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Abstract This paper describes a framework for fixed-
length frame scheduling in all-photonic networks with large
propagation delays. We introduce the Fair Matching Algo-
rithm a novel scheduling approach that results in weighted
max-min fair allocation of extra slots, achieves zero rejec-
tion for admissible demands, and minimizes the maximum
percentage rejection of any connection. We also propose
the Minimum Rejection Algorithm, which minimizes total
rejection but treats non-critical connections in a fair manner.
Finally, we introduce a feedback control system based on
Smith’s principle that reduces the effect of prediction errors
and increases the speed of the response to the sudden changes
in traffic arrival rates. Simulations performed using OPNET
Modeler explore the performance of the scheduling and con-
trol algorithms we propose.

Keywords All-photonic networks · Scheduling · Max-min
fairness · Star topology

1 Introduction

In modern high speed networks, electronic switches and the
associated opto-electronic conversion limit the optical capac-
ity to a few gigahertz, so the insertion of all-photonic switches
in the network cores is attractive. The primary disadvan-
tage is that all-photonic switches are currently incapable of
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performing queuing, so packet transmissions must be care-
fully controlled. Burst switching and just-in-time reservation
approaches, and routing and wavelength assignment tech-
niques address this challenge in general mesh topologies
[23,34]. Using a simpler architecture such as an (overlaid)
star topology reduces the complexity of the control plane.

In this article, we consider the Agile All-Photonic Net-
work (AAPN), which is an overlaid star topology [4,16]. This
architecture (see Fig. 1) consists of edge nodes equipped with
buffers and optical electronic convertors and fast, reconfigu-
rable and buffer-less photonic core crossbar switches which
connect the edge nodes. The star topology facilitates global
network synchronization [12], enabling the adoption of opti-
cal time-division multiplexing (OTDM) approaches such as
wavelength-specific scheduling of time-slots. To avoid colli-
sion a source edge-node must be aware of when it has own-
ership of a given time-slot and is allowed to transmit to a
specific destination edge node.

In this study, we assume that the traffic has been divided
among the stars using some form of load-balancing, for exam-
ple one of the techniques outlined in [35]. Therefore, the
core switches act independently and the control problem is
reduced to the task of scheduling one switch configuration
to achieve a good match with the traffic arrival pattern at the
edge nodes.

Bandwidth allocation in networks with substantial sig-
naling delay is normally based on the prediction of traf-
fic arrival rates. In wide-area networks, it is much more
efficient to schedule blocks of slots (frames)1 than single
slots [13]. In frame-based scheduling algorithms, the edge
nodes report their predicted bandwidth requirements for each

1 In this article, the term “frame” refers to a set of time-slots containing
multiple packets (for example, slots of 10 µs duration, which can hold
up to 100 packets of 1000 bits on average on a 10 Gbps optical channel).
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Fig. 1 Architecture of the agile all-photonic network described in
[4,16]. Edge nodes perform electronic-to-optical conversion and trans-
mit scheduling requests to the core photonic node(s). Each buffer-less
photonic core switch provides connectivity between any pair of edge
switches establishing a star topology. The overlay of several stars pro-
vides resilience to link or core failures

frame duration to the central scheduler. Many techniques can
be adopted for performing this prediction, ranging from a
naive predictor (the prediction is equal to the current traffic
arrival rate) to more elaborate techniques based on sophisti-
cated traffic models [31]. Since traffic prediction is beyond
the scope of this paper, we simply consider a naive predictor.

Contribution: We study the problem of fixed-length frame
scheduling in an overlaid star topology all-photonic network.
The minimization of rejection is the priority. Fairness in
the max-min sense is also a desirable criterion and plays
an important role in achieving minimum average end-to-end
delay. We therefore propose the Fair Matching Algorithm
(FMA), an algorithm based on the weighted max-min fair-
ness criterion. This algorithm provides zero rejection in the
case of admissible traffic and a fair allocation of extra band-
width for the under-loaded links in the network. We show that
FMA minimizes the maximum percentage rejection experi-
enced by any connection. Subsequently, we propose the Min-
imum Rejection Algorithm (MRA), which minimizes total
rejection but treats non-critical connections in a fair man-
ner. This algorithm has much lower average time complexity
compared to the straightforward approach of solving a max-
flow problem.

Finally, we introduce a closed-loop control architecture
designed to interact with our proposed open-loop schedul-
ing mechanisms. We employ Smith’s principle to design a
linear feedback controller that compensates for the sources
of error (prediction, rounding, and rejection), resulting in a
stable and fair system. The feedback control system we pro-
pose allocates spare capacity in a fair manner and responds to
traffic variations faster than the open-loop scheduling algo-
rithm alone. This controller acts as an illustration of a gen-
eral framework for combining a closed-loop controller with
a centralized scheduler.

Related work: Scheduling in the AAPN is similar to sched-
uling of an input queued switch (see [1,18,19]), with the dif-
ference that there is a large propagation delay between the
input buffers at the edge nodes and the switch (photonic core).
This leads to superior performance for frame-based schedul-
ing algorithms. Of the frame-based algorithms proposed for
star topologies in optical and satellite networks, the majority
have focused on variable-length frames [9–11,22,33]. Using
fixed-length frames reduces computational complexity, and
simplifies control and signaling, particularly slot synchro-
nization and bandwidth request management. The authors
of [3,5,14,25] have considered the problem of scheduling
a frame of fixed length for star-coupled networks with tun-
able transmitters/receivers, but do not address the allocation
of unused time-slots or rejection of inadmissible demand.
We note that the general principles employed in our algo-
rithms, water-filling and max-flow formulations, have been
used in various scheduling contexts, e.g., [3,14], but never
for scheduling fixed-length frames in all-photonic networks
(where wavelength-tunability of transmitters/receivers is not
a primary consideration).

