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Multi-Bernoulli filter and hybrid multi-Bernoulli
CPHD filter for superpositional sensors
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Santosh Nannuru and Mark Coates

Abstract—Superpositional sensor model can characterize the
observations in many different applications such as radio fre-
quency tomography, acoustic sensor network based tracking and
wireless communications. In this paper we present two filters
based on the random finite set (RFS) theory - the multi-Bernoulli
filter and its variant the hybrid multi-Bernoulli CPHD filter -
for superpositional sensors. We provide derivations for the filter
update equations which are based on propagating the conditional
probability hypothesis density (PHD). The conditional PHD is
defined for the individual Bernoulli components of the multi-
Bernoulli RFS and for the independent and identically distributed
cluster (IIDC) RFS. Computationally tractable update equations
are derived by assuming the sensor noise to be Gaussian. The
filters are used for multitarget tracking in simulated radio
frequency (RF) tomography application.

Index Terms—Random finite set, CPHD filter, multi-Bernoulli
filter, superpositional sensors, radio frequency tomography, mul-
titarget tracking.

I. INTRODUCTION

We study the problem of sequential multitarget state es-
timation from noisy sensor observations available at regular
time intervals. Many problems in engineering can be modeled
using this framework examples of which include multitarget
localization and tracking, wireless channel estimation and
weather prediction. The traditional approach has been to model
the state and observations as random vectors. This approach
has drawbacks since it cannot efficiently model the changing
multitarget state dimension and observation dimension. To
counter this drawback, Mahler [1], [2] has formulated the
problem of sequential state estimation using the random finite
set (RFS) framework. In this framework the multitarget state
and the observations are modeled as realizations of random
sets. The corresponding finite set statistics (FISST) that has
been developed allows us to build approximate state propa-
gation and estimation algorithms which are computationally
feasible.

Most of the initial research on RFS theory focused on
specific type of sensors, called as standard sensors [3]. The
standard sensor observation model can be characterized as
follows: (i) each target causes either one or no measurement;
and (ii) each measurement is either caused by a single target or
clutter. Examples of this category of sensors are range sensors,
bearing sensors, radar and sonar. We are interested in a differ-
ent but important class of sensors, called as superpositional
sensors [3]. The superpositional sensor observation model
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has following characteristics: (i) each target can contribute
to any number of measurements; (ii) each measurement is
potentially affected by multiple targets in an additive fashion;
and (iii) measurements are not independent. Many sensors
belong to the category of superpositional sensors. Exam-
ples include direction-of-arrival sensors for linear antenna
arrays [4], antenna arrays in multi-user detection for wireless
communication networks [5], multipath channel modeling in
MIMO-OFDM channels [6], acoustic amplitude sensors [7],
and radio frequency tomographic tracking systems [8]. In
literature studying the standard sensors, both the multitarget
state and the observations are modeled as random finite sets.
In this work we model the multitarget state as a RFS and the
observations are modeled as random vectors.

Various multitarget state estimation filters have been pro-
posed using the FISST framework. These filters differ in the
assumptions they make about the underlying multitarget state.
The PHD filter [9] assumes the state to be realization of a RFS
with Poisson multitarget distribution. It has the advantage that
a single PHD function is sufficient to characterize the complete
distribution and is computationally easy to track. The CPHD
filter [10] is an improvement of the PHD filter and it uses the
IIDC RFS to model the state. A PHD function and a cardinality
distribution are required to characterize the IIDC multitarget
distribution. The additional cardinality information improves
performance of the CPHD filter. Though technically superior
to the PHD filter, the CPHD filter still utilizes a single density
function to represent the multiple states and this can reduce
its accuracy of state estimation. It also requires an additional
clustering step when implemented using a particle filter.

The multi-Bernoulli filter [2] can alleviate the drawbacks
of PHD and CPHD filter and models each target state with a
scalar existence probability and a state density function. This
allows accurate state representation and also provides easy
track maintenance without the need for clustering step. The
multi-Bernoulli filter provides accurate state estimation but
it is less robust to arrival of new targets and disappearance
of existing targets. This issue can be addressed by using a
hybrid multi-Bernoulli CPHD filter in which the new targets
are modeled as realizations of the IIDC RFS while the existing
targets are modeled using the multi-Bernoulli RFS.

In this paper we provide the derivation of the multi-
Bernoulli filter [11] and the hybrid multi-Bernoulli CPHD
filter update equations. The derivation relies on defining the
quantity conditional PHD and performing approximate Bayes’
update for the different conditional PHD terms. The cardinality
distribution of the IIDC component is also propagated. We
provide pseudo code for auxiliary particle filter implementa-
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tions of the filters. A numerical study is performed to assess
the filter performance in comparison with the CPHD filter in
multitarget tracking application.

The remainder of the paper is organized as follows. Sec-
tion I-A provides a summary of the research done on RFS the-
ory based filters and superpositional sensors. The multitarget
state estimation problem formulation is given in Section I-B.
A brief review of the RFS theory and the related statistics is
presented in Section II. The concept of conditional PHD is
introduced in Section III and its update equation is derived.
The multi-Bernoulli and the hybrid multi-Bernoulli CPHD
filter update equations are derived in Section IV. Auxiliary
particle filter implementation of these filters are presented in
Section V. Section VI compares the multi-Bernoulli and the
hybrid multi-Bernoulli CPHD filter with the CPHD filter in the
context of multitarget tracking. Simulation results for radio
frequency tomography based tracking are presented. Finally
we provide conclusions in Section ??.

A. Literature review

A detailed description of the RFS theory, FISST statistics
and the different filters based on it can be found in [2]. The
difference between the standard sensor model and the super-
positional sensor model was first explicitly stated by Mahler
in [3]. The PHD and CPHD filter equations for the standard
sensor model were first derived in [9] and [10] respectively.
The PHD filter for superpositional sensors was derived by
Thouin et al. in [12] 1. The CPHD filter for superpositional
sensors was derived by Mahler and El-Fallah in [14]. An
auxiliary particle filter implementation of the PHD and CPHD
filters for superpositional sensors was presented in [15] along
with their numerical studies in simulated multitarget tracking
applications.

The multi-Bernoulli filter for standard sensors was first
proposed by Mahler in [2]. The cardinality bias in the original
filter formulation was subsequently corrected by Vo et al.
in [16]. Particle filter implementations of the multi-Bernoulli
filter are discussed in [16], [17]. Under the assumptions that
the likelihood has a separable form, the multi-Bernoulli filter
has been used for estimation and detection of objects from
images in track-before-detect applications [17]. The separable
likelihood assumption is valid for non-overlapping targets.
Convergence analysis of the sequential Monte Carlo (SMC)
implementations of the multi-Bernoulli filters are performed
by Lian et al. in [18]. The multi-Bernoulli filter for superpos-
tional sensors was proposed by Nannuru and Coates [11]. A
particle filter implementation of this filter is presented by the
same authors in [19].

We make a note about the relation between the particle
implementation of the multi-Bernoulli filter and the multiple
particle filter (MPF) proposed by Djuric et al. in [20]. Both
of them use one particle filter per target but the number of
targets is assumed to be fixed and known in the MPF imple-
mentation. The multi-Bernoulli filter automatically keeps track
of the changing number of targets and maintains appropriate

1An error in the main update equation of this filter was corrected in an
errata [13]; the correct equations were also presented in [14], [15].

number of particle filters required. The weight update in MPF
propagates the marginal posterior for each target conditional
on all the remaining target states whereas the weight update
in multi-Bernoulli filter propagates the conditional PHD.

