
Fast Particle Flow Particle Filters via Clustering
Yunpeng Li and Mark Coates

Department of Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada
Email: yunpeng.li@mail.mcgill.ca;mark.coates@mcgill.ca

Abstract—Particle flow filters, introduced in a series of papers
by Daum and Huang, are an attractive alternative to particle
filters for filtering tasks in high-dimensional spaces or with
very informative measurements. Many variants of particle flow
filters have been developed, but all require approximations in
multiple stages of the implementation, which leads to particles
deviating from the true posterior distribution. To preserve the
statistical consistency of the filtering algorithm, some recent
papers embed the particle flow techniques within a particle filter,
using them to generate a proposal distribution. In recent work,
we developed such a particle flow particle filter, modifying the
flow mechanism to ensure that the implemented, approximate
flow was an invertible mapping. This property allows efficient
computation of the importance weights. In this paper, we strive
to reduce the computational overhead of the particle flow particle
filter by incorporating clustering of the particles. Results from
a multi-target acoustic tracking simulation demonstrate that we
can significantly reduce the computational cost of particle flow
particle filters with a relative small sacrifice in tracking accuracy.

I. INTRODUCTION

Particle filters have been standard tools in filtering with
nonlinear and non-Gaussian models. However, the weight
degeneracy issue has plagued their application when the state
dimension is high or when measurements are highly infor-
mative [1]. In a series of recent papers, Daum and Huang
introduced particle flow filters, which migrate particles from
the prior distribution to the posterior by constructing ”flows”
for each particle [2], [3]. There is no importance sampling step
so the weight degeneracy issue is avoided.

However, computationally tractable solutions only exist for
a few of the proposed particle flow filters. The exact Daum
and Huang (EDH) filter, proposed in [3], identifies update
equations for the case when the prior and posterior are
both Gaussian and the measurement model is linear. These
equations can be applied to nonlinear models via a linearizing
approximation. As described in [3], the EDH filter computes
the particle flow at the mean of the evolving particle cloud,
and applies it to all particles. A minor variation was explored
in [4], with individual particle flow updates evaluated for each
particle. This localized exact Daum and Huang (LEDH) filter
is much more computationally demanding but can provide
more accurate state estimates.

All particle flow filters require approximations in various
stages of implementation. Particles thus are in general not
exactly distributed according to the posterior distribution after
completion of the flow, and the discrepancy with the true
posterior is not well understood. Thus, the omission of the
importance sampling comes at a cost of sacrificing the sta-
tistical consistency of the filter. An alternative approach is

to incorporate the particle flow method within the particle
filtering framework. In [5], the drift homotopy technique is
incorporated within a Markov chain Monte Carlo (MCMC)
step to sample from the true posterior. Other algorithms
have used the particle flow approach to construct a proposal
distribution; the importance sampling (or weight update) step
is still applied and corrects for the discrepancy between the
posterior and the proposal distribution. The Gaussian particle
flow importance sampling algorithm (GPFIS) [6] constructs an
approximate Gaussian flow to sample from nonlinear Gaussian
models; the weight update is performed at each intermediate
time step of the flow. An approach based on optimal transport
concepts in [7] identifies a coupling between the prior and
the posterior and combines particle transport with importance
sampling. In [8], the stationary solution of the Fokker-Planck
equation is used to derive a stochastic particle flow. All of
these approaches mentioned above are elegant but are orders-
of-magnitude more computationally complex than the original
particle flow algorithms, e.g., the EDH and LEDH.

Recently, we proposed particle flow particle filters (PF-
PF) that incorporated a deterministic particle flow possessing
the invertible mapping property [9]. The invertible mapping
property allows us to perform a very efficient weight update.
The PF-PF based on LEDH has almost the same computational
overhead as LEDH (the weight update is much less demanding
than the flow evaluation). We provided a numerical simulation
example illustrating that the PF-PF based on LEDH can
provide more accurate estimates than the LEDH [9], suggest-
ing that incorporating the importance sampling correction is
beneficial.