The most closely related work is that of Peng et al. [21],
who also address scheduling in a star-topology agile all-pho-
tonic network. Their procedure focuses on determining a
service matrix that is similar to the original demand matrix
through a process of iterated projection. This procedure
achieves clamping of the demand matrix, but the authors
make no claim regarding what the projection procedure
achieves in terms of network performance. In contrast, the
algorithms we propose in Sect. 3, FMA and MRA, explicitly
achieve fairness properties or minimize total rejection.

Feedback congestion control has been examined from a
control theoretic perspective by many authors, with the pri-
mary focus being controlling the rates at which sources inject
best-effort traffic into a network in order to reduce the con-
gestion at bottleneck queues while maintaining high utiliza-
tion. In the work most closely related to the controller design
presented in this article, Mascolo combines classical control
theory and Smith’s principle to design a simple congestion
control law that guarantees no packet loss and efficient use of
bandwidth [15]. In related work, Bauer et al. propose a new
class of time-variant Smith predictors using time-variant net-
work delay models [2]. Although the theoretical techniques
we adopt in our design are similar to those used by Mascolo,
the problem we address differs significantly. We assume that
we have no control over arrival rates; instead we can adjust,
through scheduling, the resources allocated in the network.
This results in an inverted form of the standard congestion
control problem: switch resources are controlled rather than
source rates.

Finally, we should note that the research reported in this
article is a compilation and extension of the material pre-
sented in the conference papers [28–30].
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Structure of the paper: Section 2 provides a statement of
the scheduling problem that we address. Section 3 details
our proposed frame-based scheduling algorithms, FMA and
MRA. Section 4 illustrates how the frame-based schedul-
ing algorithms act as feed-forward control systems. Sec-
tion 5 describes the design of a modified Smith controller
that interacts with the FMA scheduling algorithm to pro-
duce a stable resource allocation mechanism for AAPNs.
Section 6 describes the simulation experiments we have exe-
cuted to assess performance. Finally, Section 7 summarizes
the proposed algorithms and results. Proofs appear in the
appendices.

2 Problem statement

We investigate the scheduling problem in the AAPN, an over-
laid star topology network which connects a large number of
edge nodes using optical fibers and photonic switches. We
assume that load is divided between the stars and we are
concerned with scheduling each star independently. Every
star is composed of N edge nodes connected through an all-
photonic switch. We also assume that there are W available
wavelengths and every edge node is able to transmit/receive
on every wavelength simultaneously. To isolate the wave-
lengths, we assume that the load is distributed among the
wavelengths as well, and our task in this article is to schedule
one single wavelength on a single star network.

During each frame, every edge node records the number
of packets that arrived for each destination node and reports
these values to the scheduler. For simplicity, we assume that
the scheduler is located at the core photonic switch. If the
maximum one-way signaling delay is T frames, then the
scheduler must design a schedule T frames into the future.
It uses all information at its disposal to predict the demand
for each source–destination pair.

Suppose that Di j is the predicted number of slots needed
for transmission from source node i to destination node j .
We consider a frame of length L time-slots. Our aim is to
devise a schedule S such that the element S jk identifies the
source node allocated to the k-th time-slot associated with
destination j in the frame.

The rejection for any individual connection (i, j) is
denoted by:

RE Ji j = max

(
0, Di j −

L∑
k=1

I[S jk = i]
)

(1)

where I is the indicator function. The total number of rejec-
tions is defined as: TREJ(S, D, L) = ∑

i
∑

j REJi j . We
identify two scheduling problems for frames of fixed length
L with demand matrix D. The first strives to minimize total
rejection; the second strives to minimize worst-case per-

centage rejection. Suppose that S∗
1 and S∗

2 are the schedules
obtained from solving the first and second problems, respec-
tively. Therefore, we have:

MINREJ(D,L): S∗
1 = arg minS T RE J (S, D, L).

PERMIN(D,L): S∗
2 = arg minS max(i, j) RE Ji j/Di j .

2.1 Terminology and definitions

We now define some terminology that will be used through-
out the article and recall some definitions. We denote the
line sum of line � of the demand matrix D by L S�. Note
that line � consists of a set of source–destination demands
which correspond to the connections passing through link �

of the network. Each of these connections belongs to two
lines, a row and a column. The i-th row represents a link
from source i to the optical switch at the core, and the j-th
column represents the link from the core to destination node
j . The row-sum, ri (D) = ∑N

j=1 Di j , is the total demand at

source i , and the column-sum, c j (D) = ∑N
i=1 Di j , is the

total demand for destination j .

Definition 1 Admissibility. A demand matrix D is admissi-
ble if

max

{
max

i
{ri (D)}, max

j
{c j (D)}

}
≤ L .

For an inadmissible demand matrix, we denote the set of over-
flowing rows of the demand matrix (rows with ri (D) > L)
as Or , and the set of overflowing columns (c j (D) > L) as
Oc. The set of overflowing lines, O� = {� : L S� > L} is
the union of Or and Oc. We define a critical connection,
or critical demand element, as any demand entry Dhp such
that h ∈ Or and p ∈ Oc. The remaining entries constitute
non-critical connections/demands.

Definition 2 Feasibility. Consider an arbitrary network as a
set of links L where each link � ∈ L has a capacity C� > 0.
Let {1, . . . , ζ } be the set of network connections, and H� the
set of all connections passing through link �. Let Du be the
demand (request) of connection u and υu be its assigned rate.
A rate allocation {υ1, υ2, . . . , υζ } is feasible if for every link
� ∈ L we have

∑
u∈H�

υu ≤ C�.

Definition 3 Weighted max-min fairness. Let ωu(υu) be an
increasing function representing the weights assigned to con-
nection u at rate υu . A feasible allocation {υ1, υ2, . . . , υζ } is
weighted max-min fair if for each connection u any increase
in υu would cause a decrease in transmission rate of con-
nection z satisfying ωz(υz) ≤ ωu(υu). The special case of
max-min fairness is obtained by ωu(υu) = υu .
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3 AAPN scheduling algorithms

This section introduces two scheduling algorithms. The
FMA, addresses the PERMIN problem. FMA achieves
weighted max-min fairness in sharing the bandwidth between
the communicating source–destination pairs. For inadmissi-
ble traffic, FMA minimizes the maximum percentage rejec-
tion experienced by any demand. The second algorithm, the
MRA efficiently solves MINREJ(D,L).

