expressed as

∫
∣X ∣=n

pk+1(zk+1∣X) ⋅ pk+1∣k(X)δX

= pck+1∣k(n)∫ pk+1(zk+1 − y) ⋅ Pn(y)dy (41)

The distribution Pn(y) is approximated as a Gaussian and
from the results in the second row in Table I it is of the form
Pn(y) ≈ NΣn

k
(y − nµ̂k), where

Σnk = n ⋅ (Σ̂k − µ̂kµ̂
T
k ) (42)

Thus the approximate update expression for the cardinality
distribution is

pck+1∣k+1(n)

≈K−1
c pck+1∣k(n)

∫ NΣr(zk+1 − y) ⋅NΣn
k
(y − nµ̂k)dy

NΣr+Σk
(zk+1 −Nk+1∣kµ̂k)

=K−1
c pck+1∣k(n)

NΣr+Σn
k
(zk+1 − nµ̂k)

NΣr+Σk
(zk+1 −Nk+1∣kµ̂k)

(43)

Here Kc is a normalizing factor, included to ensure that the
updated cardinality distribution sums to 1. We have:

Kc = ∑
n≥0

pck+1∣k(n)
NΣr+Σn

k
(zk+1 − nµ̂k)

NΣr+Σk
(zk+1 −Nk+1∣kµ̂k)

(44)

The assumption that there is an n0 ≥ 0 such that pck+1∣k(n) <

1/n for all n > n0 ensures that the sum converges and Kc is
finite, as detailed in [20].

From (27) the PHD update is given by the expression:

Dk+1∣k+1(x) = ∫
pk+1(zk+1∣{x} ∪W )pk+1∣k({x} ∪W )

p(zk+1∣Z[k])
δW

(45)

The approximate denominator was obtained in (40). Applying
the change of variable y = r(W ), the numerator can be
expressed as:

∫ pk+1(zk+1 − g(x)∣W )pk+1∣k(W ) δW

= ∫ NΣr(zk+1 − g(x) − y)P (y)dy . (46)

Approximating P (y) as a Gaussian, we see from the third row
of Table I that it has the form P (y) ≈ NΣo

k
(y −µok), where

µok =
G

(2)
k+1∣k(1)

Nk+1∣k
⋅ µ̂k (47)

Σok =
G

(2)
k+1∣k(1)

Nk+1∣k
⋅ Σ̂k +

⎛
⎜
⎝

G
(3)
k+1∣k(1)

Nk+1∣k
−
G

(2)
k+1∣k(1)

2

N2
k+1∣k

⎞
⎟
⎠
⋅ µ̂kµ̂

T
k

(48)

Here σ2
k+1∣k, G(2)

k+1∣k(1) and G(3)
k+1∣k(1) are the variance, second

factorial moment and third factorial moment of the predicted
cardinality distribution pck+1∣k(n), with

Gk+1∣k(t) = ∑
n≥0

pck+1∣k(n) ⋅ t
n (49)

G
(n)
k+1∣k(t) =

dnGk+1∣k

dtn
(t). (50)

The approximate CPHD update equations for superpositional
sensors are then:

pck+1∣k+1(n) = lk+1(n) ⋅ p
c
k+1∣k(n) (51)

Dk+1∣k+1(x) = Lzk+1(x) ⋅Dk+1∣k(x) (52)

where the pseudo-likelihood functions are given by

lk+1(n) =
NΣr+Σn

k
(zk+1 − nµ̂k)

NΣr+Σk
(zk+1 −Nk+1∣k ⋅ µ̂k)

(53)

Lzk+1(x) =
NΣr+Σo

k
(zk+1 − g(x) −µok)

NΣr+Σk
(zk+1 −Nk+1∣k ⋅ µ̂k)

(54)
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and where expressions for Σk, Σnk , µok and Σok are provided
in (39), (42), (47) and (48), respectively.

IV. PHD AND CPHD IMPLEMENTATIONS

Equations (37), (52), and (51) give approximate expressions
for the time update of the PHD and cardinality when new
observation data become available. Although the equations
explicitly specify how the update should be performed, there
are in general no explicit formulae to express the PHD or
cardinality at every time step in known standard forms which
enable easy computational processing. Hence we consider the
particle based implementation of the filters. In an analogous
manner to the more common application of the particle filter
for sequentially propagating a weighted particle approximation
to the probability density over time, here it is used to propagate
a weighted particle approximation of the PHD (which can be
seen as a scaled density).

