
1

A multi-sensor multi-Bernoulli filter
Augustin-Alexandru Saucan, Mark Coates and Michael Rabbat

Abstract

In this paper we derive a multi-sensor multi-Bernoulli (MS-MeMBer) filter for multi-target tracking. Measurements from
multiple sensors are employed by the proposed filter to update a set of tracks modeled as a multi-Bernoulli random finite set. An
exact implementation of the MS-MeMBer update procedure is computationally intractable. We propose an efficient approximate
implementation by using a greedy measurement partitioning mechanism. The proposed filter allows for Gaussian mixture or particle
filter implementations. Numerical simulations conducted for both linear-Gaussian and non-linear models highlight the improved
accuracy of the MS-MeMBer filter and its reduced computational load with respect to the multi-sensor cardinalized probability
hypothesis density filter and the iterated-corrector cardinality-balanced multi-Bernoulli filter especially for low probabilities of
detection.

Index Terms

Random finite sets, multi-sensor multi-Bernoulli filter, multi-sensor and multi-target tracking.

I. INTRODUCTION

S INGLE sensor multi-target tracking has received a great amount of attention in the scientific literature. Whenever the
number of targets is unknown and time varying, a popular solution builds on the Random Finite Set (RFS) theory [1]. In

this category, the most well known filter is the Probability Hypothesis Density (PHD) filter of [2]. The PHD filter models the
multiple targets as a Poisson RFS, where the number of targets is Poisson distributed and the target distributions are independent
and identically distributed (iid). The PHD filter adaptively estimates a function defined over the single-target space which is
referred to as the PHD function. The number of targets and their states are inferred from the PHD function.

A different choice involves modeling each target as a Bernoulli RFS, characterized by a probability of existence and a target
probability density. Accordingly, a set of independent targets is modeled by a multi-Bernoulli RFS, i.e., a union of independent
Bernoulli RFSs. The multi-Bernoulli (MeMBer) filter was proposed in [1, Ch. 17] with subsequent improvements in [3] and
[4].

The multi-sensor scenario involves processing observations made by several sensors which are usually assumed to be
conditionally independent given the target states. A generalized PHD filter for the special case of two sensors was first proposed
in [5] and [6], and extended in [7] and [8] to an arbitrary number of sensors. Approximate multi-sensor filters were developed
in order to reduce the combinatorial complexity of the generalized PHD filter. Subsequently, in [6] the iterated-corrector PHD
filter was proposed and the approximate product multi-sensor PHD and CPHD filters were introduced in [9] and implemented in
[10]. A comprehensive review of several of the aforementioned multi-sensor solutions is presented in [11, Ch. 10]. Other filters,
such as [12] and [13], rely on the δ-Generalized Labeled multi-Bernoulli RFS in order to achieve approximate multi-sensor
multi-target tracking. A generalized multi-sensor CPHD (MS-CPHD) filter was proposed in [14] along with computationally-
tractable implementations. In a different setting, in [15], [16] distributed multi-target filtering is achieved using an unlabeled
version of the Generalized Labeled multi-Bernoulli RFS and the Generalized Covariance Intersection method [17], [18] for
the fusion of posterior densities.

The update process of the MS-PHD and MS-CPHD filters is achieved via Bayes’ theorem and involves partitioning all of
the sensor measurements into disjoint subsets. Each subset includes at most one measurement per sensor and corresponds
to the measurements made by a potential target across all sensors. The subsets of a partition are disjoint and comprise all
the sensor measurements. Exploring all partitions and subsets is impractical, and tractable implementations of the MS-PHD
and MS-CPHD filters consider only the subsets (and subsequently the partitions) that make a significant contribution to the
predicted PHD function. Hence, a greedy partitioning mechanism is employed which associates likely measurement subsets
with individual target densities from the predicted PHD function. The MS-PHD and MS-CPHD filter implementations of [14]
constrain the PHD function to be a Gaussian mixture and assume that each Gaussian component represents a potential target.

In this paper we propose and derive a multi-Bernoulli filter for the multi-sensor case. The multi-Bernoulli RFS models each
target as a separate Bernoulli RFS with its own probability density function and existence probability. Effectively, the multi-
Bernoulli prior shifts the combinatorial problem to that of associating observation subsets to Bernoulli components. Therefore
no clustering operations are required for measurement partitioning, and the probability density of each target (i.e., each Bernoulli
component) can take whatever form is best suited for the target state model. Furthermore, the proposed implementation of the
MS-MeMBer filter has a simplified update procedure that reduces the computational complexity of the filter. More precisely,
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each Bernoulli component is only updated with its associated observation subsets; that is, subsets that have a significant
contribution to the probability of existence of that component.