3.1 Fair Matching Algorithm (FMA)

Fair Matching Algorithm is a combination of a clamping
procedure and the EXACT algorithm. The EXACT algorithm,
presented in [7,33], was designed for a variable-length frame
and it achieves the minimum number of slots for this case.
It is an iterative procedure that repeatedly performs maxi-
mum cardinality bipartite matching (MCBM) to obtain the
schedule. When applied to the problem of scheduling a fixed-
length frame with an admissible demand matrix, the EXACT
algorithm generates a schedule S that has length less than
L , and therefore zero rejection. If the demand matrix is inad-
missible, or the demand is lower than the capacity of a frame,
then it is desirable to modify the demand matrix to control
the way in which rejection occurs or free slots are assigned.

Clamping modifies the demand matrix to ensure that all
of the frame resources are assigned properly. If the demand
matrix is admissible, FMA performs water-filling, incremen-
tally assigning additional demands to all elements until all of
the links reach capacity (their line-sums are equal to L). This
algorithm can be implemented by processing one line at a
time. We first choose the most constrained line (the line that
would reach its capacity first under the water-filling proce-
dure) and increase its demand to capacity. Then we choose the
next most constrained line and increase its demand to capac-
ity. We repeat until all lines have reached capacity. FMA
assigns extra capacity in proportion to the original demand.

A similar procedure can be used for the case of an inad-
missible demand matrix (containing one or more overloaded
lines). In this case, FMA identifies the most overloaded line
and reduces the demands on that line such that they sum to
capacity (L). Demand reduction is proportional to the origi-
nal demand, i.e. each adjusted demand experiences the same
percentage reduction. When there are both overloaded and
under-utilized lines, the overloaded lines are adjusted first.

Here we describe how FMA treats demands belonging to
the adjustable lines in the set U� = {� : L S�(0) �= L},
where L S�(0) is the line sum of line � at the beginning of
calculations. We define AD ⊆ U� as the set of unmodified
lines and BD ⊆ U� as the set of modified lines. Initially AD

contains all lines in U� and BD is empty. Similarly, we define
a� as the set of unmodified demands in line � and b� as the set
of modified demands. Initially, a� contains all the demands

and b� is empty. In each iteration we adjust the unmodified
demands in line � as follows:

D
′
i j = Di j × L − Sb�

Sa�

∀ (i, j) ∈ a�, (2)

where Sa�
�

∑
(i, j)∈a�

Di j and Sb�
�

∑
(i, j)∈b�

D
′
i j . We

always have Sa�
+ Sb�

= L S�. Note that when demand Di j

belongs to an overloaded line,
L−Sb�

Sa�
< 1, and when Di j

belongs to an under utilized line
L−Sb�

Sa�
> 1. Define for each

of line in AD the value G� � L−L S�

Sa�
.

Algorithm 1 FMA
Set D′ = D.
while AD �= O do

Identify the line �∗ = arg min�∈AD G�.
Apply (2) to line �∗.
Transfer �∗ from AD to BD .
Update a� and b� for all lines � ∈ AD .
Re-evaluate L S� for all lines in AD .
Transfer lines γ with L Sγ = L from AD to BD .

end while
Apply EXACT to �D′	 to generate S.

The following theorem states that prior to rounding, FMA
achieves weighted max-min fair allocation of capacity
(weighted relative to the original demand). See Appendix A
for the proof.

Theorem 1 FMA generates an adjusted demand matrix D′
with weighted max-min fair allocation, where the weight is

ω(D′
i j ) = D′

i j
Di j

.

If the demand matrix contains zero entries, then an algo-
rithm that adjusts requests multiplicatively (such as FMA)
cannot always generate full utilization; there can be natural
blocking because there is no demand. After all of the demands
are adjusted FMA uses EXACT to allocate the time-slots and
generate the schedule. We now present some properties of
FMA and the demand matrix D

′ = {D
′
i j } obtained by FMA

prior to rounding.

Property 1: FMA guarantees full allocation of all links pro-
vided D contains no zero elements.

Property 2: If there is no natural blocking the maximum total
throughput of the network is obtained:

∑
i
∑

j D
′
i j =

N L .

Property 3: The while-loop in FMA has O(N 2) computa-
tional complexity in terms of the number of edge nodes
(2N iterations with a minimization over N elements in
each iteration). The best current implementation of the

EXACT algorithm has complexity O(N
5
2 ), and hence this

is also the complexity of FMA.
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Define the percentage rejection as 1 − D′
i j

Di j
for the lines

which were initially overloaded. Consider the set of demands
that experience the highest percentage rejection (i.e., the
demands on the most overloaded line). Since the weight ω

is a monotonically increasing function of allocated rate D′
i j ,

weighted max-min fairness implies that it is impossible to
increase the rate allocated to these demands (or decrease the
maximum percentage rejection) without violating feasibility.
Decreasing the rejection of any of those demands requires
increasing the rejection of another demand on the same line,
and hence the maximum percentage rejection increases. We
thus have the following corollary of Theorem 1:

Corollary 1 Subject to the capacity constraints, FMA gen-
erates a schedule that minimizes the maximum percentage
rejection experienced by the connections.

max
i j

{
Di j − D

′
i j

Di j

}
F M A

= min
C L

⎧⎨
⎩max

i j

{
Di j − D

′
i j

Di j

}
C L

⎫⎬
⎭ ,

(3)

where C L is any clamping algorithm that clamps the over-
loaded lines down to L.

