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Abstract—This paper examines device-free tracking of mul-
tiple targets based on radio-frequency received signal strength
(RSS) measurements recorded by a sensor network. We report
experimental results that validate, for relatively uncluttered
outdoor environments, a recently proposed model in which
targets cause additive attenuation. Using this model, we examine
the performance of three multi-target tracking algorithms using
a experimental sensor network testbed consisting of 24 nodes
that conducts surveillance of an outdoor area of size 50m2. The
experiments are restricted to the case of a fixed number of targets
(up to four). For four targets, all algorithms are able to track
with average error less than 1m (as measured using the second-
order OMAT metric); for two targets the error is close to 0.2m.

I. INTRODUCTION

We address the task of tracking multiple mobile targets in
a “device-free” setting, where targets do not carry active or
passive devices to assist the tracking system. This form of
tracking has important applications in military surveillance,
search-and-rescue operations, through the wall imaging, and
healthcare environments [1], [2]. Wireless sensor networks
that perform tracking based on radio-frequency (RF) received
signal strength (RSS) measurements are attractive because they
are relatively inexpensive and can be deployed quickly. The
RF measurement modality has the advantages, compared to
alternatives such as infrared and video, of having the potential
to penetrate walls and other non-metallic obstacles.

The imaging of an area to detect mobile targets based
on the additional attenuation and fluctuations they cause in
wireless transmissions has been named “radio-frequency (RF)
tomography” [3]. In previous work, tracking using radio-
frequency tomography principles has been primarily limited
to a single target [3], [4], [5], [6]. Recently, Thouin et al.
developed a multiple target tracking algorithm for the RF
tomography setting [7]. The paper proposes a measurement
model that assumes that the attenuation caused by individual
targets combines in an additive fashion in the multi-target
setting. The performance assessment in [7] was based entirely
on simulation; no practical experimentation was conducted.

This paper reports on an experimental study to validate the
proposed additive model and to assess the practical tracking

capabilities of the proposed system. We restrict our attention
to relatively uncluttered outdoor environments. In this setting,
our experiments confirm that the model is acceptably accurate,
although the variance in the measurements is relatively high.
For the case where there is a fixed and known number of
targets, we examine the performance of three candidate multi-
target tracking algorithms: the bootstrap particle filter [8], the
multiple particle filter [9], [10], and a Markov Chain Monte
Carlo (MCMC) filter [11], [7]. Our experiments are conducted
using a experimental sensor network testbed consisting of 24
nodes deployed in an uncluttered outdoor area of size 50m2.
The experiments are restricted to the case of a fixed number of
targets (up to four), and illustrate that in this setting, accurate
real-time tracking can be performed.

The rest of the paper is organized as follows. In the
following subsection, we discuss related work in more detail.
Section II provides a detailed problem statement and describes
the measurement model adopted for the multi-target case. It
also presents the results of experiments conducted to validate
this model. In Section III we briefly review the multi-target
tracking algorithms we have employed. The sensor-network
experimental setup and tracking results are discussed in IV.
Concluding remarks are presented in Section V.

A. Related Work

There has been much recent work addressing device-free
localization of targets using wireless sensor networks, with
the review paper [2] providing a good overview of the many
techniques. The problem is related to MIMO radar [12]
and classical multistatic radar tracking, but the underlying
measurement systems and signal models are very different.

Zhang et al. were among the first to develop tracking
systems based on the interference caused by moving ob-
jects [13], [14], [15]. These systems achieve good tracking per-
formance, but the employed models are developed specifically
for ceiling-mounted sensor nodes and the spacing between
sensor nodes needs to be relatively small (2-4m). Calibration
is also required, and this is not practical in important scenarios
we wish to consider (search-and-rescue, military surveillance).
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Of the techniques that have directly addressed tracking and
incorporated basic models of target dynamics, the majority
have focused on single target tracking. Wilson and Patwari
proposed a method in [3], [4] that first applies an inverse
imaging algorithm to obtain an attenuation map and then
applies a Kalman filter to track the peak in the map. In [5],
Li et al. introduced a sequential Monte Carlo algorithm that
incorporates online Expectation-Maximization to train model
parameters. The approach was extended to incorporate simul-
taneous localization of the sensor nodes in [6].

As discussed above, Thouin et al. focused on the multi-
target tracking problem in [7], proposing a measurement model
that assumed that targets caused additive attenuation effects.
They introduced a new moment-based filtering algorithm and
reported simulation results showing the ability to track accu-
rately and efficiently.