This paper is organized as follows. Section II reviews background information on RFS theory and introduces notation
employed throughout the paper. Section III presents an overview of single sensor multi-Bernoulli filtering. The proposed filter
is derived in Section IV with numerical implementations being discussed in Section V. Then simulation results are presented
for both linear-Gaussian (Section VI-B) and non-linear (Section VI-C) state systems. We conclude in Section VII.

II. RANDOM FINITE SET STATISTICS

Throughout this paper, an RFS is employed to model a random number of targets with random state vectors. The realization
of an RFS is a set X = {x1, . . . ,xn}, where n ≥ 0 is the random number of targets and xi is the state vector of the i-th
target. The cardinality of a finite set X , i.e., the number of elements is denoted with |X|. State vectors take values in the
single-target space, x ∈ X, which is usually a subspace of Rd. The random nature of an RFS is captured by its probability
density π(X). The set of all finite subsets of X is denoted with F(X) and for a function f : F(X) → R, the set integral is
defined as [1, Ch. 11.3.3.1] ∫

f(X)δX ,
∞∑
n=0

1

n!

∫
· · ·
∫
Xn

f({x1, · · · ,xn})dx1 · · · dxn. (1)

Additionally, we employ the exponential notation uX =
∏

x∈X u(x), with u∅ = 1 by convention. By introducing the test
function u : X→ [0, 1], the Probability Generating Functional (PGFl) [1, Sec. 11.3.5] is defined as

G[u] =

∫
uXπ(X)δX. (2)

The Bernoulli RFS is either an empty set with probability 1− r or a singleton set with probability r. In the latter case, the
singleton is distributed according to a pdf p(x), which represents the density of a single target. The PGFl of a Bernoulli RFS
is given by (see [1, pp. 374])

G[u] = 1− r + r〈p,u〉, (3)

where 〈p,u〉 ,
∫
p(x)u(x)dx is the inner product. A multi-Bernoulli RFS is obtained by taking the union of M independent

Bernoulli RFSs, and its PGFl is

G[u] =

M∏
i=1

(
1− r(i) + r(i)〈p(i),u〉

)
, (4)

where (r(i), p(i)) are the parameters of the i-th Bernoulli component.
The functional derivative of a functional F [u] in the direction of the Dirac delta density δx is defined as δF

δx [u] , ∂F
∂δx

[u] =

limε↘0
F [u+εδx]−F [u]

ε (see [1, Eq. 11.186]). The first-order moment D(·) associated with π(·), also called the probability
hypothesis density function, is given by

D(x) =
δG

δx
[u]

∣∣∣∣
u(x)=1, ∀x

(5)

=

M∑
i=1

r(i) p(i)(x). (6)

III. SINGLE SENSOR MULTI-BERNOULLI FILTERS

Several single sensor multi-Bernoulli filters have been proposed in the literature. In this section, we present an overview
of several multi-Bernoulli filters with an emphasis on the Cardinality Balanced MeMBer (CBMeMBer) filter [3]. The set of
targets is modeled by a multi-Bernoulli RFS Xk, indexed by the sample time k. The targets are observed by a single sensor
that generates a set of measurements Zk = {zlk|l = 1, . . . ,mk} that contains at most one measurement per target and clutter
measurements. The aim of all single sensor multi-Bernoulli filters is to provide an estimate of the posterior density πk+1|k+1(·)
of the RFS Xk+1 given the set of all measurements Z1:k+1 = {Z1, · · · , Zk+1} up to and including time k + 1.

We consider at time k a multi-Bernoulli RFS with parameters {(r(i)k|k, p
(i)
k|k)}Mk|k

i=1 and with posterior distribution πk|k(·). The
target kinematic model, birth, and death of targets are incorporated into the prediction stage of the filter. The correction of the
predicted distribution, via the current sensor measurement set Zk, is achieved in the update stage. We give the details of each
stage next.
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A. Single sensor MeMBer prediction

Target death/disappearance is incorporated via the target probability of survival pS,k(x), and births are accounted for
by appending a birth multi-Bernoulli RFS with components {(r(i)B,k+1, p

(i)
B,k+1)}MB,k+1

i=1 to the surviving targets. The birth
Bernoulli RFSs are mutually independent and independent from the surviving targets. Additionally, the target kinematic model
is incorporated via the transition kernel fk+1|k(xk+1|xk). The resulting RFS density πk+1|k(X) is multi-Bernoulli (see [3])
and is comprised of the components{