3.2 Minimum Rejection Algorithm (MRA)

We are now in a position to define an algorithm that (i) mini-
mizes overall rejection, and (ii) subsequently, fairly allocates
any necessary residual rejection or free slots.

We commence by considering a decomposition of the
demand matrix, D = D

′ + R. Here D
′
is the pruned demand

matrix with line sums not exceeding the schedule length L
and R shows the resulting rejections of every demand after
pruning. We define the sets B � {(h, p) : h ∈ Or or p ∈
Oc}, and C � {(h, p) : h ∈ Or and p ∈ Oc}, where Or

and Oc are the set of overflowing input and output links of
the optical network, respectively. The minimization of total
rejection can be formulated as the following max-flow prob-
lem:

Maximize
∑
(h,p)

D
′
hp subject to

0 ≤ D
′
hp ≤ Dhp ∀ (h, p) ∈ B,

rh(D
′
) ≤ L , cp(D

′
) ≤ L ∀(h, p).

Ford and Fulkerson presented a solution to max-flow prob-
lems of this kind in 1954 [8]. Note that the max-flow solution
is in general not unique. The fastest maximum flow algo-
rithms to date are preflow-push algorithms, which work in a
more localized manner than the Ford–Fulkerson method [6].
In the straightforward formulation of the max-flow prob-
lem above, there are 2N active nodes in the corresponding

s → t network (see [26] for details), so the complexity of
the preflow-push algorithm for finding a max-flow solution
is O(N 3) [6].

We now outline a procedure for solving the minimum
rejection problem that can result in significant computational
savings. We commence by defining a related but simpler max-
flow linear programming problem, MAXREJFLOW(D,L):

Maximize
∑

(h,p)∈C
Yhp subject to

Yhp = 0 if (h, p) /∈ C, (4)

Yhp ≤ Dhp ∀(h, p), (5)∑
p∈Oc

Yhp ≤ rh(D) − L ∀ h ∈ Or , (6)

∑
h∈Or

Yhp ≤ cp(D) − L ∀ p ∈ Oc. (7)

In order to find an efficient approach for solving
MINREJ(D,L), we identify a relationship to a solution of
MAXREJFLOW(D,L) with the following theorem. The proof
is in Appendix B.

Theorem 2 Set A=MAXREJFLOW(D,L). Construct a
rejection matrix R = A + Q, where Q is a non-negative
matrix such that Qhp = 0 ∀(h, p) /∈ B, Qhp ≤ Dhp −
Ahp ∀(h, p), rh(Q) = rh(D) − L − rh(A) ∀h ∈ Or , and
cp(Q) = cp(D) − L − cp(A) ∀p ∈ Oc. Then if S is a
schedule that generates the decomposition D = D′ + R, it
is a solution to the problem MINREJ(D,L).

The identification of a solution to MINREJ(D,L) thus
requires us to (i) find a solution A to MAXREJFLOW(D,L);
and (ii) determine a suitable Q. The MAXREJFLOW problem
is a max-flow problem, and a solution can also be determined
using the Ford–Fulkerson algorithm or one of the preflow-
push algorithms. The FMA algorithm can be used to deter-
mine a suitable Q. Note that A only has non-zero entries
on the critical connections. By using FMA to determine the
remaining rejection, we are introducing weighted max-min
fairness in rejection allocated to the non-critical connections.
The combined MRA is specified in Algorithm 2.

Algorithm 2 Minimum Rejection Algorithm
1: Apply the Ford–Fulkerson algorithm (or an alternative preflow-push

algorithm) to solve A = MAXREJFLOW(D,L).
2: Generate the modified demand matrix D′ = FMA(D − A, L).
3: Apply EXACT to �D′	 to generate S.

The complexity of the MAXREJFLOW problem is
O(|O�|3). In the worst case all 2N lines are overflowing,
and the complexity is O(N 3). In general, only a fraction of
the lines are overflowing, and |O�| � N , so there is a sub-
stantial reduction in computational complexity. In the MRA

123



162 Photon Netw Commun (2009) 17:157–169

algorithm, this reduction is offset, however, by the incorpora-
tion of the FMA algorithm, which has complexity O(N 5/2).
The primary advantage of the MRA algorithm is the introduc-
tion of weighted max-min fairness in rejection and residual
slot allocation for the non-critical connections.

4 Queue control and stability

The scheduling techniques outlined in the previous sections
can be interpreted as open-loop control algorithms. If the sys-
tem relies on only open-loop, feed-forward control then the
effect of errors is ignored, leading to instability and unfair-
ness. These errors arise primarily from mistakes in the traf-
fic prediction and the fact that the scheduling algorithms
involve rounding and do not remember past rejection. A
closed-loop control system is needed to achieve stability
(i.e., bounded steady state queue size variation), fairness,
and faster response to traffic variations.

We now develop a control system model for resource allo-
cation in an AAPN. Initially, we adopt a continuous-time
model, but since scheduling is performed once per frame,
we later sample the data with period Ts (the frame dura-
tion) to obtain a discrete-time system. Figure 2 shows a feed-
back control model for an agile all-photonic network with
a central controller. Note that this figure depicts the con-
trol loop for one source–destination pair, or virtual output
queue (VOQ), (i, j). There is a similar control loop for every
source–destination pair, and all of these loops are coupled
through the FMA scheduler.

We consider a simple integrator as the dynamic model
for a VOQ. Let qi j (t) be the length of the virtual queue of
packets at edge node i destined to edge node j . Let ai j be
the input rate to V O Qi j , and depi j the depletion rate of this
queue. In the control model the length of each VOQ is com-
pared with a reference signal, ri j (t), and the difference is the

input to the controller. The controller then calculates how to
adjust the predicted traffic arrival rate âi j (t) to account for
past prediction errors, rejections, and rounding errors (this
adjustment rate is aci j (t)).

We model the depletion rate depi j as constant throughout
a frame period:

depi j (t + T ) = D
′
i j (k)C

L
kTs ≤ t ≤ (k + 1)Ts .