The basic bootstrap particle filter implementation struggles
when new targets arrive. We therefore implement an auxiliary
particle filter, which, with its look-ahead property, is able to
address new target arrivals.

A. Particle implementation of PHD filter

At every time step k, the PHD is approximated by a
weighted set of particles,

Dk∣k ≈
Np

∑
i=1

w
(i)
k δ(x

(i)
k ) (55)

The particle PHD filter algorithm is described in Figure 1.
The algorithm first calculates N̂p,k, the number of particles

used to track the targets that were identified at the previous
timestep. This is set to product of the estimated number of
targets from the previous timestep, N̂k−1 (with N̂0 = 0), and
the number of particles allocated to each target, Nppt (an
algorithmic parameter).

The auxiliary particle filter applies the approximate PHD
filter update twice at each timestep. In the first execution of the
PHD filter, the existing particles are propagated, with survival
probability ps(x), according to the dynamics. In addition,
Jp new particles are added by drawing from an importance
sampling distribution pb(xk) (this distribution could depend
on the measurements zk, but it is in general difficult to
construct a meaningful distribution for superpositional sen-
sors). We assume that we can specify an intensity function
γk(x) for the spontaneous birth process. For the propagated
particles, the predictive weights wk∣k−1 are set to the weights
from the previous timestep multiplied by the survival proba-
bility, ps(x

(i)
k−1)wk−1. The new particles are assigned weight

γk(x(i)k
)

Jppb(x(i)k
)
. Using these weighted particles, we approximate the

integrals in equations (33) and (34) (lines 13 and 14) and
estimate Σ̂k and µ̂k. These estimates are used to perform the
PHD update (lines 17 and 18).

The weighted particle set thus obtained is used in the second
execution of the PHD filter to construct an alternative sampling
distribution q(xk) for the particles associated with potential
new targets. In our experiments, we use a q formed by drawing

1: Initialize particles {w
(i)
0 , x

(i)
0 }

i=Jp
i=1

2: for k = 1 to T do
3: N̂p,k = N̂k−1 ×Nppt
4: PHD first run
5: for i = 1 to N̂p,k do
6: proposal: x(i)

k ∼ fk∣k−1(xk ∣x
(i)
k−1)

7: w
(i)
k∣k−1

= ps(x
(i)
k−1)w

(i)
k−1

8: end for
9: for i = N̂p,k + 1 to N̂p,k + Jp do

10: proposal: x(i)
k ∼ pb(xk)

11: w
(i)
k∣k−1

=
γk(x(i)k

)
Jppb(x(i)k

)
12: end for
13: µ̂k = ∑j w

(j)
k∣k−1

g(x
(j)
k )

14: Σ̂k = ∑j w
(j)
k∣k−1

g(x
(j)
k )gT (x

(j)
k )

15: for i = 1 to N̂p,k + Jp do
16: weight update:

17: Lzk
(x

(i)
k ) =

NΣ̂k+Σr
(zk−g(x(i)k

)−µ̂k)
NΣ̂k+Σr

(zk−µ̂k)

18: w
(i)
k = w

(i)
k∣k−1

×Lzk
(x

(i)
k )

19: end for
20: PHD second run
21: for i = N̂p,k + 1 to N̂p,k + Jp do
22: proposal: x(i)

k ∼ q(xk)

23: w
(i)
k∣k−1

=
γk(x(i)k

)
Jpq(x(i)k

)
24: end for
25: Normalize {w

(i)
k∣k−1

}
i=N̂p,k+Jp
i=N̂p,k+1

26: µ̂k = ∑j w
(j)
k∣k−1

g(x
(j)
k )

27: Σ̂k = ∑j w
(j)
k∣k−1

g(x
(j)
k )gT (x

(j)
k )

28: for i = 1 to N ×Nppt + Jp do
29: weight update:

30: Lzk
(x

(i)
k ) =

NΣ̂k+Σr
(zk−g(x(i)k

)−µ̂k)
NΣ̂k+Σr

(zk−µ̂k)

31: w
(i)
k = w

(i)
k∣k−1

×Lzk
(x

(i)
k )