A hybrid between the multi-Bernoulli filter and the PHD
filter was proposed by Williams [21], [22] for multitarget
tracking applications. The author uses a Poisson RFS to model
new targets and targets with low probability of existence. This
results in fast track initiation and use of fewer Bernoulli com-
ponents. Pollard et al. in [23] have used a hybrid combination
of multiple hypothesis tracking (MHT) filter and the Gaussian
mixture CPHD (GM-CPHD) filter for multitarget tracking.
The GM-CPHD filter provides robust cardinality estimate of
the multitarget state which is complemented by accurate state
estimates from the MHT filter. The combination of MHT and
PHD filter has been proposed by Panta et al. to obtain track-
valued estimates [24]. The authors use the PHD filter as a
clutter filter by using its output to gate the input for the MHT
filter.

B. Problem formulation

In this paper we study the superpositional sensors in the
context of multitarget tracking problem. The multi target state
is the set Xk = {xk,1,xk,2, . . . ,xk,nk

} where xk,i, i =

1,2, . . . , nk are the single target state vectors of the nk ≥ 0
targets present at time step k. The single target state dimension
is nx, so xk,i ∈ Rnx ∀i. The targets move independently
and their motion is governed by the Markovian transition
kernel tk∣k−1(xk,i∣xk−1,i,uk) where uk is the Gaussian noise
vector. This state information is hidden but we have access
to the observation vector zk ∈ Rnz at time step k. The
observations are related to the multitarget state through the
likelihood function hzk

(Xk). Let Z[k] = [z1,z2, . . . ,zk] be
the collection of all the observation vectors up to time k.
The multitarget tracking problem is to estimate the posterior
multitarget state density p(Xk ∣Z

[k]) at each time step k.

C. Superpositional sensor model

The likelihood function under the superpostional model
assumption has the following form

hzk
(Xk) = hzk

(r(Xk))

= hzk

⎛

⎝
∑

x∈Xk

g(x)
⎞

⎠
(1)

where hzk
is the real-valued likelihood function and g and

r are (potentially non-linear) functions mapping to vectors of
reals. When the sensor observation noise is Gaussian with zero
mean and covariance matrix Σr, the likelihood takes the form

hzk
(Xk) = NΣr(zk − r(Xk)). (2)

where NΣ(z) denotes the Gaussian density function with zero
mean and covariance matrix Σ evaluated at z.

II. RANDOM FINITE SETS

Random sets are extension of the concept of random
variables and random vectors. While random vectors are of
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a predefined dimension and they have an ordering of their
elements, random set can have uncertainty in the set dimension
and there is no preferred ordering between the elements of the
set.

We can associate a probability density function with a RFS.
The integral of the probability density function is one. Since
this probability density function is defined for a RFS, the
integral is the set integral defined as follows

∫ f(W )δW = f(φ) +
∞

∑
n=1

1

n!
∫ f({w1, . . . ,wn})dw1 . . . dwn

= f(φ) +
∞

∑
n=1

1

n!
∫ f(Wn)dWn = 1 (3)

where φ is the empty set. The notation δW denotes set inte-
gration and the notation dWn denotes the standard integration.
We have used the abbreviated notation dWn = dw1 . . . dwn for
brevity. The associated cardinality distribution of the RFS is
given by

Prob(∣W ∣ = n) = π(n) =
1

n!
∫
∣W ∣=n

f(W )δW (4)

Since addition operation is not naturally defined on sets,
defining the expectation of a RFS in traditional manner is not
possible. An important and useful statistic of the RFS which
can be defined using a modified definition of first moment [2]
is the probability hypothesis density (PHD). The PHD of a
RFS with a probability density f(W ) is defined as follows

D(x) = ∫ f({x} ∪W )δW (5)

Similarly the second factorial moment is defined as

D({x1,x2}) = ∫ f({x1,x2} ∪W )δW (6)

We now give some examples of random finite sets.

A. IID cluster RFS

An independent and indentically distributed cluster RFS
is specified using an arbitrary cardinality distribution and a
density function. It has the following multitarget distribution

f c(X) = ∣X ∣⋅ πc(∣X ∣) ⋅ qXc (7)

qXc =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, if X = φ

∏
x∈X

qc(x) otherwise. (8)

where ∣X ∣ denotes the cardinality of the set X; πc(n) and
qc(x) are the cardinality distribution function and the density
function respectively. Let G(t) denote the probability gen-
erating function of the cardinality distribution πc(n) and let
G(i)(t) denote its ith derivative

G(t) =
∞

∑
n=0

tnπc(n) and G(i)
(t) =

di

dti
G(t). (9)

The PHD of the IIDC RFS is given as:

Dc
(x) = ∫ f({x} ∪W )δW = µc ⋅ qc(x) (10)

µc =
∞

∑
n=0

n ⋅ πc(n) = G(1)
(1) (11)

where µc is the mean cardinality. Its second factorial moment
can be calculated to be [14]

Dc
({x1,x2}) = G

(2)
(1) ⋅ qc(x1) ⋅ qc(x2) (12)

B. Multi-Bernoulli RFS

To understand the Multi-Bernoulli RFS let us first consider
the Bernoulli RFS. A Bernoulli RFS can either be an empty set
with probability 1 − r or a singleton set {x} with probability
r; the singleton element x when present is drawn from the
distribution function q(x). The multitarget probability density
of a Bernoulli RFS is given by

f b(X) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 − r, if X = φ

r ⋅ q(x), if X = {x}

0 if ∣X ∣ > 1.

(13)

The PHD function of the Bernoulli RFS is given by

Db
(x) = ∫ f({x} ∪W )δW = r ⋅ q(x). (14)

The Bernoulli RFS can be used to model a single target.
To represent multiple targets, the multi-Bernoulli RFS is
suggested [2]. A multi-Bernoulli RFS χ is defined as the union
of N independent Bernoulli RFS components as

χ = χ1 ∪ χ2 ∪⋯ ∪ χN (15)

where each of the χi is a Bernoulli RFS with parameters
given by {ri, qi(x)}

N
i=1. The multitarget density of the multi-

Bernoulli RFS can be expressed as

fmb(X) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Q0, if X = φ

Q0 × ∑
1≤i1≠⋯≠in≤N

n

∏
j=1

rijqij(xj)

1 − rij
, if ∣X ∣ = n ≤ N

0 if ∣X ∣ > N.

where Q0 =
N

∏
j=1

(1− rj). The PHD of the multi-Bernoulli RFS

(Ex. 91, Chap. 16, [2]) can be shown to be

Dmb
(x) =

N

∑
i=1

ri ⋅ qi(x). (16)

The second factorial moment of the multi-Bernoulli RFS can
be calculated to be [11]

Dmb
({x1,x2}) = ∫ f({x1,x2} ∪W )δW (17)

=
N

∑
i=1

N

∑
j=1,j≠i

ri ⋅ rj ⋅ qi(x1) ⋅ qj(x2) (18)

=Dmb
(x1)D

mb
(x2) −

N

∑
i=1

r2
i ⋅ qi(x1) ⋅ qi(x2). (19)

III. CONDITIONAL PHD

A. Conditional PHD definition

Consider a RFS χ which is union of two independent
random finite sets χA and χB . Let the PHD function for each
of the independent RFS components be denoted by DA(x) and
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DB(x) respectively. Let the PHD of the RFS χ be denoted
D(x). Then we can show that

D(x) =DA
(x) +DB

(x) (20)

The above result can be easily proved using the properties
of probability-generating functionals and the basic rules for
functional derivatives (Chap. 11, [2]).