II. MODELS AND PROBLEM STATEMENT

A. Problem statement

When a sensor network communicates through transmission
of wireless packets, the received signal strength (RSS) mea-
surements on a link connecting sensor nodes is affected by the
distance between the sensors and the interference caused by
static and moving objects. When a target moves through the
sensed region, it affects different links, and changes in RSS
values can be used to perform tracking.

Our experimental system is a wireless sensor network of
R nodes and M = R2−R

2 bidirectional links. Each node
successively broadcasts packets at short time intervals (8.3ms
in our testbed) and the other nodes measure the RSS. A single
measurement interval corresponds to the period required for
all nodes to transmit (200ms in our 24-node testbed). The
measurements are then the RSS values of all bidirectional
links. For link i and time step k, we denote this RSS value
γi(k); it is the average of the RSS values recorded on the
forward and reverse links. We stack the RSS measurements
into a vector γ(k).

The RSS model adopted in this paper was proposed in [7]
and is an extension of the empirical single target model of [6].
Under this model, the RSS value γi(k) is split into three main
terms: γi(k) = γ̄i + yik + ζik. Here γ̄i is the average RSS on
link i when no target is present, yik is the attenuation on link i
at time step k due to mobile targets, and ζik is additive white
Gaussian noise affecting the measured RSS on link i at time
step k. We assume that there is a time period during which
we can gather measurements on all links when no target is
present in order to estimate γ̄i. The measurements we use for
tracking at time step k are then zk = γk − γ̄.

We address the problem of tracking a known and fixed
number of targets. The nth target is identified at time k by
by its state xk,n. We assume that the motion of each target is
specified by a Markovian dynamic model f(xk|xk−1). If Nk
targets are present in the sensed region, then the combined
state is Xk = [xk,1, xk,2, . . . , xk,Nk

]. Our goal is to estimate
the posterior distribution at every time k of the Nk targets
given all the measurements up to time k (marginalized with

respect to time). Thus at every time step k we want to approx-
imate the distribution p(Xk|z(1:k)) where z(1:k) represents all
the observations up to time k, i.e., z(1:k) = {z1, z2, · · · , zk}.
Since the state posterior distribution has all the information
about the target states and associated uncertainty, we can
derive point estimates from the approximation.

In this paper, we adopt a very simple random walk model for
the target motion. Our main motivation for the simple model
is to allow for very general movements (humans walking,
stopping, turning). The state evolution equation we adopt is:

xk+1,n = xk,n + σvVk (1)

where Vk is distributed according to a Gaussian distribution
N (0, I2×2). The targets are assumed to move independently
of each other. In this work we assume that σv is a known
constant, but online EM procedures [5] could be incorporated
to jointly track the targets and estimate this value.

B. Measurement model

Li et al. proposed a single target measurement model for
RF tomography in an uncluttered outdoor region based on
experimental studies [5]. The RSS attenuation on link j caused
by a target at position x is modeled as

gj(x) = φ exp

(
−λj(x)

σλ

)
(2)

where φ and σλ are attenuation parameters based on physical
properties of the targets. The value λj(x) is

λj(x) = d1(x) + d2(x)− d12 (3)

where d1(x) and d2(x) are distances between target at location
x and the two sensors forming the link, d12 is the distance
between the sensors. λj(x) captures a notion of the distance
between the target and the line-of-sight link between transmit-
ter and receiver. In this model, when the target at x is close
to link j, λj(x) is large, and hence the attenuation gj(x) is
small.

Thouin et al. proposed a multi-target extension of this model
in [7]. The extended model assumes that the attenuation caused
by the presence of multiple targets is equal to the sum of the
attenuation due to each of the targets present alone. Thus if
gj(xn) is the attenuation on link j due to the nth target located
at xn, then the total attenuation on link j due to all of the
targets combined is

gj(Xk) =

Nk∑
n=1

gj(xk,n) (4)

where Nk is the total number of targets within the field of
observation. This being the model-predicted attenuation, the
observed noisy attenuation values at time step k is given by

zk = g(Xk) + σzsk (5)

where g = [g1, g2, · · · , gM ], M is the number of links, and sk
is noise, assumed to be distributed according to N (0, IM×M ).
We assume that σz is known or estimated during the period
when background attenuation values are learned.
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C. Experimental Validation of Additive Model

