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ABSTRACT
Community detection from graphs has many applications
in machine learning, biological and social sciences. While
there is a broad spectrum of literature based on various
approaches, recently there has been a significant focus on
inference algorithms for statistical models of community
structure. These algorithms strive to solve an inference
problem based on a generative model of the network. Recent
advances in stochastic gradient MCMC have played a crucial
role in improving the scalability of these techniques. In this
paper, we propose a version of a degree corrected stochastic
block model and present an MCMC based inference algo-
rithm. Experimental results on several real world networks
demonstrate the effectiveness of the proposed approach.

Index Terms— Markov Chain Monte Carlo, Overlapping
community detection, Degree corrected block models.

I. INTRODUCTION

In many applications, networks are used to model re-
lationships among objects. Detection of community mem-
berships of the nodes of graph structured data has many
applications, including analyzing collaboration networks [1],
protein interaction networks [2], and social networks [3].
Communities can be loosely defined as sets of nodes which
have dense internal connectivity and few external connec-
tions [4]. Traditional approaches use heuristic algorithms like
graph partitioning [5], spectral clustering [6] and hierarchical
clustering [7]. Other techniques are based on edge between-
ness [8], modularity optimization [9], link clustering [10],
or clique percolation [11]. As these algorithms often have a
heuristic objective function or perform greedy optimization
of a global criterion over all possible partitions, some are
scalable to large networks. Comprehensive reviews of these
techniques are provided in [12], [13] and different quality
metrics are throughly surveyed in [14].

An alternate avenue of research consists of hypothesizing
a well-defined statistical model for the graphs and using
inference techniques to estimate the model parameters [15].
The stochastic blockmodel (SBM) is one such model that is
used widely in the literature [16]–[18]. This model assumes
that each node can only participate in one of the communities
and different node pairs having the same community mem-
berships are stochastically equivalent. While this model is
simple to understand, in real world networks, often a node

can be a part of more than one community with varying
membership strengths. To address this possibility, the mixed
membership stochastic blockmodel (MMSB) is proposed
in [19]. Exact inference in this model becomes intractable
in large networks and several algorithms for approximate
inference have been developed [20], [21].

A major weakness of the SBM is that it cannot model
a heavy tailed degree distribution [22] well. Such degree
distributions are observed in many real world networks.
Several modifications to tackle degree heterogeneity within
a community have been proposed and studied [16], [22]–
[25]. A more detailed review of these papers is conducted
in Section II. However, none of these techniques considers
mixed memberships for the nodes. In this paper, we formu-
late the problem of overlapping community detection as a
Bayesian inference problem on a mixed membership DCB
(MMDCB) and develop a scalable MCMC algorithm for the
inference of the posterior distribution. The intra-community
edge probabilities use a simpler parametrization compared to
[25], which allows our algorithm to scale linearly with the
number of communities. Experimental results show that the
proposed approach attains lower perplexity and better link
prediction for several real world networks.

The paper is organized as follows. Section II reviews the
related work. Section III introduces the model and states
the inference task we address. Section IV provides a brief
review of the SGLD algorithm. Section V describes the
MCMC based Bayesian inference algorithm and Section VI
presents and discusses the results of numerical experiments.
The conclusion is provided in Section VII.

II. RELATED WORK
In [20], a scalable stochastic variational inference algo-

rithm for an assortative MMSB (a-MMSB) is employed
which outperforms many scalable techniques like [1], [7],
[10]. It is shown in [21] that Stochastic Gradient Langevin
Dynamics (SGLD) [26] based MCMC is significantly faster
and performs much better compared to variational meth-
ods, as the latter class of algorithms has a relatively high
bias due to variational approximations. As the SGLD uses
stochastic gradient via mini-batch sampling for the MCMC
update of the parameters and eliminates the acceptance ratio
calculation step at the expense of introducing larger variance
in small samples, the computation for each MCMC update
does not grow severely with the number of nodes in the
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graph. This allows this approach to obtain state-of-the-art
performance for large networks.