In this paper, we propose a fast particle flow particle filter by
first identifying clusters of particles and assigning each particle
to a cluster. The expensive calculation of the flow is performed
only at the cluster medoids. As the number of clusters is
smaller than the number of particles, we expect reduction
of the computational cost. We design distance metrics for
clustering within the particle flow particle filter framework,
and examine the trade-off between the computational cost and
the tracking accuracy in a challenging multi-target acoustic
tracking simulation.

The rest of the paper is organized as follows. Section II
states the filtering task. Section III provides a brief review of
the particle flow technique that is incorporated in the proposed
filter. We introduce the proposed particle cluster flow particle
filters in Section IV. Section V introduces the simulation setup
and presents results. The conclusion is provided in Section VI.

II. PROBLEM STATEMENT

We consider the nonlinear filtering task with the following
models:

xn = g(xn−1, vn) (1)
zn = h(xn, wn) . (2)

where g : RD → RD is the dynamic model involving the
unobserved state xn ∈ RD and the process noise vn ∈ RD.
The nonlinear measurement model h : RD → RS describes
the relation between the state xn and the measurement zn ∈
RS . wn ∈ RS is the measurement noise. Our goal is to track
the marginal posterior distribution p(xn|z1, . . . , zn).

III. BACKGROUND

The particle flow process can be modeled as a background
stochastic process ηλ for pseudo-time λ ∈ [0, 1], between the
time steps n− 1 and n. The distribution of η0 is the prior of
xn and the distribution of η1 is the posterior of xn. The flow
of the i-th particle ηiλ is considered as the i-th realization of
this stochastic process.

When both the prior and the posterior are Gaussian and the
measurement function is linear, the EDH filter of [3] gives an
exact expression of the drift term in a deterministic flow:

dη

dλ
= ζ(η, λ) = A(λ)η + b(λ) (3)

where

A(λ) = −1

2
PHT (λHPHT +R)−1H, (4)

b(λ) = (I + 2λA)[(I + λA)PHTR−1zk +Aη̄0]. (5)

P is the covariance matrix of the prediction error for the prior
distribution, and H is the measurement matrix. For nonlinear
models, H is an approximation of h(·, ·) derived through the

linearization of the measurement model, i.e. H =
∂h(η, 0)

∂η
.

R is the covariance matrix of the measurement error, and η̄0

is the mean of the prior distribution. The flow is performed
by iterating through Nλ discrete time steps with step sizes
∆λ(1), . . . ,∆λ(Nλ).

The LEDH filter calculates Ai(λ) and bi(λ) of the drift term
ζ(ηiλ, λ) = Ai(λ)ηiλ + bi(λ) for each individual particle ηiλ,
where

Ai(λ) =− 1

2
PHi(λ)T (λHi(λ)PHi(λ)T +R)−1Hi(λ),

(6)

bi(λ) =(I + 2λAi(λ))[(I + λAi(λ))PHi(λ)TR−1(z − ei(λ))

+Ai(λ)η̄0]. (7)

Here ei(λ) = h(ηiλ, 0) − Hi(λ)ηiλ where Hi(λ) =
∂h(η, 0)

∂η

∣∣∣∣
η=ηiλ

.

The particle flow particle filter (PF-PF) [9] generates pro-
posal particles by applying the flow to particles {ηi0}

Np
i=1

distributed according to the prior. The applied flow is slightly
modified from the equations described above in order to ensure

that it is an invertible mapping (see Section IV and [9] for
details). Application of the flow leads to the construction of
a set of weighted particles {ηi1, win−1}

Np
i=1. The importance

weight of ηi1 is then updated to ensure that the filter is
statistically consistent. Ai(λ) and bi(λ) in the PF-PF (LEDH)
need to be independent of the sampling process in the prior
propagation phase of the i-th particle for the flow to possess
the invertible mapping property. This algorithmic design re-
quirement is reflected in the proposed algorithm described in
Section IV.