Let f(W ) be the probability density of the RFS χ. We now
define the quantity conditional PHD corresponding to the RFS
component χA as follows

D
A
(x) = ∫ f({x} ∪W ∣x← A)δW (21)

The conditioning event (x← A) implies that - if x is a mem-
ber of the multitarget state, then element x is generated by the
random finite set χA. Similarly we define the conditional PHD
DB(x) corresponding to the RFS component χB . Then we
have the following equality relation between the conditional
PHD and the PHD of the individual components

D
A
(x) =DA

(x) and D
B
(x) =DB

(x) (22)

The derivation of above result is provided in Appendix A.
The above result can be extended when the RFS χ is union
of more than two independent RFS. Propagating the complete
multitarget density for the RFS χ can be difficult in general.
The conditional PHD makes it easier to propagate the posterior
multitarget density by allowing us to update the PHD for each
individual component of the RFS. This is useful in cases where
the component PHDs can be easily related to the complete
density. We will make use of this fact in deriving the update
equations for the multi-Bernoulli filter and the hybrid multi-
Bernoulli CPHD filter where we model the multitarget state as
union of multiple independent Bernoulli RFS and IIDC RFS.

B. Conditional PHD update

Theorem 1. If the predicted and posterior conditional PHD
corresponding to RFS component χA at time k + 1 are
denoted by DAk+1∣k(x) and DAk+1(x) respectively, then the two
conditional PHDs can be shown to be related as

D
A
k+1(x) = D

A
k+1∣k(x)

∫ hzk+1({x} ∪W ) × f Āk+1∣k(W ) δW

∫ hzk+1(W ) × fk+1∣k(W ) δW

where, fk+1∣k(W ) is the predicted multitarget distribution and
f Āk+1∣k(W ) is the multitarget distribution defined as

f Āk+1∣k(W ) =
fk+1∣k({x} ∪W ∣x← A)

DA
k+1∣k

(x)
⋅ (23)

The proof of the above theorem is provided in Appendix B.

IV. MULTI-BERNOULLI FILTERS FOR SUPERPOSITIONAL
SENSOR MODEL

In this section we approximate the result of Theorem 1
for the case of superpositional sensor model under Gaus-
sian sensor noise assumption. This approximation leads to a
computationally tractable update equation for the conditional
PHD. This result is applied for the specific case of union of

independent Bernoulli RFS and IIDC RFS in deriving the
update equations for the multi-Bernoulli and hybrid multi-
Bernoulli CPHD filters in the later subsections.

A. Approximate conditional PHD update for superpositional
sensor model with Gaussian sensor noise

Using the Gaussian sensor noise assumption and the super-
positional likelihood model from equations (1) and (2) and
applying them to the result of Theorem 1, we have:

D
A
k+1(x) = D

A
k+1∣k(x)

×
∫ NΣr(zk+1 − g(x) − r(W )) × f Āk+1∣k(W ) δW

∫ NΣr(zk+1 − r(W )) × fk+1∣k(W ) δW

Apply the transformation yĀ = r(W ) in the numerator and
y = r(W ) in the denominator. Using the formula for change
of variables for set integrals [14] we have,

D
A
k+1(x) = D

A
k+1∣k(x)

×
∫ NΣr(zk+1 − g(x) − yĀ) ×QĀk+1∣k(y

Ā)dyĀ

∫ NΣr(zk+1 − y) ×Qk+1∣k(y)dy
(24)

where Qk+1∣k(y) and QĀk+1∣k(y
Ā) are the probability distri-

butions of the random vectors y and yĀ respectively. Using
the Gaussian approximation for these densities, Qk+1∣k(y) ≈

NΣk+1(y − µk+1) and QĀk+1∣k(y
Ā) ≈ NΣĀ

k+1
(yĀ − µĀk+1),

D
A
k+1(x) ≈ D

A
k+1∣k(x)

×
∫ NΣr(zk+1 − g(x) − yĀ) ×NΣĀ

k+1
(yĀ − µĀk+1)dy

Ā

∫ NΣr(zk+1 − y) ×NΣk+1(y − µk+1)dy

The above equation can be simplified using the following
calculus result, ∫ NΣ1(a−y)×NΣ2(y−b)dy = NΣ1+Σ2(a−b).
Thus the approximate conditional PHD update equation for
superpositional sensor model is

D
A
k+1(x) ≈ D

A
k+1∣k(x)

NΣr+ΣĀ
k+1

(zk+1 − g(x) − µ
Ā
k+1)

NΣr+Σk+1(zk+1 − µk+1)
(25)

where µk+1 and Σk+1 are the mean and covariance matrix
of the distribution Qk+1∣k(y) and µĀk+1 and ΣĀk+1 are the
mean and covariance matrix of the distribution QĀk+1∣k(y

Ā).
These mean and covariance matrix parameters can be found
using the quadratic version of Campbell’s theorem [14], [15].
By modelling the unknown multi-target state as union of
independent random finite sets, different tracking filters can be
derived whose update equations are special cases of equation
(25). Examples of two such filters are discussed in the next
two subsections.

B. Multi-Bernoulli filter

The multi-Bernoulli filter models the multi-target state as
the union of multiple independent Bernoulli random finite
sets. The scalar existence probability and the state density
parameters are propagated over time. The propagation is done
in two stages, prediction and update. The single target motion
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model is used for propogation in the prediction step. The
motion model accounts for the survival of existing targets from
previous time step to current time step and for the birth of
new targets. We do not consider target spawning in this paper.
The most recent observation along with the likelihood model
relating the observations to the multi-target state is used in
the update step to propagate the Bernoulli parameters. The
following subsections discuss the prediction and update step
in detail for the multi-Bernoulli filter.

1) Prediction step: The multi-Bernoulli prediction equa-
tions are derived in [2], [17]. Since the superpositional ob-
servation model does not play a role in the prediction step,
the multi-Bernoulli prediction equations remain the same. We
briefly review these equations in this section.

Let the existence probability and state density parameters
of the Nk targets at time k be {rk,i, qk,i(x)}

Nk

i=1. At time k +
1 let there be Nk+1∣k predicted targets with parameters ri =
rk+1∣k,i and qi(x) = qk+1∣k,i(x). Additionally, the predicted
multi-Bernoulli RFS parameters can be expressed as

{ri, qi(x)}
Nk+1∣k
i=1 = {rPi , q

P
i (x)}Nk

i=1 ∪ {rBi , q
B
i (x)}

Nk+1∣k
i=Nk+1

where {rPi , q
P
i (x)}Nk

i=1 are the parameters of targets propagated
from the previous time step and {rBi , q

B
i (x)}

Nk+1∣k
i=Nk+1 are the

parameters of newly born targets. The relation between the
the predicted target parameters at time k + 1 and the posterior
target parameters at time k is

rPi = rk,i × ⟨qk,i, ps⟩, (26)

qPi (x) =
⟨tk+1∣k(x∣⋅), qk,ips⟩

⟨qk,i, ps⟩
(27)

where, ps(x) is the target survival probability, tk+1∣k(x∣⋅) is
the Markov transition kernel and ⟨a, b⟩ is the scalar prod-
uct defined as ⟨a, b⟩ = ∫ a(x)b(x)dx. Since the parameters
{rBi , q