In [16], the number of edges between any two nodes is
assumed to be Poisson distributed, with a mean that depends
both on community specific and node specific parameters.
A heuristic algorithm is developed for maximum likelihood
estimation. Similar models under the Bernoulli distribution
assumption are studied in [22], [23]. In [22], a general
theory for checking consistency of community detection in a
degree corrected blockmodel (DCB) is developed, whereas
[23] derives asymptotic minimax risks under a misclassi-
fication proportion loss and proposes a polynomial time
algorithm for performing consistent community detection
in an adaptive manner. In [24], a fast pseudo-likelihood
method is introduced for learning parameters of DCBs and
spectral clustering with perturbations is proposed as an
initialization strategy. If there are only two communities, the
resulting algorithm is guaranteed to recover the communities
consistently under some mild assumptions on the initializa-
tion of memberships. A different version of the DCB is
introduced in [25]; a logistic regression formulation with
node correction terms is used. The authors employ a Gibbs
sampler based on data augmentation strategy for inference
of the parameters and develop a mapped consensus estimator
to address label permutation of the nodes.

III. PROBLEM STATEMENT

We propose a MMDCB to model the community structure
in an undirected graph of N nodes and K communities. The
observed graph is denoted by Y = {yab ∈ {0, 1} : 1 ≤ a <
b ≤ N}. The parameter yab = 0 or 1 indicates the absence
or presence of a link between node a and node b. Similar
to [19]–[21], each node a has a K dimensional community
membership probability distribution πa = [πa1, ...πaK ]T .
The intra and inter community edge probabilities are
parametrized via logit models with q = {qk, 1 ≤ k ≤ K}
and r = {ra, 1 ≤ a ≤ N}. The generative model is then:
For any two nodes a and b,

i) Sample zab ∼ πa and zba ∼ πb.
ii) If zab = zba = k, sample the link yab ∼ Bernoulli(βabk ),
where βabk = logit−1(qk + ra + rb), otherwise sample the
link yab ∼ Bernoulli(δab), where δab = logit−1(ra + rb).

Since an edge between two nodes is more likely when both
of them belong to the same community, we restrict qk ≥ 0.
Note that the key difference between the MMDCB and the
a-MMSB is that βabk and δab are different for different (a, b)
pairs. The joint posterior of the parameters π, q and r is
obtained via marginalization over {zab : 1 ≤ a, b ≤ N}:

p(π, q, r|Y) ∝ p(π)p(q)p(r)p(Y|π, q, r) ,

=

N∏
a=1

p(πa)p(ra)

K∏
k=1

p(qk)∏
1≤a<b≤N

∑
zab,zba

p(yab, zab, zba|πa, πb, q1:K , ra, rb) . (1)

We assume a symmetric Dirichlet prior, Dir(α) for πa,
whereas qk ∼ 1(qk ≥ 0)N (0, σ2) and ra ∼ N (0, σ2)
have truncated normal and normal prior respectively. Here
1(·) denotes an indicator function that takes the value 1
when the condition holds and 0 otherwise. α and σ are
hyper-parameters. Inside this Bayesian framework, the goal
is to generate samples of (π, q, r) from the joint posterior,
which can be used to form Monte Carlo estimates and assess
uncertainty.

IV. STOCHASTIC GRADIENT LANGEVIN
DYNAMICS

In an estimation problem of parameter θ with prior p(θ)
and observed data X = {x1, x2, ..., xN} with a generative
model p(X|θ) =

∏N
i=1 p(xi|θ), Bayesian inference involves

computation of the posterior distribution, given as:

p(θ|X) ∝ p(θ)
N∏
i=1

p(xi|θ) . (2)

When the posterior is not analytically tractable, an approx-
imation can be obtained by sampling from the posterior
using MCMC. One such technique uses Langevin Dynamics
(LD) [27] to propose samples in a Metropolis-Hastings (MH)
algorithm, which leads to a proposal distribution q(θ∗|θ) as
follows:

θ∗ = θ +
ε

2

(
∇θ log p(θ) +

N∑
i=1

∇θ log p(xi|θ)
)
+ ζ . (3)

Here ε is the step size and ζ ∼ N (0, εI) is the random
noise which prevents the algorithm from collapsing to one
of the modes of the posterior. In order to correct for the
discretization error in solving the Langevin equation, θ∗

is accepted as the new sample with an MH acceptance

probability of min
(
1,
p(θ∗|x)q(θ|θ∗)
p(θ|x)q(θ∗|θ)

)
. If different dimen-

sions of θ have very different scales or high correlation, the
isotropic proposal in (3) can potentially lead to slow mixing,
particularly in high dimensional problems. A locally adaptive
preconditioning using a Riemannian metric tensor [28] leads
to Riemannian Langevin Dynamics (RLD) algorithm, which
explores the posterior distribution more efficiently.