The predicted arrival rate is used as the demand signal di j (t).
Therefore, we have:

âi j (t) = di j (t) = Di j (k)C

L
kTs ≤ t ≤ (k + 1)Ts .

Here Di j (k) is the predicted number of time slots demanded
for a source–destination pair (i, j) during frame k, D

′
i j (k) is

the adjusted number of allocations based on the FMA algo-
rithm, C is the line rate in bits-per-second, L is the frame-
length in slots, and T is the propagation (signaling) delay.

Provided that the queue does not empty (qi j > 0), the
depletion rate is the sum of the predicted arrival rate âi j and
the feedback adjustment aci j , suitably delayed in time, i.e.,
depi j (t) = âi j (t − T )−aci j (t − T ). Based on the flow con-
servation equation [15] the queue length, with initial condi-
tion qi j (0) = 0, is qi j (t) = ∫ t

0 [ai j (τ ) − depi j (τ )]dτ . We
model the queues as always-occupied to avoid the need for
non-linear components.

Demand matrix adjustment is performed by a clamping
algorithm (e.g., FMA) which clamps the line sums of the
demand matrix up or down to L . FMA multiplies the pre-

dicted arrival rate âi j by a factor, xi j = D
′
i j

Di j
. Since this factor

changes with the overall arrival rates the gain of the controller
is tuned each frame.

For this control system, we aim to minimize the error
between the queue length and a desired queue length shown
by the reference signal, which may be calculated based on

acij (t)
_

qij(t)    C(s)

e-sT

+ eij (t)

 q
ij (

t-
T

)

   
   

  _

rij (t)
+ + e-sT depij(t)

      _ +

        +

      +

1/s

Plant

Controller )(ˆ taij

)(taij

xij

FMA

Fig. 2 The provision of a feedback signal results in bandwidth alloca-
tion in an AAPN becoming a simple closed-loop control system. Inputs
to the system are a reference signal ri j , the estimated arrival rate âi j

and the true arrival rate ai j , and the feedback is the information from
the VOQ, indicated by qi j . The propagation delay from the controller
to the plant is T
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the state of the network. For example, if the desired state
is equal queue lengths for all of the VOQs, then the refer-
ence signal should be the average of the VOQ lengths. This
is also the effect of FMA [28], so this choice of reference
signal aligns the feedback controller with the feed-forward
controller. Note that because FMA is a clamping algorithm,
the combination of the controller and FMA never acts to
artificially increase queue lengths. FMA always allocates
the full capacity of the switch (provided there is non-zero
demand).

5 AAPN controller design based on the Smith predictor

Instability is a common problem in delayed systems, since
the addition of delays introduces extra phase lag, resulting in
a less stable system. If the controller is not properly tuned to
consider this delay (deadtime), it can overcompensate sub-
stantially. The Smith predictor, introduced by Smith [32],
makes the controller aware of the deadtime and adjusts its
behavior based on prediction of the effect of controller on the
output during this delay. Our controller design is an exten-
sion of the modified Smith predictor developed by Mataušek
and Micić [17].

Figure 3 shows the modified version of this controller for
the AAPN network. The inputs to the system are ri j (t), a(t)
and â(t), and the output is qpi j (t) = qi j (t − T ). We con-
sider the arrival rate a(t) and its prediction â(t) as distur-
bances. The reference signal, ri j , represents the desired VOQ
length. The setpoint and disturbance responses of the system
are:

Hr (s) = xi j Kr e−sT

s + xi j Kr
, (8)

Hd(s) = e−sT [s − xi j Kr (1 − e−2sT )]
(s + xi j Kr )(s + K0xi j e−2sT )

,

Ĥd(s) = xi j e−2sT [s − xi j Kr (1 − e−2sT )]
(s + xi j Kr )(s + K0xi j e−2sT )

= xi j e
−sT Hd(s). (9)

We strive to eliminate the steady-state effect of variations in
the traffic arrival rate on the VOQ lengths. This corresponds
to eliminating the load disturbance steady-state response and
requires that lims→0 Hd(s) = 0, which is possible if K0 �= 0.
Based on the final value theorem:

lim
t→∞ qpi j (t) = lim

s→0
Ri j (s)Hr (s) = ri j . (10)

The stability of the system depends on the roots of the
characteristic equation:

(s + xi j Kr )(s + K0xi j e
−sT ) = 0. (11)

The first term implies that xi j Kr > 0 must be satisfied. We
can apply the same analysis as that employed in [17] to derive
the range of values for K0 for which the system is stable (the
phase margin φM > 0). We require:

K0 <
1

4xi j T
. (12)

It is highly likely that there is additional error in the con-
trol system, because the data are subject to queueing delay
which is not explicitly included in our control system model.
The system estimates the dead-time as T , which corresponds
only to the propagation (signaling) delay, and this can be a
significant underestimate. We, therefore, must examine the
robustness of the system to this type of error. This analysis,
conducted in Appendix C, reveals that the proposed system
is robust to such errors, even if they are as large as the antic-
ipated dead-time itself.

Scheduling and signaling are only performed once per
frame. In order to obtain the equivalent discrete-time system
equations a simple approach is to design a digital control
system using the Delta transform. Since the plant is contin-
uous the input to the plant is then converted to continuous

Fig. 3 Schematic of a modified
Smith predictor for bandwidth
allocation in a wide-area AAPN
with large signaling delay. The
terms Kr and K0 represent gains
(control parameters) and T 0 is
the estimated dead-time. In our
analysis we assume T 0 = T
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form with zero-order-hold. The discrete time equations are
approximated from the continuous form as:

di j (k) = âi j (k) − uri j (k) + K0qpi j (k) − K0 y2(k),

y1(k) = y1(k − 1) + xi j (k − 1)uri j (k − 1)Ts,
(13)

y2(k) = y1

(
k − 2T

Ts

)
,

uri j (k) = Kr (−y1(k) + y2(k) − qpi j (k) + ri j (k)).