We assess the validity of the additive attenuation model
using single-link sensor measurements when multiple targets
affect the link. Our experiments are conducted for a link with
the sensors separated by 8 meters. The transceivers of the
sensor nodes are system-on-chip (SoC) TI CC2530 devices;
each node has a monopole antenna and uses the 2.4 GHz
IEEE 802.15.4 standard for communication. Figure 1 depicts
the experimental setup. In each experiment, Target A stands on
the line-of-sight path between the sensor nodes (the positions
are labeled “LOS marker” in Figure 1). Target B walks along
a trajectory perpendicular to the line-of-sight path, crossing
close to the position of Target A. For each experiment, Target
B completes 10 crossings and approximately 22,000 RSS
measurements are measured by the receiving sensors. We also
conduct similar experiments when only Target A or Target B
is present.
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Fig. 1. The figure illustrates the single link experiment setup. Markers on
LOS indicate different positions of stationary Target A. Arrows indicate path
of moving Target B.

Figure 2 presents a scatter plot of the attenuation values
after the background RSS estimates have been subtracted. This
figure also shows the average attenuations when Target A is
alone (dashed line) and when Target B is alone (blue line
with square markers). We compare the average attenuation of
the two targets with the model in (5). In the model we set φ
for each target to the mean attenuation value when the target
is alone and choose σλ = 0.04, which has been observed
to be a good fit for the outdoor environment [6]. The additive
model provides a good explanation of the experimental average
attenuation, particularly in the region of interest (small λ).

Figure 3 depicts a histogram of the differences between the
attenuation values predicted by the model (4) and the measured
values. These differences should be explained by the additive
Gaussian noise in (5). Superimposed is the best-fit Gaussian
model. The Gaussian fit has mean −0.029dB and standard
deviation is 2.25dB. The fact that the mean is close to zero is
encouraging, but the histogram does not correspond to a Gaus-
sian distribution. The quantile-quantile plot in Figure 3 shows

Fig. 2. Signal attenuation levels versus parameter λ for the single target and
two targets case. Both experimental and model predicted attenuation levels
are plotted when two targets are present.
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Fig. 3. Validation of the error as Gaussian model. Top figure shows a
histogram of the model error and the corresponding best-fit Gaussian. The
bottom figure shows a quantile-quantile plot of the model error.

significant discrepancy between the sample quantiles and the
standard normal quantiles. There are multiple measurements
where the observed attenuation is much higher than predicted
by the model; the empirical distribution is skewed to the right
and has a relatively heavy tail. The poor match is confirmed
by a Lilliefors test, Anderson-Darling test, and D’Agostino
test, which all reject the null hypothesis that the differences
are normally distributed (with significance 0.05).

Despite the poor fit of the Gaussian, we observe that using
the Gaussian model still leads to reasonably good tracking
performance (see Section IV). It simplifies the computations
and since there are many hundreds of links it is important that
log-likelihoods can be evaluated relatively quickly.
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III. MULTI TARGET TRACKING ALGORITHMS

In this section we briefly review the three particle filtering
algorithms we employ for multi-target tracking. The first is
a simple implementation of the bootstrap particle filter [8]
(BPF). It is based on the principle of sequential importance
resampling. At every time step, the BPF maintains a weighted
set of particles to approximate the posterior distribution. Re-
sampling is performed periodically to ensure that the particle
set remains sufficiently diverse.

The bootstrap particle filter is known to struggle when faced
with high-dimensional problems. To address this limitation,
Djuric et al. introduced the multiple particle filter (MPF) in [9],
[10]. They suggested using one low-dimensional particle filter
for each of the targets being tracked. The multiple particle
filter is summarized in Algorithm 1.

1 Initialize particle filters {w(i)
0,n, x

(i)
0,n}

i=Np

i=1 n = 1, 2 · · ·N
for k = 1 to T do

2 for i = 1 to Np do
3 proposal step: x(i)

k,n ∼ p(xk,n|x
(i)
k−1,n) ;

4 end
5 estimation step: x̂k,n ≈

∑i=Np

i=1 w
(i)
k−1,n x

(i)
k,n ;

6 for i = 1 to Np do
7 weight update: w(i)

k,n ∝ w
(i)
k−1,n p(Zk|x

(i)
k,n, X̂k,n) ;