32: end for
33: target number estimation:

34: N̂k = Silhouette({w(i)
k , x

(i)
k }

i=N̂p,k+Jp
i=1 )

35: resample step:

36: {w
(i)
k , x

(i)
k }

i=N̂p,k+Jp
i=1 → {x

(i)
k }

i=N̂k×Nppt

i=1

37: clustering step:

38: {x̂k,n}
N̂k

n=1 = cluster({x(i)k }
i=N̂k×Nppt

i=1 , N̂k)
39: end for

Fig. 1. Auxiliary particle filter implementation of approximate PHD filter
for superpositional sensors.

particles with probability (1 − p) from a prior proportional to
the birth intensity function γk, and with probability p from
a Gaussian mixture distribution, GM{w

(i)
k ,x

(i)
k ,Σv}

i=N̂p,k+Jp
i=N̂p,k+1

formed by placing a weighted zero-mean Gaussian with co-
variance matrix Σv at each particle location. The weights in the
mixture are the (normalized) particle weights obtained from
the first PHD filter execution.
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Since the PHD has the property that its integral over the
complete observation space is equal to the expected number
of targets, we should have ∑Nk

i=1w
(i)
k ≈ E(∣XK ∣). Due to the

approximations made in order to arrive at a computationally
tractable filter, however, the error can be substantial. Hence to
normalize the weights appropriately, we need to estimate the
number of targets from the particles. We use the Silhouette
method [27] to obtain the target number estimate.

Resampling is performed to obtain an unweighted set of
particles. The k-means algorithm is used to cluster the particles
into groups. The number of groups is varied from 2 to N0.
The partition which has maximum of the silhouette is declared
to be the cardinality estimate N̂k. The particles are then
resampled to update the number of particles and clustering
is performed to obtain target location estimates.

B. Particle implementation of the CPHD filter

Summarized in Figure 2 is the particle implementation of
the auxiliary CPHD filter. The PHD is approximated using a
weighted particle set as before. In the presented implemen-
tation, the cardinality distribution is assumed to have a finite
support with pc(n) = 0, n > N0. The implementation is much
the same as the PHD filter, but we employ the weight update
equations for the CPHD filter and the cardinality distribution
is also updated. The maximum a posteriori estimate of the
cardinality is used as the estimate of the number of targets.

C. Computational complexity

We obtain theoretical computational complexities for the
PHD and CPHD algorithms. The major steps in the algorithm
implementation are particle propagation, weight update, car-
dinality prediction and update, resampling and clustering. At
each iteration, we need to propagate the particles and update
their weights twice because of the auxiliary implementation.
The propagation involves random number generation and
multiplication of O(N̂p,k +2×Jp). Let Np = N̂p,k +Jp for the
purpose of simplified notation. For the PHD filter, the weight
update involves estimating an M×M covariance matrix, which
has complexity O(NpM

2), and computing its inverse, which
has complexity O(M3).

The Silhouette method is used to identify the number
of targets for PHD filter. It varies the number of clusters,
performs a k-means clustering, and evaluates the silhouette.
The complexity of the k-means algorithm is O(k×Np×I×R)

where I is the number of iterations (variable) and R is the
number of times the clustering is repeated with different initial
centroids (R = 50 in our simulations). The complexity of
calculating the silhouette given Np particles grouped in k
clusters isO(kN2

p ). If N0 is the limit on the maximum number
of targets allowed, the complexity of the silhouette method is
O(N2

0 ×(Np ⋅I ⋅R+N
2
p )). Resampling is performed using the

stratified approach and has a complexity of O(Np). The final
clustering for estimating target locations is O(N̂k ⋅Np ⋅ I ⋅R).
Thus the overall complexity for one iteration of PHD filter is:

O(Np+NpM
2
+M3

+N2
0 × (NpIR +N2

p ) + N̂kNpIR +Np)

≈ O((Np +M)M2
+N2

0 × (NpIR +N2
p ))

1: Initialize particles {w
(i)
0 ,x

(i)
0 }

i=Jp
i=1

2: for k = 1 to T do
3: N̂p,k = N̂k−1 ×Nppt
4: Cardinality prediction
5: pck∣k−1(n) = ∑

n
j=0 pb(n − j)×

6: (∑
∞
l=j (

l
r
)pjs(1 − ps)

l−jpck−1∣k−1(l))