A major weakness of any standard MCMC algorithm is
that computing the proposal distribution and the acceptance
ratio has complexity O(N), since we need to process all of
the observations at each iteration. In recent years, a signif-
icant amount of research has aimed to develop stochastic
gradient versions [26], [29]–[31] of these algorithms. In
[26], the exact computation of the gradient of the likelihood
in (3) was replaced by a stochastic approximation and the
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acceptance ratio calculation was ignored. More specifically,
at iteration t, the gradient term was approximated by an unbi-
ased estimator with O(n) complexity (n� N ) considering
a random mini-batch Xt = {xt1, xt2, ..., xtn} as follows:

∇θ log p(X|θ) ≈
N

n

∑
xti∈Xt

∇θ log p(xti|θ) . (4)

The resulting SGLD algorithm still guarantees convergence
to the true posterior, if an annealed step-size schedule εt is
employed which satisfies

∑∞
t=1 εt =∞ and

∑∞
t=1 ε

2
t <∞.

V. METHODOLOGY
In this section, we derive the novel MCMC based al-

gorithm for sampling the model parameters. Direct use of
the SGLD update for π does not guarantee that all samples
of πa’s lie on the probability simplex. Hence we consider
an expanded mean parametrization [29] as follows. We
introduce a new parameter φa ∈ RK+ and adopt a product of
independent Gamma(α, 1) distributions as its prior. We de-

fine πak =
φak∑K
l=1 φal

, which results in a symmetric Dirichlet

prior, Dir(α) for πa. The boundary conditions φak ≥ 0 can
be satisfied by simply taking the absolute value of the update
at each iteration. If X is a Bernoulli random variable with
parameter ρ, we denote p(X = x|ρ) = ρx(1 − ρ)(1−x) as
B(x; ρ) for x ∈ {0, 1}, to simplify notation. We first define
the following probabilities:

f
(y)
ab (k, l) = p(yab, zab = k, zab = l|πa, πb, ra, rb, qk, ql) ,

=

{
πakπbkB(yab;βabk ) , if k = l

πakπblB(yab; δab) , if k 6= l,
(5)

Z
(y)
ab = p(yab|πa, πb, ra, rb, q) =

K∑
k=1

K∑
l=1

f
(y)
ab (k, l) ,

= B(yab; δab) +
K∑
k=1

(
B(yab;βabk )− B(yab; δab)

)
πakπbk ,

(6)

and

f
(y)
ab (k) = p(yab, zab = k|πa, πb, ra, rb, q) =

K∑
l=1

f
(y)
ab (k, l) ,

= πak

(
B(yab;βabk )πbk + B(yab; δab)(1− πbk)

)
. (7)

Based on these probabilities, we compute the partial deriva-
tives of the log likelihood of yab as follows:

gab(qk) = ∇qk log p(yab|π, q, r) =
f
(y)
ab (k, k)

Z
(y)
ab

(yab − βabk ) .

gab(ra) = ∇ra log p(yab|π, q, r) ,

= (yab − δab) +
∑K
k=1 f

(y)
ab (k, k)(δab − βabk )

Z
(y)
ab

,

and

gab(φak) = ∇φak
log p(yab|π, q, r) ,

=
f
(y)
ab (k)

Z
(y)
ab φak

− 1∑K
l=1 φal

. (8)

Based on these partial derivatives, the LD updates of q and
r are:

q
(t+1)
k =

∣∣∣q(t)k +
εt
2

(
−
q
(t)
k

σ2
+

N∑
a=1

N∑
b=a+1

gab(q
(t)
k )
)
+ ζ

(t)
k

∣∣∣ ,
(9)

r(t+1)
a = r(t)a +

εt
2

(
− r

(t)
a

σ2
+

N∑
b=1,b 6=a

gab(r
(t)
a )
)
+ ζ ′

(t)
a ,

(10)

where ζ(t)k , ζ ′
(t)
a ∼ N (0, εt). For φa, we follow the RLD rule

with the Riemannian metric tensor G(φa) = diag(φa)
−1 of

[21], [29]:

φ
(t+1)
ak =

∣∣∣φ(t)ak +
εt
2

(
α− φ(t)ak + φ

(t)
ak

N∑
b=1,b 6=a

gab(φ
(t)
ak )
)
+√

φ
(t)
akζ
′′(t)
ak

∣∣∣ , (11)

where ζ ′′(t)ak ∼ N (0, εt). Naive implementation of (9), (10)
and (11) is O(N2K) per iteration, which is infeasible for
large graphs. We instead employ stochastic approximation as
follows. For the update of the qk values in eq. (9), a random
mini-batch contains too few links, because in most of the
real world datasets, the number of edges is closer to O(N)
than O(N2). Hence, we split the sum over all node pairs into
two separate terms involving all links and non-links and use
a separate mini-batch to approximate each of them. At any
single iteration, we update ra and the φak values at only
n1 randomly sampled nodes (n1 � N ), keeping the rest of
them fixed. At any of the randomly selected n1 nodes, we
split the sum in eq. (10) and (11) into two separate terms
corresponding to the neighbours and non-neighbours of node
a and separate mini-batches are used such that each update
is computed based on n2 nodes (n2 � n1) in total. Overall,
the update of r and φ involves O(n1n2K) operations instead
of O(N2K) complexity for a full batch update.