8 end
9 resample step: {w(i)

k,n, x
(i)
k,n}

i=Np

i=1 → { 1
Np
, x

(i)
k,n}

i=Np

i=1 ;
10 end

Algorithm 1: Multiple Particle Filter

The MPF maintains a separate particle filter for each of
the N targets; Np is the number of particles per target. In
our implementation, each filter is a bootstrap particle filter.
The weight update step for the individual filters cannot be
performed independently of the other target states because
the computation of the measurement likelihood requires the
combined state information. Thus for the particle filter corre-
sponding to nth target an estimate of the other target states
X̂k,n = [x̂k,1 . . . x̂k,n−1, x̂k,n+1 . . . x̂k,N ] is obtained. The
target state estimates x̂k,n are calculated as a weighted average
of the current particles {x(i)

k,n} using the weights from the
previous time step {w(i)

k−1,n}.
The third particle based method is a Markov Chain Monte

Carlo (MCMC) filter. It constructs a Markov chain which has
the desired marginal posterior as its stationary distribution. We
use a modified version of the filter originally described in [11]
(see [7] for details). The pseudocode for the MCMC filter is
presented in Algorithm 2. The MCMC chain is initialized by
choosing the particle X

(0)
k from the previous time step that

has the highest likelihood for the current observation and we
set X(0)

k−1 = X
(0)
k . The acceptance probabilities ρ1 and ρ2 are

calculated so that the samples are distributed according to the
required posterior distributions. In practice, a good sample set
is obtained by ignoring the initial Nburn samples and then
selecting one in every Nthin samples from the sequence.

1 Initialize particles {X(i)
0 }

i=Np

i=1 ;
2 for k = 1 to T do
3 Initialize MCMC chain (X

(0)
k , X

(0)
k−1) ;

4 for m = 1 to (Nburn +Np ×N ×Nthin) do
5 Joint Draw ;
6 draw (Yk, Yk−1) ∼ q1(Xk, Xk−1|Xm−1

k , Xm−1
k−1 )

accept (Xm
k , X

m
k−1) = (Yk, Yk−1) with prob. ρ1 ;

7 else (Xm
k , X

m
k−1) = (Xm−1

k , Xm−1
k−1 )

8 Refinement ;
9 draw Yk ∼ q2(Xk|Xm

k , X
m
k−1) ;

10 refine Xm
k = Yk with prob. ρ2

11 end
12 end

Algorithm 2: MCMC Filter

IV. EXPERIMENTS AND RESULTS

A. Experiment setup

Our experiment are conducted using a sensor network
comprised of 24 wireless sensor nodes, deployed in a 7m×7m
square layout in an empty grass field (see Figure 4). The
transceivers of the sensor nodes are system-on-chip (SoC) TI
CC2530 devices; each node has a monopole antenna and uses
the 2.4 GHz IEEE 802.15.4 standard for communication.

A simple token ring protocol is used to control transmission.
During each time interval of 8.3ms, one node broadcasts a data
packet. All of the other nodes receive this packet and measure
the RSS. The token is then passed to the next node. A complete
set of measurements, corresponding to a transmission from
each of the 24 sensors, is thus collected every 200ms. This
constitutes a time step for the algorithms.

We perform three different experiments, repeating each ten
times. In the first experiment two targets move inside the
sensor network along a square trajectory. The targets start
from diagonally opposite corners of the square and move
in anti-clockwise direction. In second experiment two targets
move along a zigzag trajectory (see Figure 4). In the third
experiment, four targets are present. Two targets move around
a bigger square in an anti-clockwise direction, starting in
opposite corners. The other two other targets move around
a smaller square in a clockwise direction (see Figure 5).

All of the targets are present for the entire duration of the
experiment. Two rounds of the trajectory are completed by
each target in experiments one and two. Two rounds of the
outer square and four rounds of the inner square are completed
by the targets in experiment three. Visible markers are placed
along the target trajectories and we record the times when
targets cross the marker locations to establish a ground-truth
trajectory.

B. Tracking performance

The measurement model parameters are set to be φ = 5,
σz = 1, σλ = 0.04. These values are selected because they
are the average values observed in many outdoor experiments.
Human targets have caused average line-of-sight attenuations
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ranging from 3-8dB; the value of φ = 5 is an adequate
approximation. The tracking performance is relatively robust
to changes of these parameter values. The target motion model
parameter is set to σv = 0.2; this parameter effectively places
a bound on the distance a target is likely to travel in 200ms
and the value 0.2 reflects that we are trying to track walking
targets.

In the algorithms, we vary the number of particles per
target over the range Np = 50, 250, 500. For the MCMC
algorithm, the burn-in is Nburn = 1000 and the thinning factor
is Nthin = 3. For all of the filters, the initial set of particles for
each target is independently drawn from a Gaussian distribu-
tion of unit variance, centered around the actual target location.
The estimated target locations are obtained by computing the
weighted average of the particles.