7: PHD first run
8: for i = 1 to N̂p,k do
9: proposal: x(i)

k ∼ fk∣k−1(xk ∣x
(i)
k−1)

10: w
(i)
k∣k−1

= ps(x
(i)
k−1)w

(i)
k−1

11: end for
12: for i = N̂p,k + 1 to N̂p,k + Jp do
13: proposal: x(i)

k ∼ pb(xk)

14: w
(i)
k∣k−1

=
γk(x(i)k

)
Jppb(x(i)k

)
15: end for
16: N̂k∣k−1 = ∑j w

(j)
k∣k−1

17: µ̂k =
1

N̂k∣k−1
∑j w

(j)
k∣k−1

g(x
(j)
k )

18: Σ̂k =
1

N̂k∣k−1
∑j w

(j)
k∣k−1

g(x
(j)
k )gT (x

(j)
k )

19: for i = 1 to N̂p,k + Jp do
20: weight update:

21: Lzk
(x

(i)
k ) =

NΣ̂o
k
+Σr

(zk−g(x(i)k
)−µ̂o

k)

NΣ̂k+Σr
(zk−N̂k∣k−1⋅µ̂k)

22: w
(i)
k = w

(i)
k∣k−1

×Lzk
(x

(i)
k )

23: end for
24: PHD second run
25: for i = N̂p,k + 1 to N̂p,k + Jp do
26: proposal: x(i)

k ∼ q(xk)

27: w
(i)
k∣k−1

=
γk(x(i)k

)
Jpq(x(i)k

)
28: end for
29: N̂k∣k−1 = ∑j w

(j)
k∣k−1

30: µ̂k =
1

N̂k∣k−1
∑j w

(j)
k∣k−1

g(x
(j)
k )

31: Σ̂k =
1

N̂k∣k−1
∑j w

(j)
k∣k−1

g(x
(j)
k )gT (x

(j)
k )

32: for i = 1 to N ×Nppt + Jp do
33: weight update:

34: Lzk
(x

(i)
k ) =

NΣ̂o
k
+Σr

(zk−g(x(i)k
)−µ̂o

k)

NΣ̂k+Σr
(zk−N̂k∣k−1⋅µ̂k)

35: w
(i)
k = w

(i)
k∣k−1

×Lzk
(x

(i)
k )

36: end for
37: Cardinality update

38: pck∣k(n) = p
c
k∣k−1(n)

NΣr+Σn
k
(zk−n⋅µ̂k)

NΣr+Σk
(zk−N̂k∣k−1⋅µ̂k)

39: target number estimation:
40: N̂k = MAP(pck∣k(n))
41: resample step:

42: {w
(i)
k , x

(i)
k }

i=N̂p,k+Jp
i=1 → {x

(i)
k }

i=N̂k×Nppt

i=1

43: clustering step:

44: {x̂k,n}
N̂k

n=1 = cluster({x(i)k }
i=N̂k×Nppt

i=1 , N̂k)
45: end for

Fig. 2. Auxiliary particle filter implementation of the approximate CPHD
filter.
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The CPHD filter additionally propagates the cardinality, the
prediction of which is O(N3

0 ). The CPHD weight update
equations require computing multiple covariance matrices and
their inverse, which is O(NpM

2+M3). The CPHD cardinality
update involves multiple matrix inversion and is O(N0M

3).
The number of targets is obtained from the MAP of the
cardinality distribution and requires O(N0). Clustering is
performed only once using the k-means algorithm and has
computational complexity O(N̂k ⋅ Np ⋅ I ⋅ R). The overall
complexity for one iteration of the CPHD filter is:

O(Np +N
3
0+NpM

2
+M3

+N0M
3
+ N̂kNpIR +N0 +Np)

≈ O(NpM
2
+N0M

3
+ N̂kNpIR)

From the expressions it can be seen that the CPHD filter
computation is dominated by matrix inversions and clustering,
whereas the PHD filter has additional computation require-
ments for estimation of the number of targets.

V. APPLICATION TO MULTI-TARGET TRACKING

We compare and demonstrate the PHD and CPHD filters
for the application of multiple target tracking in superposi-
tional sensor environments. Targets can randomly appear and
disappear within the monitored region. The system state at any
given time is the set with elements corresponding to the states
of individual targets. The set dimension varies with time since
the number of targets can vary over time.