VI. EXPERIMENTAL RESULTS
We evaluate our algorithm and compare it to the SG-

MCMC algorithm on the a-MMSB [21] using four real
world academic collaboration datasets: NETSCIENCE (1589
nodes, 2742 edges) [32], RELATIVITY (5242 nodes, 14496
edges), HEP-TH (9877 nodes, 25998 edges) and HEP-PH
(12008 nodes, 118521 edges) [33]. We consider each dataset
as an undirected graph with a symmetric adjacency matrix.
For hyper-parameters of the prior distributions, we use α =
1
K , σ = 10 and a decreasing step size of εt = ε0(t + τ)−κ

with ε0 = 10, τ = 1000 and κ = 0.75 is employed. We
set n1 = 500, n2 = 50 so that for the datasets considered
here, n2 � n1 � N is satisfied. Since the true number
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of communities is unknown, we conduct experiments with
four different values of K. We construct a held-out test set
Ytest by randomly sampling 10% of the links and same
number of non-links. The predictive performance of the
algorithm is measured by computing the average perplexity.
This is defined as the exponential of the negative average
predictive probabilities on the test set. Based on T samples of
parameters {π(i), q(i), r(i)}Ti=1, we estimate the expectation
over the posterior by a Monte Carlo average to obtain
perplexity as follows:

perpavg(Ytest|{π(i), q(i), r(i)}Ti=1) =

exp
(
−

∑
yab∈Ytest

log{ 1
T

T∑
i=1

p(yab|π(i), q(i), r(i))}

|Ytest|

)
. (12)

We compute perplexity at regular intervals based on the
most recent T = 500 samples to determine convergence
of the MCMC algorithms. If the perplexity does not drop
by more than 0.1% in 500 iterations, we declare conver-
gence and stop running the algorithms. From Figure 1, we
observe that SG-MCMC achieves a lower perplexity for
the MMDCB compared to the a-MMSB in the HEP-PH
dataset with K = 50 communities, which indicates that the
proposed MMDCB generalizes better to unseen links and
non-links for this dataset. We obtain similar results for all the
datasets considered here. Apart from measuring perplexity, at
convergence, we conduct a link prediction experiment on the
test set using the MC estimates of the predictive probabilities
and report the area under the receiver operating characeristic
(ROC) curve (AUC) as the performance metric. For the four
datasets considered here, the perplexity and AUC values are
shown for different numbers of communities (K) in Figures
2 and 3 respectively. We observe that for almost all of the
cases, the proposed MCMC algorithm based on the MMDCB
obtains lower perplexity and higher AUC compared to the
a-MMSB.
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Fig. 1. Convergence of perplexity for the HEP-PH dataset
with K = 50.

VII. CONCLUSION
In this paper, we introduce a mixed membership DCB

as a generative model for networks and propose a scal-
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Fig. 2. Perplexity vs the number of communities (K) for
(a) NETSCIENCE, (b) RELATIVITY, (c) HEP-TH and (d)
HEP-PH datasets.
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Fig. 3. AUC vs the number of communities (K) for (a)
NETSCIENCE, (b) RELATIVITY, (c) HEP-TH and (d)
HEP-PH datasets.

able MCMC algorithm for the inference task. Experimental
results on several real world datasets show improvement
compared to the a-MMSB of [21]. This technique can be
employed to model large scale graph data in a Bayesian
setting. Future research endeavours will investigate ways to
propose better generative models, to reduce computational
complexity by employing more efficient minibatch sampling
strategies and to incorporate better MCMC techniques like
stochastic gradient Hamiltonian Monte Carlo [30], [31].
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[11] I. Derényi, G. Palla, and T. Vicsek, “Clique percolation in
random networks,” Phys. Rev. Lett., vol. 94, pp. 160202, Apr.
2005.

[12] S. Fortunato, “Community detection in graphs,” Phys. Rep.,
vol. 486, pp. 75–174, Feb. 2010.