B
i (x)}

Nk+1∣k
i=Nk+1 are used to model the new targets arriving

at time k + 1, they are initialized using the target birth model.
2) Update step: We assume that the posterior multi-target

density also has the multi-Bernoulli form. For the purpose
of presenting a simpler and clearer derivation, we assume
that no new targets are added in the update step and hence
Nk+1 = Nk+1∣k. Since the collective conditional PHD of all
the Bernoulli components can completely specify the posterior
multi-Bernoulli density, the update step consists of updating
the conditional PHD for each of the i = 1,2, . . . ,Nk+1

Bernoulli components. Let {r′i, q
′

i(x)}
Nk+1
i=1 denote the param-

eter set of the posterior multi-Bernoulli density at time k + 1.
Combining the results from equations (14), (22) and (25), the
approximate conditional PHD update is given by

r′i ⋅ q
′

i(x) ≈ ri ⋅ qi(x)
NΣr+Σī

k+1
(zk+1 − g(x) − µ

ī
k+1)

NΣr+Σk+1(zk+1 − µk+1)
(28)

where,

µk+1 =

Nk+1∣k

∑
i=1

ri ⋅ si (29)

Σk+1 =

Nk+1∣k

∑
i=1

(ri ⋅ vi − r
2
i ⋅ sis

T
i ) (30)

si = ⟨qi, g⟩, vi = ⟨qi, gg
T
⟩ and

µīk+1 = µk+1 − ri ⋅ si (31)

Σīk+1 = Σk+1 − (ri ⋅ vi − r
2
i ⋅ sis

T
i ) (32)

The expressions for the parameters above are derived in
Appendix C.

C. Hybrid multi-Bernoulli CPHD filter

The multi-Bernoulli RFS modelling of the multitarget state
allows us to model each of the targets individually and update
its state information. Though this is an improvement over the
IIDC RFS modeling of the multitarget state which utilizes
only one state density function to model all the targets, it
does not have a robust cardinality representation. Also, since
the number of targets is changing over time, we need to add
multiple Bernoulli components at each time step to account for
the new born targets. Processing a large number of Bernoulli
components at each time step is not computationally efficient.
To address these drawbacks we propose to use a hybrid
approach where the existing targets are modeled using a multi-
Bernoulli RFS and the new born targets are modeled using the
IIDC RFS.

The hybrid multi-Bernoulli CPHD filter uses the following
modeling scheme. The final posterior distribution from the
previous time step is modeled as a multi-Bernoulli RFS. In the
prediction step, the multi-Bernoulli component is propagated
following the motion model of surviving targets whereas
to account for new born targets an IIDC RFS component
is initialized. The IIDC component is independent of the
multi-Bernoulli component. Thus the predicted distribution
corresponds to the union of independent IIDC RFS and
multi-Bernoulli RFS which is completely represented by the
conditional PHD of the Bernoulli components, the conditional
PHD of the IIDC component and the cardinality distribution of
the IIDC component. The update step propagates all of these
quantities using the Bayes’ rule. Hence the obtained posterior
comprises of the union of an IIDC component and a multi-
Bernoulli component. Since individual targets are better repre-
sented using Bernoulli RFSs, the updated IIDC component is
approximated using multiple Bernoulli components. Thus the
final posterior distribution is approximately modeled using a
multi-Bernoulli RFS.

1) Prediction step: Let the parameters of the poste-
rior Bernoulli components at time step k be denoted
{rk,i, qk,i(x)}

Nk

i=1 as before. The Bernoulli parameters at the
end of the prediction step are {ri, qi(x)}

Nk

i=1 and are given
by the equations (26) and (27). Let πck+1∣k(n) and qc(x) =

qc,k+1∣k(x) be the predicted cardinality distribution and the
predicted density function at time k + 1. Their exact forms
depend on the specific target birth model used. Let µc denote
the expected cardinality of the predicted IIDC RFS component.
Note that no new Bernoulli components are added in the
prediction step to account for birth of new targets.

2) Update step: The hybrid multi-Bernoulli filter assumes
that the posterior multitarget state is the union of independent
IIDC and multi-Benoulli RFSs. Hence the update step consists
of updating the conditional PHD for each of the Bernoulli
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components, conditional PHD of the IIDC component and
the cardinality distribution of the IIDC component. Let the
parameters of the multi-Bernoulli and IIDC RFSs be denoted
by {r′i, q

′

i(x)}
Nk

i=1 and {q′c(x), π
c
k+1(n)} respectively.

From equations (14), (22) and (25), the conditional PHD
update of the ith Bernoulli component is given by

r′i ⋅ q
′

i(x) ≈ ri ⋅ qi(x)
NΣr+Σī

k+1
(zk+1 − g(x) − µ

ī
k+1)

NΣr+Σk+1(zk+1 − µk+1)
(33)

where,

µk+1 =
Nk

∑
i=1

ri ⋅ si + µc ⋅ sc (34)

Σk+1 =
Nk

∑
i=1

(ri ⋅ vi − r
2
i ⋅ sis

T
i )

+ µc ⋅ vc − (µ2
c −G

(2)
(1)) ⋅ scs

T
c (35)

µīk+1 = µk+1 − ri ⋅ si (36)

Σīk+1 = Σk+1 − (ri ⋅ vi − r
2
i ⋅ sis

T
i ) (37)

si = ⟨qi, g⟩, vi = ⟨qi, gg
T
⟩, (38)

sc = ⟨qc, g⟩, vc = ⟨qc, gg
T
⟩ (39)

The equations for the parameters µk+1, Σk+1, µīk+1 and Σīk+1

above are derived in Appendix C using the quadratic version
of Campbell’s theorem.

Using equations (10), (22) and (25), the conditional PHD
update for the IIDC RFS component is

µ′c ⋅ q
′

c(x) ≈ µc ⋅ qc(x)
NΣr+Σc̄

k+1
(zk+1 − g(x) − µ

c̄
k+1)

NΣr+Σk+1(zk+1 − µk+1)
(40)

where,

µc̄k+1 =
Nk

∑
j=1

rj ⋅ sj +
G(2)(1)

µc
⋅ sc, (41)

Σc̄k+1 =
Nk

∑
j=1

(rj ⋅ vj − r
2
j ⋅ sjs

T
j )

+
G(2)(1)

µc
vc − (

G(2)(1)2

µ2
c

−
G(3)(1)

µc
) scs

T
c (42)

The parameters µk+1 and Σk+1 are as given in equations (34)
and (35) respectively. The derivation of the parameters µc̄k+1

and Σc̄k+1 is given in Appendix C.

The main advantage of the IIDC component in the hybrid
filter is that we can make use of the accurate cardinality
estimation of the CPHD filter. The update equation for the
cardinality distribution of the IIDC RFS component can be
shown to be

πck+1(m1) ≈ π
c
k+1∣k(m1)

NΣr+Σ
c,m1
k+1

(zk+1 − µ
c,m1

k+1 )

NΣr+Σk+1(zk+1 − µk+1)
(43)

where,

µc,m1

k+1 =

Nk+1∣k

∑
i=1

ri ⋅ si +m1 ⋅ sc

Σc,m1

k+1 =

Nk+1∣k

∑
i=1

(ri ⋅ vi − r
2
i ⋅ sis

T
i ) +m1(vc − scs

T
c )

The parameters µk+1 and Σk+1 are as given in equations (34)
and (35) respectively. The derivation of the above cardinality
update equation is given in Appendix D. Note that the multi-
Bernoulli filter can be treated as a special case of the hybrid
multi-Bernoulli CPHD filter. Indeed we get back the multi-
Bernoulli filter update equations if we set the IIDC component
to be empty set in all the above equations.