We consider the scenarios of acoustic amplitude sensors and
a radio-frequency tomography sensor system. The measure-
ment models are discussed in Section II. The targets move
within the boundaries of the monitoring area according to
linear Gaussian dynamics [10]:

xk+1,i =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

xk,i +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T 2

2
0

0 T 2

2
T 0
0 T

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
ux
uy

]

where T is the sampling period and ux, uy are zero-mean
Gaussian white noise with respective variance σux and σuy .
In this model, the state of each object i at time k, xk,i, is
represented by a four-dimensional vector: position on the x-
axis and y-axis, velocity on the x-axis and y-axis.

For simulating the reference target motion, the model pa-
rameters are set to T = 0.25s, σ2

ux
= σ2

uy
= 0.35. Figure 3

shows the motion of targets in the region monitored by the
sensors and Figure 4 (top panel) shows how the target number
evolves over time. The simulation is run for 35 time steps
covering a total duration of 35 × 0.25 = 8.75s.

We now discuss the algorithm implementation choices.
The probabilities of birth of new targets and survival of
existing targets are assumed to be constant for the purpose
of simulations. We use the values pb = 0.2 and ps = 0.9. The
two velocity components of the new particles are initialized
using a standard normal distribution N(0,1). In the auxiliary
implementation of filters, probability p = 0.9 and Σv = σ

2
v ⋅I2×2

where, σ2
v = 0.25. For practical purposes we need to assume a

limit on the maximum number of targets that could be present
at any give time. This limit can be chosen much higher than
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Fig. 3. Motion of targets within the observation region.
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Fig. 4. Variation of number of targets over time. Top panel: the number
of targets for the simulation experiments with separated target trajectories.
Bottom panel: the number of targets for the simulation experiment with
overlapping target trajectories.

the true number of targets. We use a maximum of 6 targets for
PHD filter and 9 targets for the CPHD filter. A smaller value is
used for PHD filter as it significantly affects the computational
time required for processing.

As discussed earlier the Silhouette method [27] is used to
estimate the number of clusters for the PHD filter implemen-
tation. The number of clusters is varied from 2 to 6 and the
choice which maximizes the silhouette gives the estimate of
the number of targets present. The method cannot identify
when only a single target is present.

Identifying the number of targets in the CPHD filter imple-
mentation is much easier and maximum a posteriori (MAP)
estimation is used. The peak in the cardinality distribution
provides the target number estimate and computational re-
quirements are minimal. The k-means clustering technique
is then applied to group the particles into clusters and the
centroids of the clusters are the target state estimates.

We compare the approximate PHD and CPHD filters with
an MCMC filter that tracks the joint marginal posterior [28].
For a detailed discussion on the implementation of the MCMC
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filter, see [28] and [24]. The maximum number of targets is
limited to 6. The burn-in is 1000 and the thinning factor is 3.

In order to compare the performance of different algorithms,
we need an error metric to quantify the difference between the
set of true targets present in the network and estimated target
set. Since sets are involved, a root mean squared type of metric
cannot be applied. We use the optimal subpattern assignment
(OSPA) error metric [29] which is specifically designed for
performance evaluation of multi-object filters. The OSPA
metric penalizes the cardinality error in the estimates using
the cardinality penalty factor c. When there are n targets and
we estimate m targets then for m ≤ n the OSPA metric is
defined as

d(c)p (X,Y ) = (
1

n
min
π∈Π

m

∑
i=1

d(c)(xi, yπ(i))
p
+ cp(n −m))

1/p

(56)
where Π is the set of possible permutations of {1,2, . . . , n},
d(x, y) is the Euclidean distance between x and y and
d(c)(x, y) = min{d(x, y), c}. X = {x1, . . . , xn} and Y =

{y1, . . . , yn} are arbitrary sets and p is a fixed parameter. We
use the value p = 2. When m > n, we calculate d(c)p (Y,X).
The OSPA metric finds the best permutation of the larger set
which minimizes its distance from the smaller set and assigns
a fixed penalty for each cardinality error.