IV. PARTICLE FLOW PARTICLE FILTERING BASED ON
CLUSTERING

Since the PF-PF algorithm based on LEDH involves compu-
tation of the flow for each particle at each intermediate pseudo-
time step, the computational cost can be high if we employ
a reasonably large number of particles. We propose to first
cluster the particles and perform flow calculation only at the
cluster medoids.

We use γ(k) to denote the set containing the particle indexes
that belongs to the k-th cluster and η̄(k) as the medoid of the
k-th cluster. Here we choose the partitioning around medoids
(PAM) clustering method proposed in [10]. PAM is one of
the most widely used realizations of K-medoids clustering. It
iteratively chooses members from the clusters as the medoids
and partitions the whole dataset into clusters around those
medoids. The goal is to minimize the sum of distances between
data points and the medoid in the cluster to which they belong.
Compared to K-means clustering, K-medoids clustering can
be used in conjunction with arbitrary distance metrics, and it
is more robust to outlier data, which can arise when a few
particles are located in the tails of the evolving distribution.

For each intermediate pseudo-time step, we only need
to compute the flow at the K cluster medoids {η̄(k)}Kk=1.
This flow is applied to all particles belonging to the cluster.
Since we are applying approximate flows, we expect that the
clustering procedure will lead to a reduction in accuracy and
we are interested in the tradeoff between computation and
accuracy. Pseudocode for the proposed algorithms is presented
in Algorithm 1. The computational complexity of the clustered
PF-PF based on the LEDH is O(NλK+Np), without consid-
ering the computational complexity of the chosen clustering
algorithm. Different clustering algorithms or distance metrics
can be used in Line 11 of Algorithm 1, as discussed in the
subsections below.

A. Euclidean distances between the states

An intuitive approach is to perform clustering based on
Euclidean distances between {η̄i}Npi=1, where η̄i = g(xin−1, 0)
is the i-th particle propagated from xin−1 using the dynamic
model without noise.

The clustering is performed using {η̄i}Npi=1 instead of
{ηi0}

Np
i=1 (particles generated with the dynamic noise). This

is because we need Ai(λ) and bi(λ) to be independent of the
process noise. This allows us to ensure that the i-th proposed
particle is derived by sampling from the prior (ηi0) and then

Algorithm 1: Clustered PF-PF based on LEDH.

1: Initialization: Draw {xi0}
Np
i=1 from the prior p0(x);

2: Set {wi0}
Np
i=1 = 1

Np
;

3: for n = 1 to T do
4: Estimate P using the sample mean and the sample

covariance matrix, EKF, or UKF;
5: for i = 1, . . . , Np do
6: Calculate η̄i = g(xin−1, 0);
7: Propagate particles ηi0 = g(xin−1, vn);
8: Set ηi1 = ηi0;
9: end for

10: Set λ = 0;
11: Clustering: generate {γ(k), η̄(k)}Kk=1 using

Algorithm 2;
12: for m = 1, . . . , Nλ do
13: Set λ = λ+ ∆λ(m);
14: for k = 1, . . . ,K do
15: Calculate A(k)(λ) and b(k)(λ) from (6) and (7)

with the linearization being performed at η̄(k);
16: Migrate η̄(k):

η̄(k) = η̄(k) + ∆λ(j)(A(k)(λ)η̄(k) + b(k)(λ));
17: for i ∈ γ(k) do
18: Migrate particles:

ηi1 = ηi1 + ∆λ(j)(A(k)(λ)ηi1 + b(k)(λ));
19: end for
20: end for
21: end for
22: for i = 1, . . . , Np do
23: Set xin = ηi1;

24: win =
p(xin|xin−1)p(zn|xin)

p(ηi0|xin−1)
win−1;

25: end for
26: for i = 1, . . . , Np do
27: Normalize win = win/

∑Np
s=1 w

s
n;

28: end for
29: Estimate x̂n from {xin, win};
30: (Optional) Resample {xin, win}

Np
i=1 and regularize to

obtain {xin, 1
Np
}Npi=1;

31: end for

applying a deterministic, invertible mapping to generate ηi1.
This also requires a relatively mild constraint on Hi(λ)
(see [9] for details). The invertible mapping enables efficient
computation of the importance weights.