V. AUXILIARY PARTICLE FILTER IMPLEMENTATION

We study the proposed filters using the Monte Carlo ap-
proach. Approximate update equations have been derived in
this paper but they do not lead to a fully analytically tractable
filter. Hence we develop particle filter based implementations
of the filters. The basic particle filter approach does not give a
stable implementation because of the multiple approximations
employed to derive the filter equations. We propose auxiliary
particle filter implementation of the multi-Bernoulli filter and
the hybrid multi-Bernoulli filter.

A. Multi-Bernoulli filter
The conditional PHD corresponding to each Bernoulli com-

ponent is approximated using a set of weighted particles as
follows

ri ⋅ qi(x) ≈
Np

∑
j=1

wji δ(x − xji );
Np

∑
j=1

wji = ri (44)

Thus we use one particle filter for each Bernoulli component.
The pseudo code for the auxiliary particle filter implementa-
tion of the multi-Bernoulli filter is provided in Algorithm 1.
New components are initialized following the target birth
model. In the prediction step particles are propagated accord-
ing to the motion model. The update is performed in two
stages so that the new born targets are accurately identified.
The conditional PHD update step is realized by performing
update of particle weights using equation (28). The required
statistics are obtained through numerical approximation using
weighted particles, for example,

si = ⟨qi, g⟩ ≈
Np

∑
j=1

wji g(x
j
i )

vi = ⟨qi, gg
T
⟩ ≈

Np

∑
j=1

wji g(x
j
i )g(x

j
i )
T

For the new components the auxiliary filtering step accounts
for the fact that we are sampling from a different different
distribution than the birth model. Pruning of Bernoulli com-
ponents is performed after the second update stage so as to
eliminate targets with low probability of existence (< r0). The
new components created can sometimes correspond to existing
targets. Hence gating is performed so that new targets starting
within close vicinity of existing targets are pruned.

B. Hybrid multi-Bernoulli CPHD filter
The pseudo code for the auxiliary particle filter implemen-

tation of the hybrid multi-Bernoulli CPHD filter is provided



7

1: for k = 1 to T do
2: Prediction
3: Propagate existing components {ri, qi(x)}

Nk−1
i=1 using

equations (26) and (27)
4: Add new Bernoulli components - {ri, qi(x)}

Nk∣k−1
i=Nk−1+1

5: First Run
6: Calculate statistics - µk,Σk
7: Update conditional PHD for i = Nk−1 + 1 . . .Nk∣k−1

using equation (28)
8: Auxiliary filtering step for i = Nk−1 + 1 . . .Nk∣k−1

9: Update statistics - µk,Σk
10: Update conditional PHD for i = 1 . . .Nk∣k−1 using

equation (28)
11: Auxiliary filtering step for i = 1 . . .Nk−1

12: Second Run
13: Update statistics - µk,Σk
14: Update conditional PHD for i = 1 . . .Nk∣k−1 using

equation (28)
15: Resample conditional PHD for i = 1 . . .Nk∣k−1

16: Track management
17: Prune Bernoulli tracks with ri < r0

18: Gate new components to check for duplicity
19: end for

Fig. 1. Pseudo-code for auxiliary particle filter implementation of multi-
Bernoulli filter.

in Algorithm 2. One particle filter is used for each Bernoulli
component and one particle filter is used to approximate
the conditional PHD of the IIDC component. The IIDC
conditional PHD is initialized using the target birth model.
The IIDC cardinality distribution is represented using a finite
dimensional vector whose elements sum to one. After the
second update stage, an estimate of the new born targets
N c
k∣k is obtained from the IIDC cardinality distribution. The

set of particles representing IIDC conditional PHD is then
partitioned into N c

k∣k clusters and each cluster is used to
initialize a new Bernoulli component. Gating is performed to
check for duplicity between the new and existing components.
The pruned Bernoulli components are used for initialization of
IIDC conditional PHD along with the target birth model in the
next time step. This can be helpful in cases of low detection
probability or high noise.

VI. NUMERICAL SIMULATIONS

The above filters can be used for state estimation in various
real life applications whenever the sensor observations have
the superpositional form described in Section I-C. In this
section we demonstrate successful application of these filters
to the problem of multitarget tracking. The measurement
modality of radio frequency sensors are studied using the
simulations. A network of RF sensors is used to monitor a

1: for k = 1 to T do
2: Prediction
3: Propagate existing components {ri, qi(x)}

Nk−1
i=1 using

equations (26) and (27)
4: Initialize IIDC component using qc(x) and πck∣k−1(n)

5: First Run
6: Calculate statistics - µk,Σk
7: Update IIDC conditional PHD using equation (40)
8: Auxiliary filtering step for IIDC conditional PHD
9: Update cardinality distribution using equation (43)

10: Update statistics - µk,Σk
11: Update Bernoulli conditional PHD for i = 1 . . .Nk−1

using equation (33)
12: Auxiliary filtering step for i = 1 . . .Nk−1

13: Second Run
14: Update statistics - µk,Σk
15: Update Bernoulli conditional PHD for i = 1 . . .Nk−1

using equation (33)
16: Update IIDC conditional PHD using equation (40)
17: Update cardinality distribution using equation (43)
18: Resample conditional PHD for Bernoulli and IIDC

components
19: Approximation and track management
20: Prune Bernoulli tracks with ri < r0

21: Estimate IIDC cardinality N c
k∣k = MAP {πck(n)}

22: Cluster IIDC conditional PHD into N c
k∣k components

23: Initialize new Bernoulli components using clusters
24: Gate new components to check for duplicity
25: end for

Fig. 2. Pseudo-code for auxiliary particle filter implementation of hybrid
multi-Bernoulli CPHD filter.

region of interest where multiple targets can be simultaneously
present and can appear or disappear over time.

A. Target dynamics

We assume that for each target its dynamics are independent
of the other targets and their dynamics. Specifically, motion
of each target when present within the monitoring region is
governed by the following approximately constant velocity
model [25]:

xk+1,i =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

xk,i +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T 2

2
0

0 T 2

2
T 0
0 T

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
ux
uy

] (45)

where T is the sampling period and ux, uy are zero-mean
Gaussian white noise with respective variance σ2

ux
and σ2

uy
.

In this model, the state of each object i at time k, xk,i, is



8

represented by a four-dimensional vector: position on the x-
axis and y-axis, velocity on the x-axis and y-axis.

Figure 3(a) shows the target tracks we use for the simu-
lations. The black cross (x) indicates the starting location of
the target. The variation of number of targets over time is
shown in Figure 3(b). Target labelled number 7 and 8 in the
Figure 3(a) appear within the monitoring region at time steps
9 and 17 respectively. Target 8 disappears from the monitoring
region at time step 24. The mimimum distance between any
two targets as a function of time is shown in Figure 3(c).
As can be seen, some of the targets approach very close to
each other (less than 1m) and on multiple occasions. The
targets in the above scenario evolve according to the linear
Gaussian dynamics given in Equation (45) with a time step
of duration T = 0.25s and the noise variance parameters of
σ2
ux

= σ2
uy

= 0.35. We simulate 35 time steps of target motion
for a total of 35 × 0.25 = 8.75s.