Defining λ � T
Ts

, we have:

uri j (k) = Kr

⎛
⎝−

λ∑
p=1

xi j (k − p)uri j (k − p)Ts

− qpi j (k) + ri j (k)

⎞
⎠. (14)

The rate adjustment thus depends, through the control-
ler parameters K0 and Kr , on the divergence of each queue
length from the average queue length, ri j , as well as the
amount of the queue backlog qpi j (k). The role of the Smith
controller is to take into account the effect of rate adjustment
on the queues during the λ previous frames for which there
is no feedback available.

The gain of the controller Kr is designed based on the
Nyquist–Shannon sampling theorem which states that the
sampling period should be at most half the time constant
of the continuous system (1/xi j Ts). Using a fixed controller
gain can result in undesirable behavior. A small gain does
not provide sufficiently fast response to traffic changes, but
a large gain results in overreaction to minor fluctuations. An
adaptive gain can provide a good compromise. We design
the controller such that the gain Kr adapts to the size of the
queue variations:

Kr (k) = min

{
A exp(C	qp),

1

2xi j Ts

}
, (15)

where 	qp = qp(k) − qp(k − 1). The choice of the con-
stants A and C determines how fast the system reacts to traffic
changes and whether there are residual oscillations. To avoid
overcompensation due to a large control gain we use a fast-
start slow-finish procedure in which we reduce the gain of
the controller by a factor of 0.05 two frames after activation
of the Smith controller.

6 Simulation performance

In this section, we report the results of simulations of the
scheduling approaches performed using OPNET Modeler
[20]. We performed simulations on a 16 edge-node star topol-
ogy network. The links in the network have capacity 10 Gbps
and the propagation delay between each edge node and the

Table 1 Network parameters

Parameter Value

Number of nodes 16, 32, or 64

Link capacity 10 Gbps

Propagation delay 5 ms

Time-slot duration 10µs

Frame duration 1 ms

Frame length 100 time-slots

Average number of packets per slot 100

Simulation time 0.2–0.5 s

Pareto shape parameter (α) 1.9

optical switch is 5 ms. A time-slot is of length 10 µs, and
a frame has a fixed length of 1 ms (or 100 slots). Recall
that each time-slot contains multiple packets (e.g., 100 IP
packets on average) and a frame refers to a set of time-slots.
Each experiment was run for a duration of 0.2 s (equal to
200 frame durations) and the results were averaged over five
repetitions of the simulations. The VOQs in the simulations
have fixed buffer size (90,000 packets). Whenever the buffer
is full, arriving packets are dropped. A summary of the net-
work parameters is presented in Table 1.

Our simulations involve bursty traffic using on/off traffic
sources. Every edge node is equipped with 6 on/off sources.
The “on” and “off” periods have Pareto distributions with a
shape parameter α = 1.9. The mean of the “off” periods is
five times greater than the mean of the “on” periods. During
“on” periods the sources generate packets with an average
rate up to the full link capacity (10 Gbps). The rate distribu-
tion is exponential.

In the first experiment, we compare the performance of
FMA with that of the algorithm proposed by Peng et al.
[21]. We use a non-uniform traffic pattern; each destina-
tion receives on average the same amount of traffic, but each
source sends five times as much traffic to one specific desti-
nation as compared to the others. As Fig. 4, top panel, shows
the average rejection when FMA is used is less than that when
the projection method is used. The advantage of using FMA
is more apparent when we compare the maximum rejection
percentages of the two algorithms in Fig. 4, middle panel.
Figure 4, bottom panel, indicates that FMA achieves lower
average queueing delay especially at higher loads. Note that
propagation delay is not included in the figure.

Our second experiment compares FMA and MRA. Since
these only differ when there are critical elements in the
demand matrix, we investigate scenarios where critical
demands are likely to exist. In order to do this, in each frame
we choose one arbitrary source i and one arbitrary destination
j . Each source generates z times as many packets for des-
tination j compared to other destinations. Similarly, source
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Fig. 4 Comparison between FMA and projection method under vary-
ing non-uniform traffic load in terms of rejection percentage and average
queuing delay. Network has a propagation delay of 5 ms and 16 edge
nodes. Top panel: Rejection percentage. Middle panel: Maximum of
rejection percentage. Bottom panel: Queuing delay

i generates z times as many packets (to all destinations) as
any other source. As z increases, the elements of the demand
matrix corresponding to these two edge nodes are more likely
to be critical connections; the demand element Di j has even
higher likelihood of being critical.

Figure 5, top panel, compares the percentage of rejected
demand achieved by FMA and MRA as the offered load
changes for various values of z. At high load (>70%) with
z = 2, there are numerous critical elements and MRA begins
to achieve less rejection than FMA. The discrepancy is still
only two percent at 90% load. Figure 5, bottom panel, com-
pares the maximum percentage rejection experienced by any
demand when scheduling is performed by FMA and MRA.
As the offered load increases, MRA concentrates rejection
on the critical elements; the maximum percentage rejection
is thus much (up to 25%) higher than that achieved by FMA,
which distributes rejection fairly amongst all competing con-
nections. The average queuing delay experienced by packets
when scheduling is performed using FMA and MRA are sim-
ilar, and so not shown here.

Our third experiment explores how increasing the network
size affects the performance of FMA. The simulation settings
are the same as in the previous experiment (with z = 1). Fig-
ure 6, top panel, compares utilization for networks of 16, 32,
and 64 edge nodes and uniform traffic. The utilization is not
affected by network size. The bottom panel compares the
average queuing delays. For lower offered loads the queuing
delay multiplies by a factor close to 2 (and 4) for 32 (and 64)
edge nodes. This is the expected scaling behavior, because
the injected traffic is kept constant per node, so the total traf-
fic doubles (and quadruples). For higher loads the queuing
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the impact of z
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Fig. 6 Network performance (using FMA) with uniform traffic as a
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number of edge nodes. Top panel: Utilization. Bottom panel: Queuing
delay

delay increases dramatically because the frame length is too
small to support the increased number of nodes fairly. Sixty-
four edge nodes with similar traffic arrivals cannot share 100
time-slots in a fair fashion.