If some state components do not contribute to the flow pa-
rameters, we can ignore those state components when cluster-
ing. For example, in the simulation presented in the Section V,
the observations are a function of the position elements; as
a result the flow applied to a particle is independent of the
velocity components of the states. If the state vector consists
of states with different units, a normalization procedure is first
performed so that the ranges of values in each dimension are
the same.

B. Pearson correlation coefficient between initial flows

It is possible that although two particles are relatively
close to each other initially, their flows are quite different
due to a peaky likelihood function. Thus, we also consider
performing clustering based on the Pearson correlation coef-
ficients between the initially calculated flows ζi = ζ(ηi0, 0) =
Ai(0)ηi0 + bi(0). Flow vectors for all particles are computed
only once, at the beginning of the particle flow, with the sole
purpose of clustering the particles. We denote the Pearson
correlation coefficient between ζi and ζj by pij , and use
(1−pij) ∈ [0, 2] as the distance, because a larger value of pi,j
indicates that the initial values ζi and ζj are more positively
correlated, and this should correspond to a smaller distance.

The algorithm for this distance is a special case of Algo-
rithm 2, with α set to 0 in Equation (8).

C. Mixed distance metric

Denote the Euclidean distance between η̄i and η̄j by dij .
We normalize the dij values so that the maximum Euclidean
distance between any two particles is 2, and the minimum
value is 0. The resultant d̃ij values have the same range as the
1− pij values.

The weighted distance metric φij is given by

φij = αd̃ij + (1− α)(1− pij) , (8)

where α ∈ [0, 1] is a scalar weight. The clustering algorithm
with this mixed distance is presented in Algorithm 2. Its com-
putational complexity is O(KN2

p). Although the complexity
is quadratic with respect to Np, the distance metric is only
needed to be calculated once between Line 15 and Line 21 of
Algorithm 2, and the K-medoids algorithm can be performed
very efficiently. So the computational cost added from the clus-
tering algorithm is relatively small. This clustering algorithm
is used in line 11 of Algorithm 1.

Algorithm 2: Clustering based on the mixed distance
metric. (Replaces line 11 of Algorithm 1).

11: for i = 1, . . . , Np do
12: Calculate Ai(λ) and bi(λ) from (6) and (7) with the

linearization being performed at η̄i;
13: Calculate the slope ζi = (Ai(λ)η̄i + bi(λ));
14: end for
15: for i = 1, . . . , Np do
16: for j = 1, . . . , Np do
17: if j 6= i then
18: Calculate dij from η̄i and η̄j ; pij from ζi and ζj ;
19: end if
20: end for
21: end for
22: Normalize {dij}i∈1:Np,j∈1:Np to obtain
{d̃ij}i∈1:Np,j∈1:Np ; calculate {φij}i∈1:Np,j∈1:Np using
Equation (8);

23: K-medoids clustering based on {φij}i∈1:Np,j∈1:Np :
generate {γ(k), η̄(k)}Kk=1;

V. SIMULATIONS AND RESULTS

A. Simulation setup

We adapt a multi-target acoustic tracking simulation setup
proposed in [11] to create a scenario with a relatively large
state space and highly informative measurements. The size of
the monitored area is 40 m ×40 m, with S = 25 acoustic
amplitude sensors being deployed evenly at the intersections
of the grid dividing the region, as shown in Figure 1.
C = 4 targets move independently according to a con-

stant velocity model x(c)
k = Fx

(c)
k−1 + v

(c)
k , where x

(c)
k =

[xck, y
c
k, ẋ

c
k, ẏ

c
k] containing the x-y position and x-y velocity

components of the c-th target. F =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 is the

transition matrix. v(c)
k ∼ N(0, σ2

vV) is the process noise. To
simulate different trajectories, we add noise terms sampled

from
1

20


1/3 0 0.5 0
0 1/3 0 0.5

0.5 0 1 0
0 0.5 0 1

.