To compare and evaluate the algorithms, we need an error
metric to measure the proximity of the estimated and the
ground truth tracks. We use the OSPA metric [16], which for
a fixed number of targets reduces to the p-th order OMAT
metric:

dp(X,Y ) =

(
1

n
min
π∈Π

n∑
i=1

d(xi, yπ(i))
p

)1/p

(6)

where Π is the set of possible permutations of {1, 2, . . . , n},
d(x, y) is the Euclidean distance between x and y, X =
{x1, . . . , xn} and Y = {y1, . . . , yn} are arbitrary sets and p is
a fixed parameter. We use the value p = 2. The OMAT error
is then equivalent to the root mean square error under the best
possible association between estimated target positions and
ground truth. The track estimates are obtained by connecting
over time the best possible association at every time step.

BPF MPF MCMC
Err. Time Err. Time Err. Time

Exp. Np (m) (ms) .(m) (ms) (m) (ms)
Exp. 1 50 0.42 20 0.20 17 0.23 1008

250 0.21 101 0.20 88 0.20 1978
500 0.20 217 0.20 179 0.20 3374

Exp. 2 50 0.64 19 0.23 17 0.22 973
250 0.23 95 0.22 84 0.22 1889
500 0.27 202 0.22 170 0.22 3137

Exp. 3 50 1.34 62 0.96 48 0.77 1709
250 1.06 338 0.90 244 0.69 4333
500 0.88 803 0.91 493 0.63 7636

TABLE I
AVERAGE ERROR (IN METER) AND AVERAGE COMPUTATIONAL TIME (IN

MILLISECONDS) PER TIME STEP FOR DIFFERENT EXPERIMENTS USING
DIFFERENT ALGORITHMS WITH Np = 50, 250 & 500.

We run each algorithm with 10 different random initializa-
tions. Since each experiment is repeated 10 times, we compute
an average error (over all the 100 track-initialization pairs).
Table I presents the errors for the cases Np = 50, 250, and 500.
The table also shows the average computation time required
per time step. All the processing was conducted in Matlab
running on computers with the same configuration (2 Xeon
4-core 2.5GHz processors, 14GB RAM). Computational time
is measured using the tic, toc routines in Matlab.
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Fig. 4. A network of 24 sensors (indicated as numbered circles) deployed
in a square layout and having M = 276 communication links. Also shown
in the figure is the true trajectory when two targets are moving in a zigzag
path (indicated by dotted arrows) for the second experiment and the estimated
target tracks obtained using the MPF algorithm with Np = 500.
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Fig. 5. The figure shows ground truth trajectory (indicated by dotted arrows)
for the third experiment with four targets and the estimated target tracks
obtained using the MCMC algorithm with Np = 500.

The results illustrate that the MPF requires only 50 particles
per target to track effectively and that it can execute in real-
time (computational time is less than the 200ms measurement
interval). It significantly outperforms the BPF, which needs
many more particles to achieve comparable accuracy. For four
targets, the MCMC filter is more accurate than the MPF, but
it is almost impossible to execute as a real-time system. The
results for the four-target experiment do illustrate that there is
room for improvement over the MPF algorithm. Interestingly,
the accuracy of the MPF does not improve as the number of
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Fig. 6. Box and whisker plot of the error for experiments 2 & 3 as simulation
progresses for the algorithms BPF, MPF and MCMC with Np = 500. The
box ranges from 25th to 75th percentile and the line within the box indicates
the median value and the pluses indicate outliers.

particles is increased, indicating that the extra error is probably
due to the approximation employed in the algorithm during the
weight update stage.

Sample tracking trajectories are shown in Figure 4 (two
targets, MPF algorithm) and Figure 5 (four targets, MCMC
filter). The tracking is generally accurate, with the occasional
departure from the true trajectory. Figures 6(a) and 6(b) show
box and whisker plots of error as a function of time for the
different algorithms. The BPF has numerous outliers indicating
frequent tracking errors. The MPF and MCMC filter have
fewer outliers and the worst-case errors are on the order of
0.6m for the two-target case and 2.5m for the four-target case.