B. Error metric

We will compare the multi-Bernoulli filters with the CPHD
filter. To compare them, we need to find the error between the
filter estimates and the true multitarget state. Since we have to
compare sets, possibly with different cardinality, we use the
optimal subpattern assignment (OSPA) metric [26]. The OSPA
metric penalises errors in target location estimate as well as
error in estimating the number of targets using the cardinality
penalty factor c. When there are n targets and we estimate m
targets then for m ≤ n the OSPA metric is defined as

d(c)p (X,Y ) = (
1

n
min
π∈Π

m

∑
i=1

d(c)(xi, yπ(i))
p
+ cp(n −m))

1/p

(46)

where Π is the set of possible permutations of {1,2, . . . , n},
d(x, y) is the Euclidean distance between x and y and
d(c)(x, y) = min{d(x, y), c}. X = {x1, . . . , xn} and Y =

{y1, . . . , yn} are arbitrary sets and p is a fixed parameter. We
use the value p = 2. When m > n, we calculate d(c)p (Y,X).
The OSPA metric finds the best permutation of the larger set
which minimizes its distance from the smaller set and assigns
a fixed penalty for each cardinality error. We compute the
average OSPA error by performing multiple executions of the
filter each with a different random initialization.

C. RF tomography

A typical deployment of RF sensors for tomography ap-
plication is shown in Figure 3(a). The measurements are the
received signal strength (RSS) recordings for each sensor
pair. The RF sensors communicate among each other but not
with the targets. A network of Ns sensors forms a total of
nz = Ns(Ns − 1)/2 unique sensor pairs (bidirectional links)
generating nz measurements in every time step. The back-
ground RSS values are recorded initially when the monitoring
region is empty. The objective of RF tomography is to use
the measured deviations from these background RSS values
to track moving targets.
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Fig. 3. Top: Target tracks used in the simulation. The black cross (x) indicates
the initial location of the target and green circles represent sensors. Middle:
Variation of number of targets. The 7th and the 8th target appear at time steps
9 and 17 respectively. The 8th target disappears at time step 24. Bottom: The
minimum distance between any two targets as a function of time.
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The empirical modeling of RF link measurements are stud-
ied in [27]–[29]. The jth link measurement zjk at time step k
can be modeled as:

zjk = r
j
(Xk) + vjk = ∑

x∈Xk

gj(x) + vjk

where, gj(x) = φ exp(−
λj(x)

σλ
) . (47)

Here λj(x) is an elliptical distance measure between a target
located at x and link j (see [27] for more details); φ and
σλ are fixed parameters based on physical properties of the
sensors; vjk is the zero-mean Gaussian sensor noise. The RF
tomography measurement equation has a superpositional form
as can be seen by comparing equation (47) with equation (1)
in Section I-C.

The radio frequency tomography approach to target track-
ing has recently become popular [8], [27], [30]. The RF
tomography measurement model we simulate here is based
on the work by Li et al. where it is used for single target
tracking [27] and the work by Nannuru et al. where it is
used for multitarget tracking [28], [29] from field deployments
of RF sensor networks. The model has also been used for
multitarget tracking in computer simulations [13], [15].

We simulate the above RF sensor network with Ns = 20
sensor nodes distributed uniformly on the periphery of the
20m×20m square region as shown in Figure 3(a). This gives
rise to a total of nz = 190 unique bidirectional links. The
observation model parameters are φ = 5 and σλ = 0.4. The
measurement noise variance is Σr = σ

2
r ⋅ Inz where σ2

r = 0.25
and Inz is the nz × nz identity matrix.

The average OSPA error metrics are reported by running
100 Monte Carlo simulations (by changing initial seed) of
each algorithm for each of the experiments. The target tracks
are fixed for the different random initializations. The mean and
standard deviation (SD) results are summarized in the Table I.
We ignore the first 5 time steps while calculating the average
error to allow the filter estimates to stabilize. The hybrid MBR-
CPHD filter has the lowest average OSPA error among all the
filters. Run 1000 simulations ?

TABLE I
RADIO-FREQUENCY SENSORS: MEAN AND STANDARD DEVIATION OF THE

OSPA ERROR FOR DIFFERENT VALUES OF CARDINALITY PENALTY
FACTOR c.

Algorithm OSPA error (Mean ± SD)
c = 0.5 c = 1 c = 1.5

CPHD 0.17 ± 0.01 0.17 ± 0.01 0.18 ± 0.02
MBR 0.18 ± 0.03 0.26 ± 0.08 0.33 ± 0.13

MBR-CPHD 0.14 ± 0.01 0.15 ± 0.02 0.17 ± 0.03

The median cardinality estimates (averaged over the 100
Monte Carlo simulations) and its percentiles for the different
algorithms are shown in Figure 4(a). The multi-Bernoulli
(MBR) filter has low initial cardinality estimates because only
a maximum of 4 new Bernoulli components are added at each
time step. The CPHD filter has the most accurate cardinality
estimates. The hybrid MBR-CPHD filter can occasionally
make error in estimating the number of targets but is subse-

quently corrected by input from the CPHD component at the
next time step. An example of this is illustrated in Figure 4(b)
which shows the cardinality estimates of the IIDC component
and the final cardinality estimate of the hybrid MBR-CPHD
filter. At time step k = 11 one of the Bernoulli component
gets terminated but is revived in the next time step (k = 12)
using the IIDC component. Note that the IIDC component also
correctly identifies arrival of new targets at time steps k = 9
and k = 17.
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Fig. 4. Top: Median cardinality and its 5-95 percentiles (cyan colored region)
as a function of time. Bottom: The cardinality estimates for a single run of
the hybrid MBR-CPHD filter.

We study the variation of OSPA error with time using the
box and whisker plots. Figure 5 plots the box and whisker
diagram for the OSPA error. The plots are generated using
the OSPA error with a cardinality penalty factor of c = 0.5.
The hybrid MBR-CPHD filter has slightly lower median error
than the CPHD filter which has much lower median error
than the MBR filter. The median error for the MBR filter
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Fig. 6. True target tracks and estimated target locations obtained using the
hybrid MBR-CPHD filter.

is high because it is prone to frequent cardinality errors.
The extreme outliers of the CPHD filter correspond to one
of the failed simulations. The hybrid MRB-CPHD filter can
make cardinality errors which causes higher number of outliers
which are relatively farther from the median. Add more
discussion on results - error tables, box and whisker plots. An
example target location estimates obtained using the hybrid
MBR-CPHD filter are shown in Figure 6.

Table II compares the computational time required for the
different algorithms. The hybrid MBR-CPHD filter is faster
among all the filters. Individually, the CPHD filter has higher
computational requirement because of the costly clustering
step required at each time step and the MBR filter has higher
computational requirement because of the multiple additional
particle filters employed to account for new target arrivals. The
hybrid MBR-CPHD filter saves computation by initiating new
particle filters only if the IIDC component indicates arrival

of new targets and the costly clustering step is required only
when multiple new targets arrive within the monitoring region.

TABLE II
RADIO-FREQUENCY SENSORS: COMPUTATIONAL TIME REQUIRED IN

SECONDS.