(r
(i)
k+1|k, p

(i)
k+1|k)

}Mk+1|k

i=1
=
{

(r
(i)
P,k+1|k, p

(i)
P,k+1|k)

}Mk|k

i=1
∪
{

(r
(i)
B,k+1, p

(i)
B,k+1)

}MB,k+1

i=1
, (7)

where the surviving Bernoulli components have parameters

r
(i)
P,k+1|k = r

(i)
k|k〈p

(i)
k|k, pS,k+1〉, (8a)

p
(i)
P,k+1|k(x) =

〈fk+1|k(x|·), p(i)k|kpS,k+1〉

〈p(i)k|k, pS,k+1〉
. (8b)

Since the predicted RFS is a multi-Bernoulli RFS, it admits a PGFl of the form (4).

B. Single sensor MeMBer update

Let πk+1|k(X) be the density of the predicted RFS with PGFl given by (4). Denoting with Lk+1(Z|X) the multi-target
likelihood function of the measurement set Z given the target set X , we define the functional F [g, u] [1, Eq. 14.281] as

F [g, u] =

∫
uX
[∫

gZLk+1(Z|X)δZ

]
πk+1|k(X)δX. (9)

The PGFl corresponding to the updated density πk+1|k+1(·) (i.e., corrected with the measurement set Zk+1) is [1, Sec.
14.8.2]

Gk+1|k+1[u] =

δF
δZk+1

[0, u]

δF
δZk+1

[0, 1]
, (10)

where δF
δZk+1

[g, u] is the functional derivative of F in g with respect to the set Zk+1 [1, Eq. 11.191]1.
As shown in [1, Sec. 17.4.2], the PGFl Gk+1|k+1[u] does not have the form of (4), i.e., the updated posterior density

πk+1|k+1(·) does not correspond to a multi-Bernoulli RFS. Therefore, in [1, Sec. 17.4.2] several approximations are applied to
(10) in order to obtain a multi-Bernoulli approximation to Gk+1|k+1[u]. The resulting filter is referred to as the MeMBer filter.
However, in [3] it is shown that the MeMBer filter has a positive cardinality bias, and an unbiased filter called the Cardinality
Balanced MeMBer (CBMeMBer) filter is proposed. The CBMeMBer filter also employs several approximations. First, in the
PGFl of (10) it is assumed that the clutter density is not too large. Second, a first-order moment (PHD approximation) is
employed in order to obtain a multi-Bernoulli PGFl that captures the intensity function (and hence mean cardinality) of the
original PGFl. Finally, the approximation of high probability of detection pD,k ≈ 1 is required in order to correct a negative term
appearing in the probabilities of existence of the resulting multi-Bernoulli components. More details regarding the derivation
of the CBMeMBer filter are given in [3]. In [4], the cardinality bias of the MeMBer filter is alleviated by modeling spurious
targets arising from the legacy track set. However, the resulting unbiased MeMBer filter also employs a low density clutter
approximation.

A straightforward extension of any of the single sensor MeMBer filters to the case of multiple sensors can be achieved by
iterating the filter update stage for each sensor measurement set. For example, the filter obtained by sequentially processing
the measurement set of each sensor with the CBMeMBer filter corrector leads to the Iterated-Corrector CBMeMBer (IC-
CBMeMBer) filter.

IV. MULTI-SENSOR MULTI-BERNOULLI (MS-MEMBER) FILTER

We consider a set of targets at time k modeled as a multi-Bernoulli RFS and characterized by a posterior distribution
with parameters {(r(i)k|k, p

(i)
k|k)}Mk|k

i=1 . The targets are observed by s sensors which, conditional on the target states, generate
independent measurements. Let Zj,k = {z1j,k, . . . , z

mj,k

j,k } be the set of all measurements zj,k ∈ Zj of the j-th sensor, with Zj
being the measurement space of sensor j. Let us also denote the collection of measurements collected by all sensors at time
k by Z1:s,k = (Z1,k, · · · , Zs,k). Again, we assume that each sensor can collect at most one measurement per target and that
clutter measurements may be present. Multi-sensor multi-target filters provide an estimate of the distribution πk+1|k+1(·) of
Xk+1 given Z1:s,1:k+1, which is obtained in a Bayesian framework via prediction and update.