V. CONCLUSION

This paper has provided some experimental verification
of an additive attenuation measurement model for multi-
target RF tomography. The experiments indicated that the
model adequately captures the average attenuation; the noise,
although close to zero-mean, is not well described by the

Gaussian model. We examined the performance of three multi-
target tracking algorithms using data collected using a 24-node
sensor network testbed deployed over 50m2 in an open field.
The results indicated that the multiple particle filter of Djuric
et al. [9] can perform real-time tracking with relatively good
accuracy. In future work we will conduct a more thorough
assessment of the accuracy of the model and examine more
complicated tracking scenarios such as interacting targets and
a variable number of targets.

ACKNOWLEDGMENT

This research was supported by the National Science and Engineer-
ing Research Council of Canada and industrial partners through the
hSITE Research Network. The authors thank Yan Zeng for her help
in conducting the single link experiments. We also thank Xue Liu
and Guang Zhao for conducting experiments at Beijing University of
Posts and Telecommunications.

REFERENCES

[1] M. Moussa and M. Youssef, “Smart devices for smart environments:
device-free passive detection in real environments,” in Proc. Int. Conf.
Perv. Comp. and Comm., Galveston, TX, U.S.A., Mar. 2009.

[2] N. Patwari and J. Wilson, “RF sensor networks for device-free local-
ization: measurements, models, and algorithms,” Proc. IEEE, vol. 98,
no. 11, pp. 1961–1973, Nov. 2010.

[3] J. Wilson and N. Patwari, “Radio tomographic imaging with wireless
networks,” IEEE Trans. Mobile Computing, vol. 9, no. 5, pp. 621–632,
Jan. 2010.

[4] ——, “See through walls: motion tracking using variance-based radio
tomography networks,” IEEE Trans. Mobile Computing, vol. 10, no. 5,
pp. 612–621, May. 2011.

[5] Y. Li, X. Chen, M. Coates, and B. Yang, “Sequential Monte Carlo
radio-frequency tomographic tracking,” in Proc. Int. Conf. on Acoustics,
Speech and Signal Processing, Prague, May 2011.

[6] X. Chen, A. Edelstein, Y. Li, M. Coates, M. Rabbat, and A. Men,
“Sequential Monte Carlo for simultaneous passive device-free tracking
and sensor localization using received signal strength measurements,”
in Int. Conf. on Information Processing in Sensor Networks, Chicago,
U.S.A., April 2011.

[7] F. Thouin, S. Nannuru, and M. Coates, “Multi-target tracking for
measurement models with additive contributions,” in Int. Conf. on
Information Fusion, Chicago, U.S.A., July 2011.

[8] N. Gordon, D. Salmond, and A. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,” Radar and Signal
Processing, IEE Proceedings F, vol. 140, no. 2, pp. 107–113, Apr. 1993.

[9] P. Djuric, T. Lu, and M. Bugallo, “Multiple particle filtering,” in IEEE
Int. Conf. Acoustics, Speech and Signal Proc., Honolulu, HW, USA,
June 2007.

[10] M. Bugallo, T. Lu, and P. Djuric, “Target tracking by multiple particle
filtering,” in Proc. IEEE Aerospace Conf., Big Sky, MT, March 2007.

[11] S. K. Pang, J. Li, and S. Godsill, “Models and algorithms for detection
and tracking of coordinated groups,” in Proc. IEEE Aerospace Conf.,
Big Sky, MT, Mar. 2008.

[12] A. Haimovich, R. Blum, and L. Cimini, “MIMO radar with widely
separated antennas,” IEEE Signal Processing Magazine, vol. 25, no. 1,
pp. 116–129, Jan. 2008.

[13] D. Zhang, J. Ma, Q. Chen, and L. Ni, “An RF-based system for tracking
transceiver-free objects,” in Proc. IEEE Int. Conf. Perv. Comp. and
Comm., White Plains, NY, U.S.A., Mar. 2007.

[14] ——, “Dynamic clustering for tracking multiple transceiver-free ob-
jects,” in Proc. IEEE Int. Conf. Perv. Comp. and Comm., Galveston,
TX, U.S.A., Mar. 2009.

[15] D. Zhang, Y. Liu, and L. Ni, “RASS: A real-time, accurate and scalable
system for tracking transceiver-free objects,” in Proc. IEEE Int. Conf.
Perv. Comp. and Comm., Seattle, U.S.A., Mar. 2011.

[16] D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A consistent metric for
performance evaluation of multi-object filters,” IEEE Trans. Signal
Processing, vol. 56, no. 8, pp. 3447–3457, Aug. 2008.

6


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Links to Other Manuscripts by the Authors
	------------------------------
	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
	------------------------------