Algorithm Time (Mean ± SD, seconds)
CPHD 45.61 ± 2.11
MBR 35.73 ± 0.95

MBR-CPHD 28.11 ± 0.52

APPENDIX A
CONDITIONAL PHD FOR UNION OF INDEPENDENT

RANDOM FINITE SETS

Let fA(W ) and fB(W ) be the multitarget probability
densities of two independent random finite sets χA and χB
respectively. Let f(W ) be the multitarget probability density
of χ = χA∪χB . Then we have the following relation between
the densities (Sec. 11.5.3, Chap. 11, [2])

f(W ) = ∑
Y ⊂W

fA(Y )fB(W − Y ) (48)

where the summation is over all subsets Y of W . The set
(W − Y ) is the difference set which includes elements from
W not present in Y . The conditional PHD corresponding to
RFS component χA is

D
A
(x) = ∫ f({x} ∪W ∣x← A)δW

=
∞

∑
n=0

1

n!
∫
∣W ∣=n

f({x} ∪W ∣x← A)dW

=
∞

∑
n=0

1

n!
∫
∣W ∣=n

( ∑
Y ⊂W

fA({x} ∪ Y )fB(W − Y ))dW

=
∞

∑
n=0

1

n!
( ∑
Y ⊂W

∫
∣W ∣=n

fA({x} ∪ Y )fB(W − Y )dW)

In the above expression let W − Y = Z so that we can write
W = Y ∪ Z where Y ∩ Z = φ. Hence we can seperate the
integration for the different variables as dW = dY dZ. Also
let ∣Y ∣ =m, ∣Z ∣ = n −m = l. Thus we can write

∑
Y ⊂W

∫
∣W ∣=n

fA({x} ∪ Y )fB(W − Y )dW

= ∑
Y ∪Z=W,Y ∩Z=φ

∫
∣W ∣=n

fA({x} ∪ Y )fB(Z)dY dZ

=
n

∑
m=0

(
n

m
)(∫

∣Y ∣=m
fA({x} ∪ Y )dY )(∫

∣Z∣=l
fB(Z)dZ)

Hence,

D
A
(x)

=
∞

∑
n=0

1

n!

n

∑
m=0

(
n

m
)(∫

∣Y ∣=m
fA({x} ∪ Y )dY )(∫

∣Z∣=l
fB(Z)dZ)

=
∞

∑
n=0

n

∑
m=0

1

n!
(
n

m
)(∫

∣Y ∣=m
fA({x} ∪ Y )dY )(∫

∣Z∣=l
fB(Z)dZ)

=
∞

∑
m=0

∞

∑
n=m

1

n!
(
n

m
)(∫

∣Y ∣=m
fA({x} ∪ Y )dY )(∫

∣Z∣=l
fB(Z)dZ)
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where the last step is rewritten by interchanging the order of
the two summations. We also have

1

n!
(
n

m
) =

1

n!

n!

m!(n −m)!
=

1

m!

1

(n −m)!
=

1

m!

1

l!

Continuing from above,

D
A
(x)

=
∞

∑
m=0

∞

∑
l=0

1

m!

1

l!
(∫

∣Y ∣=m
fA({x} ∪ Y )dY )(∫

∣Z∣=l
fB(Z)dZ)

= (
∞

∑
m=0

1

m!
∫
∣Y ∣=m

fA({x} ∪ Y )dY )(
∞

∑
l=0

1

l!
∫
∣Z∣=l

fB(Z)dZ)

By the definition of set integral and using equation (3) for the
multitarget probability density fB(Z), the second summation
above is equal 1. Hence we have,

D
A
(x) =

∞

∑
m=0

1

m!
∫
∣Y ∣=m

fA({x} ∪ Y )dY

= ∫ fA({x} ∪ Y )δY

=DA
(x)

APPENDIX B
PROOF OF THEOREM 1

Applying Bayes’ rule to definition of conditional PHD,

D
A
k+1(x) = ∫ fk+1∣k+1({x} ∪W ∣x← A) δW

=
∫ hzk+1({x} ∪W ∣x← A)fk+1∣k({x} ∪W ∣x← A) δW

fk+1(zk+1∣Z[k],x← A)

= D
A
k+1∣k(x)

∫ hzk+1({x} ∪W ) × f Āk+1∣k(W ) δW

fk+1(zk+1∣Z[k],x← A)

where f Āk+1∣k(W ) is the multi-target distribution defined as

f Āk+1∣k(W ) =
fk+1∣k({x} ∪W ∣x← A)

DA
k+1∣k

(x)

This is a valid distribution which integrates to 1 from the
definition of conditional PHD in equation (21). Thus we have

D
A
k+1(x) = D

A
k+1∣k(x)

×
∫ hzk+1({x} ∪W ) × f Āk+1∣k(W ) δW

∫ hzk+1(W ) × fk+1∣k(W ∣Z[k],x← A) δW

To simplify the denominator, we note that

∫ hzk+1(W ) × fk+1∣k(W ∣Z[k],x← A) δW

= ∫ hzk+1(W ) × fk+1∣k(W ) δW (49)

This is because the conditional event (x← A) has no effect on
the integral. To see this consider the following decomposition
of the integral on the left:

∫ hzk+1(W ) × fk+1∣k(W ∣Z[k],x← A) δW

= ∫
x∈W

hzk+1(W ) × fk+1∣k(W ∣Z[k],x← A) δW

+ ∫
x∉W

hzk+1(W ) × fk+1∣k(W ∣Z[k]
) δW

But the first integral is zero since x ∈W is a zero probability
event. To the second integral we can add the following term,
which has zero probability and thus does not affect the
evaluation of the integral:

∫
x∈W

hzk+1(W ) × fk+1∣k(W ∣Z[k]
) δW

This leads to the expression on the right hand side of equation
(49). Hence we have

D
A
k+1(x) = D

A
k+1∣k(x) ×

∫ hzk+1({x} ∪W ) × f Āk+1∣k(W ) δW

∫ hzk+1(W ) × fk+1∣k(W ) δW

APPENDIX C
APPLICATION OF CAMPBELL’S THEOREM

Let f(W ) be a multitarget density corresponding to some
random finite set. Denote the PHD function and the second
factorial moment density function of the RFS by D(x) and
D({x1,x2}) respectively. Let the random vector y be a
function defined over random sets and have the form y =

r(W ) = ∑w∈W g(w). Then according to quadratic version of
Campbell’s theorem [14], [15]

µ = E[(y)] = ∫ g(x) ⋅D(x)dx (50)

Σ = E[(y − µ)(y − µ)T ]

= ∫ g(x) ⋅ g(x)T ⋅D(x)dx

+ ∫ ∫ g(x1) ⋅ g(x2)
T
⋅ D̃({x1,x2})dx1dx2 (51)

where,

D̃({x1,x2}) =D({x1,x2}) −D(x1)D(x2)

Thus the mean and covariance matrix, which represent the first
and second order statistics of the random vector y, depend on
the PHD function and the second factorial moment density
function of the corresponding random set.

If the RFS χ is union of independent RFS χA and χB , then
we have

D(x) =DA
(x) +DB

(x) (52)

D̃({x1,x2}) = D̃
A
({x1,x2}) + D̃

B
({x1,x2}) (53)

The above result can be extended for case of union of more
than two independent RFSs.