1For a general functional H , the functional derivative δH
δY

[h] = H[h] for Y = ∅ and δH
δY

[h] = δnH
δy1···δyn

when Y = {y1 · · ·yn}.
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Similar to the single sensor case, the updated PGFl Gk+1|k+1[u], and subsequently the identification of updated multi-
Bernoulli components, can be achieved via the differentiation of the multivariate functional F [g1:s, u] , F [g1, . . . , gs, u],
where the variable gi corresponds to the sensor i. We denote with Li,k+1(Zi|X) the multi-target likelihood function for sensor
i at time k+ 1. Considering the sensor measurements as conditionally independent given the multi-target state, and analogous
to (9), F [g1:s, u] is defined as

F [g1:s, u] ,
∫
uX

(
s∏
i=1

∫
gZi
i Li,k+1(Zi|X)δZi

)
πk+1|k(X)δX. (11)

The parameters of the measurement model for sensor i are the probability of detection pi,D,k+1(·), likelihood function hi,k+1(·),
clutter probability density function (pdf) ci,k+1(·), clutter cardinality distribution pc,i,k+1(n) and probability generating function
(pgf) Ci,k+1(u) ,

∑∞
n=0 u

npc,i,k+1(n).
From [1, Sec. 12.3.7], the measurement PGFl can be written as∫

gZi
i Li,k+1(Zi|X)δZi = Ci,k+1(〈ci,k+1, gi〉)

∏
x∈X

[
1− pi,D,k+1(x) + pi,D,k+1(x)

∫
gi(z)hi,k+1(z|x)dz

]
. (12)

In the following, for conciseness we omit the time index k + 1 when it is clear from the context.
We denote by G(j)

k+1|k[·] the PGFl of the j-th Bernoulli component of the predicted density πk+1|k(·). Note that G(j)
k+1|k[·]

has the form of equation (3). Additionally we define the function

φgi(x) , 1− pi,D(x) + pi,D(x)

∫
gi(z)hi(z|x)dz. (13)

Based on the specific form of (12), the functional F [g1:s, u] can be written as

F [g1:s, u]

=

(
s∏
i=1

Ci(〈ci, gi〉)

)∫
(u
∏s
i=1φgi)

X
πk+1|k(X)δX,

=

(
s∏
i=1

Ci(〈ci, gi〉)

)Mk+1|k∏
j=1

G
(j)
k+1|k[u

∏s
i=1φgi ]. (14)

Analogous to (10), the multi-sensor updated PGFl is given by

Gk+1|k+1[u] =

δsF
δZ1,k+1···δZs,k+1

[0, 0, . . . , 0, u]

δsF
δZ1,k+1···δZs,k+1

[0, 0, . . . , 0, 1]
, (15)

where the functional F [g1:s, u] is differentiated in g1 with respect to Z1,k+1, in g2 with respect to Z2,k+1 and so on.
The result of the differentiation in (15) requires the partitioning of the measurements Z1:s,k+1. Therefore, we introduce

notation similar to [14]. Let Wi ⊂ Zi,k+1 be a measurement subset that contains at most one measurement from sensor i,
i.e., |Wi| ≤ 1. Additionally, we construct the ordered collection of measurement subsets as W1:s , (W1, . . . ,Ws), which
contains at most one measurement from each sensor. We denote the special case when Wi = ∅ ∀ i = 1, . . . , s by ∅1:s. We
refer to W1:s as a multi-sensor measurement subset. Each multi-sensor subset W1:s can also be specified via the set of indices
TW1:s

= {(i, l)|zli ∈ Wi, ∀i = 1, . . . , s} that specify the sensor index i as well as the measurement index l. We say that two
multi-sensor subsets W j

1:s = (W j
1 , . . . ,W

j
s ) and W p

1:s = (W p
1 , . . . ,W

p
s ) are disjoint if W j

i ∩W
p
i = ∅ ∀ i = 1, . . . , s.

Given a set of disjoint multi-sensor subsets W 1
1:s, . . . ,W

n
1:s, we define the collection of clutter measurements as W 0

1:s =(
W 0

1 , . . . ,W
0
s

)
with W 0

i = Zi,k+1 \ (∪nj=1W
j
i ). Each W j

1:s for j 6= 0 can be interpreted as the collection of measurements of
a specific target across all sensors and W 0

1:s as the collection of clutter points. For a given M , we define a quasi-partition P
of the measurements Z1:s,k+1 as P = (W 0

1:s, · · · ,WM
1:s, ). Note that W 1

1:s, . . . ,W
M
1:s and W 0

1:s are disjoint. We refer to P as a
measurement quasi-partition since its elements W1:s are allowed to be empty, i.e., W1:s = ∅1:s. For a number M of targets, the
quasi-partition P can be interpreted as a partitioning of the measurements Z1:s,k+1 into target-originated multi-sensor subsets
W j

1:s (one for each target) and the clutter subset W 0
1:s. Additionally, let P denote the set of all quasi-partitions P .