Our fourth experiment investigates how the incorporation
of the Smith controller impacts the response time of our sys-
tem when there is a sudden change in traffic arrival rates. We
are also interested in exploring the effect on the fairness in
the system. We measure an average relative fairness factor
(divergence), defined for source node j as:
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Fig. 7 The impact of the feedback controller with adaptive gain and
fast-start slow-finish compensation for the simulation conditions of Sce-
nario A. Top panel: Average queue length for VOQ experiencing the
heavy load. Middle panel: Average queue lengths of all VOQs. Bottom
panel: Relative fairness factor (divergence) as defined by (16)

δ j =
∑

i,i �= j |qp ji −
∑

i,i �= j qp ji
(n−1)

|∑
i,i �= j qp ji

(16)

This factor measures the average divergence of the queue
lengths of all VOQs at source node j from the overall aver-
age. It thus provides a good indication of the degree of equal-
ity of waiting times for packets in different queues (a value
closer to zero indicates better fairness).

In this experiment, we employ two traffic scenarios. In
both scenarios, the average arrival rates to the VOQs are
equal except for two periods (frames 20–32 and frames 130–
132) during which the arrival rate of traffic from one source
to one destination increases by a factor of 10. The two traffic
scenarios are:
Scenario A: The arrival distribution of the data packets is
Poisson with average arrival rate of 9 Gbps during the base-
line periods.
Scenario B: Six Pareto (α = 1.9) on–off sources are con-
nected to each edge node. The mean on-period is 0.33 ms
and mean off-period is 1.6 ms. The average rates are 9 Gbps
during the on-period.

The top panel of Fig. 7 compares the queue lengths of the
VOQ carrying the heavy connection when using FMA with
and without the Smith controller for the case of adaptive gains
with A = 63/xi j and C = 0.08 in (15). The Smith control-
ler decreases the response time substantially, reducing the
queue length of the heavy connection much faster than FMA
alone. The middle panel shows that there is little impact on
the other queues. The bottom panel compares average diver-
gences. During the initial periods of heavy traffic, the fast
draining of the long queue improves fairness.
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Fig. 8 The effect of the Smith controller under the bursty traffic con-
ditions of Scenario B. Top panel: Average queue length for VOQ expe-
riencing the heavy load. Middle panel: Average queue lengths of all
VOQs. Bottom panel: Relative fairness factor (divergence) as defined
by (17)

Figure 8 examines the performance in response to bursty
traffic as described in Scenario B, which is more unpredict-
able and thus poses a greater challenge for the Smith con-
troller. The simulations indicate that the Smith controller still
provides better drainage of the queues experiencing severe
congestion. There is minimal negative effect on other queues
or fairness. Similar results are observed for the case of several
queues experiencing a sudden change.

7 Conclusion

We investigated bandwidth allocation and scheduling prob-
lem in single-hop all-photonic networks with cross-connect
switches and large propagation delays. We proposed the
FMA, a novel scheduling algorithm that achieves zero rejec-
tion for admissible demands and provides weighted max-min
fair allocation of free capacity. When the demand matrix
is inadmissible, FMA minimizes the maximum percentage
rejection experienced by any connection. We subsequently
proposed the MRA, which ensures minimum global rejection
and provides weighted max-min fair allocation/rejection to
non-critical connections. Finally, we described a feedback
control system that compensates for scheduling errors due to
mispredictions and rejection. The controller design is based
on the Smith principle, which removes the destabilizing
delays from the feedback loop by using a “loop cancelation”
technique.

OPNET Modeler simulations indicate that FMA and MRA
achieve similar performance in terms of total rejection, but
there is a major difference in the fairness of the allocation of
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rejection. A comparison with an alternative algorithm pro-
posed for AAPNs, the projection method proposed by Peng
et al. [21], suggests that FMA achieves better performance in
terms of both rejection and queuing delay. Simulations of the
feedback control system indicate that it reduces the response
time to sudden changes in traffic intensity and imparts fair-
ness by controlling the divergence from the average queue
length.

Appendix A: Proof of Theorem 2

We first define a bottleneck link and state a lemma relating
weighted max-min fairness and the existence of bottleneck
links; the proof of the lemma appears in [27].

Definition 4 Bottleneck Link Given a feasible rate vector
υ and a weight vector ω, we say that link � is a bottleneck
link with respect to (υ , ω) for a connection u crossing �,
if C� = ∑

k υk � F� and ωu ≥ ωk for all connections k
crossing �.

Lemma 1 A feasible rate vector υ with weight vector ω =
{ υu

Ru
} is weighted max-min fair if and only if each connection

has a bottleneck link with respect to (υ , ω).

Proof (Proof of Theorem 2) Let u ∈ {(i, j), 1 ≤ i, j ≤ N }
index the source–destination connections specified by the
demand matrix. We focus on the properties of the modified
demand matrix and associated sets at various iterations of the
while loop in Algorithm 1, so we index entities by iteration
number and note that this indicates the value of the entity at
the start of the iteration. For example, AD(h) denotes the set
of unmodified overloaded lines at the start of iteration h of
the algorithm.

We prove that FMA achieves weighted max-min fair allo-
cation of the overloaded demand. During each iteration h of
the while-loop, FMA identifies the line γ ∈ AD(h) such that
Gγ (h) = min{G�(h); � ∈ AD(h)}. It alters the demands in
aγ (h) according to (2) and after this modification, there is no
subsequent modification of these demands. Substituting (2)
into the definition of the weight, we have ωu = 1 + Gγ (h)

for all u ∈ aγ (h).
We demonstrate that the adjustment at iteration h leads

to γ being a bottleneck link (line) for u ∈ aγ (h), i.e., after
this adjustment it holds that ωz ≤ ωu for u ∈ aγ (h) and
z ∈ bγ (h). Equivalently, we prove that min{G} is mono-
tonically increasing with respect to the iteration number, i.e.,
min{G(h)} ≤ min{G(h+1)}. The equivalence follows since
the ωz are obtained from adjustments prior to iteration h.