0 10 20 30 40

X (m)

0

10

20

30

40

Y
 (

m
)

Sensor

Target 1

Target 2

Target 3

Target 4

Fig. 1. The experiment setup illustrating sensor positions and target trajec-
tories in one simulation trial.

Sensor s receives attenuated amplitudes sent out from each
target. The noise-free measurement function is additive:

z̄s(xk) =

C∑
c=1

Ψ

||(xck, yck)T −Rs||ε + d0
. (9)

We set Ψ = 10, ε = 1, d0 = 0.1. For sensor s, the noisy
measurement zsk is tainted with an additive Gaussian noise:

zsk = z̄s(xk) + wsk

where xk = (x
(1)
k ; . . . ;x

(C)
k) is a 16-component state vector,

wsk ∼ N(0, σ2
w). σ2

w is set to 0.01, thus highly informative
measurements are generated.

The initial states of the four targets are
[12, 6, 0.001, 0.001]T , [32, 32,−0.001,−0.005]T , [20, 13,
−0.1, 0.01]T and [15, 35, 0.002, 0.002]T , respectively. 100
set of trajectories are simulated. Each of them generate one
measurement. All filtering algorithms are executed 5 times on
the same measurement, with different initialized states. The
reported results thus reflect the outcome of 500 trials, varying
either the target trajectories or the filter initializations. Matlab
is used to implement the simulation.

B. Compared filtering algorithms and parameter values

We compare the performance of the proposed algorithm
with the EDH filter [3], the LEDH filter [4], the Gaussian
particle flow importance sampling particle filter [6], bootstrap
particle filters (BPF), and the extended Kalman filter (EKF).

We perform particle flow calculations at exponentially
spaced discrete steps as recommended in [12]. The constant
ratio between step sizes is set to 1.2, i.e. q = ∆λ(j)

∆λ(j−1) = 1.2,
for j = 2, 3, . . . , Nλ. Nλ = 29 steps are used. η̄0 and P are
estimated using an EKF executed in parallel to the particle
flow.

In each simulation, particles are sampled for all algorithms
from the same initial distribution. The mean of the initial dis-
tribution is sampled from a large variance Gaussian centered
around the true initial state. If the initial mean is located
outside the surveillance sensor grid, it is rejected and re-
sampled. The variance for the position elements is set to 100,
and the variance for the velocity elements is set to 1. We set

σ2
v = 0.05 and V =


3 0 0.1 0
0 3 0 0.1

0.1 0 0.03 0
0 0.1 0 0.03

, to specify the

process noise. Resampling and regularization are performed
when the effective sample size (ESS) is less than Np

2 . All
algorithms use 500 particles except the two bootstrap particle
filters which use, respectively, 105 and 106 particles.

C. Tracking performance

Since the number of targets in our simulation is fixed, we
use the optimal mass transfer (OMAT) metric [13] to compare
and evaluate the algorithms. The p-th order OMAT metric
dp(X, X̂) is defined as

dp(X, X̂) = (
1

C
min
π∈Π

C∑
c=1

d(xc, x̂π(c))
p)1/p (10)

where X = {x1, x2, . . . , xC} and X̂ = {x̂1, x̂2, . . . , x̂C}
are arbitrary sets. Π is the set of possible permutations of
{1, 2, . . . , C}. The scalar p is a fixed parameter and d(x, x̂) is
the Euclidean distance between x and X̂ . We set p to 1, so the
OMAT metric minimizes the Euclidean distance between the
true target positions and the permutation of estimated target
positions.

We first demonstrate through Figure 2 that the PF-PF
(LEDH) has the best tracking accuracy compared with other
tested filtering algorithms. The PF-PF (LEDH) with 500
particles outperforms the BPF with 1 million particles in terms
of tracking accuracy.