A. Multi-Bernoulli RFS
For the multi-Bernoulli distribution, using the expression for

the PHD and the second-moment density from equations (16)
and (19) in the equations (50) and (51) we have

µk+1 = ∫ g(x) ⋅
⎛

⎝

Nk+1∣k

∑
i=1

ri ⋅ qi(x)
⎞

⎠
dx

=

Nk+1∣k

∑
i=1

ri × ∫ g(x) ⋅ qi(x)dx

=

Nk+1∣k

∑
i=1

ri ⋅ si, where si = ⟨qi, g⟩
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Σk+1 = ∫ g(x)g(x)T
⎛

⎝

Nk+1∣k

∑
i=1

ri ⋅ qi(x)
⎞

⎠
dx

− ∫ ∫ g(x1)g(x2)
T ⎛

⎝

Nk+1∣k

∑
i=1

r2
i ⋅ qi(x1) ⋅ qi(x2)

⎞

⎠
dx1dx2

=

Nk+1∣k

∑
i=1

(ri ⋅ vi − r
2
i ⋅ sis

T
i ), where vi = ⟨qi, gg

T
⟩

Combining the multitarget density in equation (23) and the
formulas in (48) and (22),

f Ā(W ) =
f({x} ∪W ∣x← A)

DA(x)

=
∑Y ⊂W fA({x} ∪ Y )fB(W − Y )

DA(x)

= ∑
Y ⊂W

(
fA({x} ∪ Y )

DA(x)
) fB(W − Y )

= ∑
Y ⊂W

f̃A(Y )fB(W − Y ) (54)

where,

f̃A(Y ) =
fA({x} ∪ Y )

DA(x)
⋅

Thus f Ā(W ) can be interpreted as the multitarget distribution
of the RFS which is union of independent random finite
sets with multitarget densities give by f̃A(W ) and fB(W ).
We now consider the multi-Bernoulli RFS χ with Nk+1∣k

parameters to be the union of a Bernoulli RFS (χA) with
parameters {ri, qi(x)} and another multi-Bernoulli RFS (χB)
with remaining parameter set {rj , qj(x)}j≠i. Using equation
(14), the density function f̃A(W ) corresponds to a RFS which
is empty with probability 1 and hence all its moments are
zero. By applying the results in equations (52) and (53) to the
Campbell’s theorem, the parameters µīk+1 and Σīk+1 are given
by

µīk+1 = 0 +
Nk+1∣k

∑
j=1,j≠i

rj ⋅ sj = µk+1 − ri ⋅ si

Σīk+1 = 0 +
Nk+1∣k

∑
j=1,j≠i

(rj ⋅ vj − r
2
j ⋅ sjs

T
j )

= Σk+1 − (ri ⋅ vi − r
2
i ⋅ sis

T
i )

B. Union of Multi-Bernoulli RFS and IIDC RFS

Let the RFS χ be the union of a multi-Bernoulli RFS
with parameters {ri, qi(x)}

Nk+1∣k
i=1 and an IIDC RFS with

parameters {qc(x), π
c(n)}. Using the expression for PHD and

second factorial moments from equations (10), (16), (12) and
(19) and applying the results in equations (52) and (53) we
have

µk+1 = ∫ g(x) ⋅
⎛

⎝

Nk+1∣k

∑
i=1

ri ⋅ qi(x) + µc ⋅ qc(x)
⎞

⎠
dx

=

Nk+1∣k

∑
i=1

ri ⋅ si + µc ⋅ sc, where sc = ⟨qc, g⟩ (55)

Σk+1 = ∫ g(x)g(x)T
⎛

⎝

Nk+1∣k

∑
i=1

ri ⋅ qi(x) + µc ⋅ qc(x)
⎞

⎠
dx

− ∫ ∫ g(x1)g(x2)
T ⎛

⎝

Nk+1∣k

∑
i=1

r2
i ⋅ qi(x1) ⋅ qi(x2)

⎞

⎠
dx1dx2

+ ∫ ∫ g(x1)g(x2)
T (G(2)

(1) − µ2
c) qc(x1)qc(x2)dx1dx2

=

Nk+1∣k

∑
i=1

(ri ⋅ vi − r
2
i ⋅ sis

T
i ) + µcvc − (µ2

c −G
(2)

(1)) scs
T
c

where, vc = ⟨qc, gg
T
⟩ (56)

Now consider the extension of the result in equation (54) to
union of three independent RFS. Let χA be the Bernoulli RFS
with parameters {ri, qi(x)}, χB be the multi-Bernoulli RFS
with parameter set {rj , qj(x)}j≠i and χC be the IIDC RFS
with parameters {qc(x), π

c(n)}. Thus using the arguments
related to equation (54), we have

µīk+1 = ∫ g(x) ⋅
⎛

⎝

Nk+1∣k

∑
j=1,j≠i

rj ⋅ qj(x) + µc ⋅ qc(x)
⎞

⎠
dx

=

Nk+1∣k

∑
j=1,j≠i

rj ⋅ sj + µc ⋅ sc = µk+1 − ri ⋅ si

Σīk+1 =

Nk+1∣k

∑
j=1,j≠i

(rj ⋅ vj − r
2
j ⋅ sjsjT )

+ µcvc − (µ2
c −G

(2)
(1)) scs

T
c

= Σk+1 − (ri ⋅ vi − r
2
i ⋅ sis

T
i )

Now consider χA to be the the IIDC RFS with parameters
{qc(x), π

c(n)} and χB to be the multi-Bernoulli RFS with
parameter set {rj , qj(x)}

Nk+1∣k
j=1 . In this case it can be shown

that the multitarget density f̃A(W ) corresponds to a IIDC
RFS with parameters {qc(x),

(n+1)!⋅πc
(n+1)

µc
} with probability

1. This is because, when x ∉W (event with probability 1), we
have

f̃A(W ) =
fA({x} ∪W )

DA(x)

=
(∣W ∣ + 1)⋅ πc(∣W ∣ + 1) ⋅ q

{x}∪W
c

µc ⋅ qc(x)

=
(∣W ∣ + 1)⋅ πc(∣W ∣ + 1) ⋅ qWc

µc

=
(∣W ∣ + 1)⋅ πc(∣W ∣ + 1)

µc
⋅ qWc

The mean and second order moment of the cardinality dis-
tribution (n+1)!⋅πc

(n+1)
µc

in terms of the probability generating

function of πc(n) are G(2)(1)
µc

and G(3)(1)
µc

respectively. Thus
from equations (55) and (56) we have

µc̄k+1 =

Nk+1∣k

∑
j=1

rj ⋅ sj +
G(2)(1)

µc
⋅ sc,

Σc̄k+1 =

Nk+1∣k

∑
j=1

(rj ⋅ vj − r
2
j ⋅ sjs

T
j )
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+
G(2)(1)

µc
vc − (

G(2)(1)2

µ2
c

−
G(3)(1)

µc
) scs

T
c

APPENDIX D
CARDINALITY UPDATE FOR IIDC COMPONENT

We find the cardinality distribution of the posterior IID
cluster component. This can be defined as

πck+1∣k+1(m1) = ∫
∣W ∣c=m1

fk+1∣k+1(W )δW

=
∫∣W ∣c=m1

hzk+1(W )fk+1∣k(W )δW

∫ hzk+1(W )fk+1∣k(W )δW

= πck+1∣k(m1)
∫ hzk+1(W )f c,m1

k+1∣k
(W )δW

∫ hzk+1(W )fk+1∣k(W )δW

where,

f c,m1

k+1∣k
(W ) =

1

πc
k+1∣k

(m1)
δ∣W ∣c(m1)fk+1∣k(W )

The multi-target density f c,m1

k+1∣k
(W ) corresponds to the union

of independent multi-Bernoulli RFS and the random finite set
obtained by constraining the cardinality (∣W ∣c = m1) of the
IID cluster RFS. Applying the approximations as before we
get,

πck+1∣k+1(m1) ≈ π
c
k+1∣k(m1) ⋅

NΣr+Σ
c,m1
k+1

(zk+1 − µ
c,m1

k+1 )

NΣr+Σk+1(zk+1 − µk+1)

where µk+1 and Σk+1 are as given in equations (55) and (56)
and,

µc,m1

k+1 =

Nk+1∣k

∑
i=1

ri ⋅ si +m1 ⋅ sc

Σc,m1

k+1 =

Nk+1∣k

∑
i=1

(ri ⋅ vi − r
2
i ⋅ sis

T
i ) +m1(vc − scs

T
c )

Note that in the above update equation there is no assumption
made about the cardinality of the multi-Bernoulli component.
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