Suppose that line β has minimum G at iteration h + 1.
Lines γ and β have at most one connection (demand) in com-
mon. If there is no common connection, then Gβ(h + 1) =

Gβ(h) ≥ Gγ (h). If there is a common connection k, then:

L Sβ(h + 1) = L Sβ(h) + Dk(ωk − 1) (17)

Saβ (h + 1) = Saβ (h) − Dk (18)

and hence

Gβ(h + 1) = L − L Sβ(h) − Dk(ωk − 1)

Saβ (h) − Dk

= Saβ (h)Gβ(h) − Dk(ωk − 1)

Saβ (h) − Dk

≥ Gγ (h) (19)

where the last inequality follows from substitution based on
Gβ(h) ≥ Gγ (h) = ωk − 1.

Thus the application of FMA upon an inadmissible
demand matrix D leads to the generation of a bottleneck

link for each connection u with weight ωu = D′
u

Du
. By Lemma

1, this establishes that FMA achieves weighted max-min fair
allocation of adjusted demands D′. ��

Appendix B: Proof of Theorem 3

Proof We approach the proof by contradiction. Consider a
matrix R∗ that achieves minimum rejection and suppose that
it cannot be decomposed in the form R∗ = A + Q outlined
in the theorem statement. Let R∗

C denote the matrix formed
by setting all elements of R∗ to zero except those where
(h, p) ∈ C.

If there exists an element (h, p) ∈ C such that rh(R∗
C) <

rh(D) − L , cp(R∗
C) < cp(D) − L and R∗

C(h, p) < D(h, p),
then it is clear that we can form a new rejection matrix R′
by (i) setting R′(i, j) = R∗(i, j) for all (i, j) �= (h, p);
(ii) setting R′(h, p) = R∗(h, p) + δ for some δ > 0; and
(iii) reducing one or more of the non-critical elements of the
line R′(h, ·) by a sum total of δ, and doing the same for the
column R′(·, p). The total rejection of R′ is less than R∗,
contradicting the assumption that R∗ is a minimum-demand
matrix.

We must therefore be able to construct a decomposition
R∗ = A∗ + Q∗, where Q∗ satisfies the same properties as Q
(if we replace A by A∗), and A∗ is a matrix that satisfies the
constraints of the M AX RE J F L OW problem, and at least
one of (5–7) with equality. With this decomposition, we can
write the following expression for |R∗|:
|R∗| =

∑
h

∑
p

(A∗ + Q∗) (20)

= |A∗| +
∑

h∈Or

(
rh(D) − L − rh(A∗)

)
+

∑
p∈Oc

(
cp(D) − L − cp(A∗)

)
(21)

=
∑

h∈Or

(rh(D) − L) +
∑
p∈Oc

(cp(D) − L) − |A∗| (22)
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Since A∗ satisfies one of the constraints for each (h, p) with
equality, the matrix Q∗ can contribute additional rejection
on either the row h or the column p, but not both, so we do
not double-count rejection in (21).

Now consider an alternative, arbitrary rejection matrix R
that can be decomposed as R = A+ Q. This is always possi-
ble because a water-filling procedure (such as FMA) can be
used to identify a satisfactory matrix Q. Since A also satisfies
at least one of the three latter constraints of MAXREJFLOW
with equality, an equivalent expression to (22) is possible
with |R| replacing |R∗|, and |A| replacing |A∗|. The first
two terms are only dependent on D and L , and |A| > |A∗|,
since A is the maximum flow solution satisfying the speci-
fied constraints. It follows that |R| < |R∗|, contradicting the
assumption that R∗ is a minimum rejection matrix. ��

Appendix C: Robustness analysis

Gain margin and phase margin only measure robustness with
respect to model parameters, which are independent of fre-
quency ω. Since systems perform differently at different fre-
quencies, we need to find a tighter bound on the phase and
gain margins with respect to the frequency of the system. As
a widely accepted and more useful robustness indicator, we
define M � maxω |Hr ( jω)|, the maximum of the closed-
loop transfer function. The following relationships establish
lower bounds on φM and G M [24]:

G M ≥ 1 + 1

M
(23)

φM ≥ 2 sin−1
(

1

2M

)
� 1

M
(24)

In the proposed control model the major error occurs due
to the mismatch between the dead-time model and the actual
delay experienced by the data. This may cause the system to
cross its stability limits. Suppose that the dead-time of the
actual plant exceeds the dead-time T in our model by the
quantity δ. This error introduces a phase lag of ωδ at fre-
quency ω. Therefore, the system remains stable if δ <

φM
ωc

,
where ωc is the crossover frequency at which the open-loop
system gain drops to unity. When (24) is substituted into
this equation, a more conservative condition δ < 1

ωc M is
obtained.

For the transfer function obtained in (8) M = 1, and the
above condition is transformed to δ < 1

ωc
. Since it is not

possible to obtain the crossover frequency for our system
explicitly (due to the time delay in the transfer function), one
approach is to represent the dead-time as a first-order Padé
approximation [24]:

e−T s =
(

1 − T
2 s

1 + T
2 s

)
(25)

Then the crossover frequency can be approximated as ωc =
1

T + 1
xi j Kr

. Substituting this equation into δ < 1
ωc

leads to:

δ < T + 1

xi j Kr
(26)

This equation confirms that our designed controller is stable
for errors as large as the actual dead-time. It also indicates
that smaller values of the gain Kr make the system more
resilient to error, but this of course has the disadvantage of
slowing the system response.
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