5 10 15 20 25 30 35 40

time step

0

1

2

3

4

5

6

a
v
e
ra

g
e
 O

M
A

T
 e

rr
o
r

(m
)

PF-PF (LEDH)

PF-PF (EDH)

LEDH

EDH

GPFIS

EKF

BPF (100K)

BPF (1M)

34 36 38 40

0.8

1

1.2

1.4

1.6

1.8

Fig. 2. Average errors at each time step from different filtering algorithms.

We now examine the impact of clustering. We conducted
tests using different values of α in the mixed clustering
distance and observed almost the same performance for α ∈
{0, 0.25, 0.5, 0.75, 1}. Thus, we fix the value of the weight α
to 0.25 for the rest of the paper. This means that we place
more importance on the correlation between the initial flow
vectors in evaluating the clustering distance. One example
of the estimated tracks is shown in Figure 3. The estimated
trajectories closely follow the true trajectories for most of the
tracking period.

To investigate the impact of the number of clusters used in
K-medoids clustering, we choose K ∈ {30, 100, 200, 300}.
The average OMAT errors at each time step are shown
in Figure 4. We observe that PF-PF (LEDH) with K ∈
{100, 200, 300} clusters have slightly higher average errors
than PF-PF (LEDH), but the values are comparable. The
performance deteriorates slightly as the number of clusters
is reduced. Even with 100 clusters, the tracking performance
is better than the LEDH or GPFIS filters. The error becomes
significantly larger when the number of clusters is reduced to
30.

0 10 20 30 40

X (m)

0

10

20

30

40

Y
 (

m
)

Sensor

Target 1 (true)

Target 1 (est.)

Target 2 (true)

Target 2 (est.)

Target 3 (true)

Target 3 (est.)

Target 4 (true)

Target 4 (est.)

starting position

Fig. 3. One example of estimated trajectories using PF-PF (LEDH) with 100
clusters and α = 0.25. The crosses indicate the starting positions of the four
targets and the solid lines show their true trajectories. Dotted lines show the
estimated trajectories, which are close to the true trajectories hence there is
considerable overlap between the dotted and solid lines.

5 10 15 20 25 30 35 40

time step

0

0.5

1

1.5

2

2.5

3

3.5

4

a
v
e

ra
g

e
 O

M
A

T
 e

rr
o

r
(m

)

30 clusters

100 clusters

200 clusters

300 clusters

PF-PF (LEDH)

LEDH
34 36 38 40

0.8

1

1.2

Fig. 4. Average errors at each time step from PF-PF (LEDH) and its clustering
variants with different number of clusters.

The main motivation for using clustering is to reduce
the computational cost of the PF-PF (LEDH) algorithm. To
examine the trade-off between the tracking performance and
the execution time, boxplots of average OMAT errors from
PF-PF (LEDH) and its clustering-based variants are plotted
against their execution time per step (Figure 5). From the
bottom figure we can see that with 100 clusters or more, PF-
PF (LEDH) via clustering has a similar median, as well as
the first and third quartiles, compared with PF-PF (LEDH).
However, with 100 clusters, the average execution time per

time step is one quarter of that of the PF-PF (LEDH) without
clustering, using the same number (Np = 500) of particles.
The number of outliers, shown in the top figure of Figure 5,
increases when the number of clusters decreases, especially
in the region where the average OMAT error is larger than
6 meters. This shows that the computational saving from a
reduced number of clusters comes at a cost of increasing the
chance of a poor tracking outcome.

0

2

4

6

8

10

O
M

A
T

 e
rr

o
r

(m
)

0.5 1 1.7 2.7 4.2

Execution time per step (s)

0

0.5

1

1.5

2

O
M

A
T

 e
rr

o
r

(m
)

30 clusters
100 clusters

200 clusters
300 clusters

PF-PF (LEDH)

Fig. 5. Boxplots of average OMAT errors, plotted against the average
execution time per time step, produced with an Intel Xeon E5-4650 2.70GHz
CPU. The top figure shows the full boxplots; the bottom one concentrates on
the region where the OMAT error is between 0 and 2. All algorithms use 500
particles.