[13] S. Parthasarathy, Y. Ruan, and V. Satuluri, “Community
discovery in social networks: Applications, methods and
emerging trends,” in Social Network Data Analytics, pp. 79–
113. Springer US, Boston, MA, Mar. 2011.

[14] T. Chakraborty, A. Dalmia, A. Mukherjee, and N. Ganguly,
“Metrics for community analysis: a survey,” ACM Comput.
Surv., vol. 50, no. 4, pp. 1–37, Aug. 2017.

[15] P. Doreian, V. Batagelj, and A. Ferligoj, “Generalized block-
modeling,” J. Classif., vol. 24, no. 2, pp. 308–311, Sep. 2007.

[16] B. Karrer and M. E. J. Newman, “Stochastic blockmodels
and community structure in networks,” Phys. Rev. E, vol. 83,
no. 1, pp. 016107, Jan. 2011.

[17] T. P. Peixoto, “Bayesian stochastic blockmodeling,” ArXiv
e-print arXiv: 1705.10225, May 2017.

[18] E. Abbe, “Community detection and stochastic block models,”
Found. and Trends Commun. and Inform. Theory, vol. 14, no.
1-2, pp. 1–162, Jun. 2018.

[19] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing,
“Mixed membership stochastic blockmodels,” J. Mach. Learn.
Res., vol. 9, pp. 1981–2014, Jun. 2008.

[20] P. K. Gopalan, S. Gerrish, M. Freedman, D. M. Blei, and
D. M. Mimno, “Scalable inference of overlapping communi-
ties,” in Proc. Adv. Neural Inf. Proc. Systems, Dec. 2012.

[21] W. Li, S. Ahn, and M. Welling, “Scalable MCMC for mixed
membership stochastic blockmodels,” in Proc. Artificial Intell.
and Statist., May 2016, pp. 723–731.

[22] Y. Zhao, E. Levina, and J. Zhu, “Consistency of community
detection in networks under degree-corrected stochastic block
models,” Ann. Statist, vol. 40, no. 4, pp. 2266–2292, Aug.
2012.

[23] C. Gao, Z. Ma, A. Y. Zhang, and H. H. Zhou, “Community
detection in degree-corrected block models,” Ann. Statist.,
vol. 46, no. 5, pp. 2153–2185, Oct. 2018.

[24] A. A. Amini, A. Chen, P. J. Bickel, and E. Levina, “Pseudo-
likelihood methods for community detection in large sparse
networks,” Ann. Statist., vol. 41, no. 4, pp. 2097–2122, Aug.
2013.

[25] L. Peng and L. Carvalho, “Bayesian degree-corrected stochas-
tic blockmodels for community detection,” Electron. J.
Statist., vol. 10, no. 2, pp. 2746–2779, Sep. 2016.

[26] M. Welling and Y. W. Teh, “Bayesian learning via stochastic
gradient Langevin dynamics,” in Proc. Int. Conf. Machine
Learning, Jul. 2011, pp. 681–688.

[27] T. Xifara, C. Sherlock, S. Livingstone, S. Byrne, and M. Giro-
lami, “Langevin diffusions and the Metropolis-adjusted
Langevin algorithm,” Statist. and Probab. Lett., vol. 91, pp.
14–19, Sep. 2014.

[28] M. Girolami and B. Calderhead, “Riemann manifold
Langevin and Hamiltonian Monte Carlo methods,” J. R. Stat.
Soc. B, vol. 73, no. 2, pp. 123–214, Mar. 2011.

[29] S. Patterson and Y. W. Teh, “Stochastic gradient Riemannian
Langevin dynamics on the probability simplex,” in Proc. Adv.
Neural Inf. Proc. Systems, Dec. 2013.

[30] T. Chen, E. B. Fox, and C. Guestrin, “Stochastic gradient
Hamiltonian Monte Carlo,” in Proc. Int. Conf. Machine
Learning, June 2014, vol. 32, pp. 1683–1691.

[31] Y.-A. Ma, T. Chen, and E. B. Fox, “A complete recipe for
stochastic gradient MCMC,” in Proc. Int. Conf. Neural Inf.
Proc. Systems, Jul. 2015, vol. 2, pp. 2917–2925.

[32] M. E. J. Newman, “Finding community structure in networks
using the eigenvectors of matrices,” Phys. Rev. E, vol. 74, no.
3, pp. 036104, Sep. 2006.

[33] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution:
densification and shrinking diameters,” ACM Trans. Knowl.
Discov. Data, vol. 1, no. 1, Mar. 2007.

5465