The simulations are repeated multiple times with different
random initializations and the average error is reported over
all the simulations. The target motion is the same for all the
simulations and is as shown in Figure 3. A set of 20 different
measurements are generated and each is processed with 5
different random initializations for all the algorithms. Thus
the average error is reported over 20 × 5 = 100 simulations in
order to reduce the variability introduced due to the stochastic
nature of processing. The number of particles per target is set
to Nppt = 500 and Jp = Nppt.

A. Acoustic amplitude sensors

The acoustic sensor likelihood model is discussed in Sec-
tion II-A. The moving targets shown in Figure 3 are monitored
by 25 acoustic sensors distributed in a uniform grid. The
targets emit a signal which has amplitide A = 10 at unit
distance from the target. The sensors have a path loss exponent
of κ = 1. When the targets lie within d0 = 0.2m distance of
any sensor, the sensors record the same amplitude of A/d0.
This avoids any singularities in the measurements. The sensors
are assumed to have a Gaussian noise variance of σ2

r = 0.05.
Table II presents the average error over 100 random initial-

izations for the target tracks as shown above. The methods of
CPHD, PHD and MCMC [28] are used for tracking. The error
values are reported for different values of cardinality penalty
factor (c = 1,2.5,5). The CPHD filter has the lowest OSPA
error at all values of c indicating very few cardinality errors
and accurate target location estimates.

Figure 5 shows the box-and-whisker plot of the error over
time for the various methods. The PHD filter has a high
error when the number of targets is one because the Silhoutte
method used to find the number of clusters from the particles
cannot estimate a single cluster. The accurate cardinality

Track. 1 OSPA error
Algorithm c = 1 c = 2.5 c = 5

CPHD 0.34 0.44 0.47
PHD 0.71 1.44 2.61

MCMC 0.50 0.80 0.99

TABLE II
ACOUSTIC AMPLITUDE SENSORS: AVERAGE OSPA ERROR.
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Fig. 5. Acoustic amplitude sensors: Box-and-whisker plot of the error over
time for the CPHD, PHD and MCMC methods with c = 5. Boxes indicate 25-
75 interquartile range; whiskers extend 1.5 times the range and ‘+’ symbols
indicate outliers lying beyond the whiskers.

prediction using the CPHD filter is able to effectively mitigate
this problem. Figures 6(a), 6(b) and 6(c) show the true target
trajectories and example estimated target locations as obtained
using the various methods employed.

B. Radio-frequency tomography sensor system

The radio-frequency tomography sensor system is described
in Section II-B. 24 radio frequency sensors are placed on the
periphery of the monitoring region to form a sensor network.
The 24 sensors give rise to a total of 276 unique bidirectional
links. The measurement function parameters are φ = 5 and
σλ = 0.2. The Gaussian measurement noise has variance σ2

r =

0.25.
Table III presents the average error over 100 simulation

experiments. The methods of CPHD, PHD and MCMC are
used for tracking. The error values are reported for different
values of cardinality error penalty (c = 1,2.5,5).

Track. 1 OSPA error
Algorithm c = 1 c = 2.5 c = 5

CPHD 0.12 0.16 0.19
PHD 0.49 1.04 1.96

MCMC 0.27 0.35 0.40

TABLE III
RADIO-FREQUENCY TOMOGRAPHY SYSTEM: AVERAGE OSPA ERROR.

Figure 7 shows the box-and-whisker plot of the error over
time for the various methods. At time = 6 we observe that
the MCMC filter has a much higher error median indicating
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Fig. 6. Acoustic amplitude sensors: True target tracks and example target
location estimates (circles) obtained using the CPHD, PHD and MCMC
methods.
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Fig. 7. Radio-frequency tomography sensor system: box-and-whisker plot of
the error over time for the methods of CPHD, PHD and MCMC with c = 5.
Boxes indicate 25-75 interquartile range; whiskers extend 1.5 times the range
and ‘+’ symbols indicate outliers lying beyond the whiskers.

0 5 10 15 20
0

5

10

15

20

X, m

Y
, m

CPHD

Fig. 8. Radio-frequency sensors: True target tracks and example target
location estimates (circles) obtained from the CPHD method.

difficulty in identifying the appearance of first target within the
network. Also since tracking in the joint target state domain
is difficult the mean error at subsequent times is higher when
compared with the CPHD and PHD filters. Figure 8 depicts the
true target trajectories and example target location estimates
achieved by the CPHD filter. The tracking performance is very
accurate when compared with acoustic sensor tracking. The
measurement dimension and the signal-to-noise ratio are much
higher for the RF tomography setup.