VI. CONCLUSION

In this paper, we explored using clustering algorithms to
expedite the particle flow particle filtering algorithm. We
designed a mixed distance metric to perform clustering of
particles, while retaining the invertible mapping property of
the deterministic flow, which allows efficient calculation of
importance weights.

We show that by clustering particles and perform the
expensive flow calculations only at the cluster medoids, we
can significantly reduce the computational cost with a small
sacrifice in accuracy. In future research we will explore the
design of an adaptive method to choose and vary the number
of clusters over time.

REFERENCES

[1] T. Bengtsson, P. Bickel, and B. Li, “Curse-of-dimensionality revisited:
Collapse of the particle filter in very large scale systems,” in Probability
and Statistics: Essays in Honor of David A. Freedman, D. Nolan and
T. Speed, Eds. Beachwood, OH, USA: Institute of Mathematical
Statistics, 2008, vol. 2, pp. 316–334.

[2] F. Daum and J. Huang, “Nonlinear filters with log-homotopy,” in Proc.
SPIE Signal and Data Processing of Small Targets, San Diego, CA,
USA, Sep. 2007, p. 669918.

[3] F. Daum, J. Huang, and A. Noushin, “Exact particle flow for nonlinear
filters,” in Proc. SPIE Conf. Signal Proc., Sensor Fusion, Target Recog.,
Orlando, FL, USA, Apr. 2010, p. 769704.

[4] T. Ding and M. J. Coates, “Implementation of the Daum-Huang exact-
flow particle filter,” in Proc. IEEE Statistical Signal Processing Work-
shop (SSP), Ann Arbor, MI, USA, Aug. 2012, pp. 257–260.

[5] V. Maroulas, K. Kang, I. D. Schizas, and M. W. Berry, “A learning drift
homotopy particle filter,” in Proc. Intl. Conf. on Information Fusion,
Washington, DC, July 2015, pp. 1930–1937.

[6] P. Bunch and S. Godsill, “Approximations of the optimal importance
density using Gaussian particle flow importance sampling,” J. Amer.
Statist. Assoc., 2015, accepted, see http://arxiv.org/abs/1406.3183.

[7] S. Reich, “A guided sequential Monte Carlo method for the assimila-
tion of data into stochastic dynamical systems,” in Recent Trends in
Dynamical Systems. Springer Basel, 2013, vol. 35, pp. 205–220.

[8] F. E. de Melo, S. Maskell, M. Fasiolo, and F. Daum, “Stochastic particle
flow for nonlinear high-dimensional filtering problems,” arXiv preprint
arXiv:1511.01448, 2015.

[9] Y. Li, L. Zhao, and M. J. Coates, “Particle flow for particle filtering,”
in Proc. Intl. Conf. Acoustics, Speech and Signal Proc. (ICASSP),
Shanghai, China, Mar. 2016, accepted.

[10] L. Kaufman and P. J. Rousseeuw, “Finding groups in data: An introduc-
tion to cluster analysis,” Wiley Series in Probability and Mathematical
Statistics. Applied Probability and Statistics, 1990.

[11] O. Hlinka, O. Sluciak, F. Hlawatsch, P. M. Djuric, and M. Rupp,
“Distributed Gaussian particle filtering using likelihood consensus,” in
Proc. Intl. Conf. Acoustics, Speech and Signal Proc. (ICASSP), Prague,
Czech Republic, May 2011, pp. 3756–3759.

[12] F. Daum and J. Huang, “Particle flow with non-zero diffusion for
nonlinear filters,” in Proc. SPIE Conf. Signal Proc., Sensor Fusion,
Target Recog., Baltimore, MD, USA, May 2013, p. 87450P.

[13] D. Schuhmacher, B. T. Vo, and B. N. Vo, “A consistent metric for
performance evaluation of multi-object filters,” IEEE Trans. Signal
Process., vol. 56, no. 8, pp. 3447–3457, Aug 2008.