It is also important to analyse the performance of filters
when two or more targets are very close in both space and
time. We perform a simulation where the targets 1 and 2
and the targets 3 and 4 approach each other and then diverge
(Figure 11(a)). The target number variation is shown in Fig-
ure 4 (bottom panel). Figure V-B illustrates the proximity of
the target pairs, showing the Euclidean distance as a function
of time for the target pairs 1, 2 and 3, 4. Except for the
target motion tracks, all the measurement model parameters
and simulation settings are the same as discussed earlier.
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Fig. 9. Plot of Euclidean distance vs. time for target pairs 1,2 and 3,4. When
either target in the pair is absent, the distance is indicated as -1.

The simulated observations are used to track the targets as
before using the CPHD, PHD and MCMC algorithms. A sum-
mary of the average OSPA error, performed over 100 random
simulations as before, is provided in Table IV. Overlapping
trajectories and closely-spaced targets lead to higher average
errors for all the algorithms.

Track. 1 OSPA error
Algorithm c = 1 c = 2.5 c = 5

CPHD 0.16 0.20 0.23
PHD 0.57 1.29 2.48

MCMC 0.34 0.43 0.48

TABLE IV
RADIO-FREQUENCY SENSORS: AVERAGE OSPA ERROR FOR

OVERLAPPING TARGET TRAJECTORIES.

A detailed error behaviour over time can be seen from the
box and whisker plot in the Figure 10. Figures 11(a), 11(b)
and 11(c) plot example trajectory estimates using the different
algorithms for the case of crossing targets.

C. Computational requirements
Table V summarises the computational time required2 for

each of the algorithms. The CPHD filter is the fastest and also
the most accurate filter. A significant portion of the PHD filter
computational time is spent towards identifying the number
of targets. This could certainly be reduced substantially by
adoption of an alternative technique, but in light of the good
performance of the CPHD filter, we have not been motivated to
conduct further exploration beyond the examination of various
methods that was conducted in [21]. The MCMC filter is the
slowest owing to the sequential nature of the algorithm and
the fact that it operates in multi-target state space.

VI. CONCLUSION

We summarized the derivations of computationally-tractable
approximations of the PHD and CPHD filters for superposi-
tional sensors. The key steps in the filter derivations are the

2All the simulations were performed using algorithms implemented in
Matlab on Two Xeon 4-core 2.5GHz, 14GB RAM computers.

0

2

4

0

2

4

E
rr

or

5 10 15 20 25 30 35
0

2

4 MCMC

PHD

CPHD

Time step

Fig. 10. Radio-frequency sensors: Box-and-whisker plot of the error over
time for the methods of CPHD, PHD and MCMC with c = 5 for the case
of overlapping target trajectories. Boxes indicate 25-75 interquartile range;
whiskers extend 1.5 times the range and ‘+’ symbols indicate outliers lying
beyond the whiskers.

Algorithm Acoustic sensors RF Tomography
CPHD 4.15 ± 0.18 24.66 ± 0.75
PHD 108.79 ± 6.77 340.65 ± 16.57

MCMC 350.45 ± 2.52 774.45 ± 6.31

TABLE V
CPU TIME REQUIRED IN SECONDS FOR DIFFERENT ALGORITHMS.

application of a change of variables and Campbell’s theorem.
The former allows us to shift our analysis from random
sets to random variables; the latter allows us to express
the first and second moments of the transformed random
variables using the PHD and the second factorial moment of
the multi-target distribution. We proposed auxiliary particle
filter based implementations of the approximate filters and
performed a simulation-based analysis of the filters using
models of acoustic amplitude sensors and radio-frequency
tomography sensor systems. The CPHD filter accurately tracks
the target locations and the number of targets, significantly
outperforming the PHD filter which suffers from an unreliable
cardinality estimate. It also outperforms a more computa-
tionally demanding joint-posterior MCMC filter. In common
with most particle-based implementations of (C)PHD filters,
the algorithms presented here rely on a clustering procedure
to form a final estimate of the target states. This limitation
motivates further investigation into more elegant solutions;
adaptation of the multi-Bernoulli filter is one promising avenue
of research.
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