The result of the differentiation of (14) is summarized in the next lemma, and the proof is presented in Appendix A.

Lemma IV.1. We define γ(x) ,
∏s
i=1 [1− pi,D(x)] and for any multi-sensor subset W j

1:s we introduce the multi-sensor
likelihood for a single target with state x as

f(W j
1:s|x) ,

∏
(i,l)∈T

W
j
1:s

pi,D(x)hi(z
l
i|x)

ci(zli)

∏
(i,∗)/∈T

W
j
1:s

(1− pi,D(x)). (16)
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For each j = 1, . . . ,Mk+1|k, we define the functionals

ϕj
W j

1:s

[u] ,

{
1− r(j)k+1|k + r

(j)
k+1|k〈p

(j)
k+1|k,uγ〉, if W j

1:s = ∅1:s
r
(j)
k+1|k

∫
u(x)p

(j)
k+1|k(x)f(W j

1:s|x)dx, otherwise.
(17)

Additionally, let Γi ,
∏

z∈Zi,k+1
ci(z) and KP ,

∏s
i=1 C

(|W 0
i |)

i (0) with C
(n)
i (·) denoting the n-th derivative of the clutter

probability generating function Ci(·). Then the differentiation of the functional (14) with respect to all the sensors evaluated
at (0, . . . , 0) is

δsF

δZ1,k+1 · · · δZs,k+1
[0, . . . , 0, u] =

[
s∏
i=1

Γi

] ∑
P∈P
KP

Mk+1|k∏
j=1

ϕj
W j

1:s

[u]

 . (18)

Lemma IV.1 gives the numerator of (15), while the denominator of (15) is obtained by evaluating δF
δZ1:s,1:k

[0, . . . , 0, u] at
u(x) = 1. Because of the additional sum in (18), the PGFl of the updated posterior is not a multi-Bernoulli PGFl, i.e., a
product of Bernoulli PGFls as in (4). Note that in order to achieve a multi-Bernoulli posterior, the derivation of the single
sensor MeMBer filters involves approximating the derivative of F [g, u] with respect to g at the measurement set Z1,k+1. In
contrast, the result in (18) and Gk+1|k+1[u] are exact, and in the following we apply a single first-order multi-target moment
approximation (similar to the PHD filter of [2]) after all sensor measurements have been taken into account in the PGFl
Gk+1|k+1[u].

We approximate the updated posterior with a multi-Bernoulli distribution of equal first-order moment (i.e. PHD function). We
aim to construct a multi-Bernoulli RFS π̂k+1|k+1(·) with identical PHD function to that of πk+1|k+1(·). Implicitly, π̂k+1|k+1(·)
and πk+1|k+1(·) have the same mean cardinality. The PHD function is summarized in the following theorem, and its proof is
presented in Appendix B.

Theorem IV.2. By defining the coefficients

αP ,

KP
Mk+1|k∏
j=1

ϕj
W j

1:s

[1]

∑
Q∈P
KQ

Mk+1|k∏
j=1

ϕj
W j

1:s

[1]

(19)

and the function

ρj
W j

1:s

(x) =


r
(j)

k+1|kγ(x)

1−r(j)
k+1|k+r

(j)

k+1|k〈p
(j)

k+1|k , γ〉
, if W j

1:s = ∅1:s
f(W j

1:s|x)∫
p
(j)

k+1|k(x)f(W
j
1:s|x)dx

, otherwise,
(20)

the PHD function obtained via (5) from the PGFl Gk+1|k+1[u] is

Dk+1|k+1(x) =
∑
P∈P

P=(W 0
1:s,...,W

M
1:s)

αP

Mk+1|k∑
j=1

ρj
W j

1:s

(x)p
(j)
k+1|k(x). (21)

The inner summation of (21) comprises the Mk+1|k predicted Bernoulli terms and effectively involves the update of each of
the predicted Bernoulli components. For each quasi-partition P =

(
W 0

1:s, . . . ,W
M
1:s

)
, the update process assigns the multi-sensor

subset W i
1:s to one of the Mk+1|k predicted Bernoulli components.

Theorem IV.2 shows that even though the PGFl Gk+1|k+1[u] is not multi-Bernoulli, its PHD function has a similar structure
(i.e., a sum of weighted densities) as that of a multi-Bernoulli PHD [see eq. (6)]. Therefore, the Bernoulli components of
π̂k+1|k+1(·) are identifiable from the expression in (21). A proposition for the Bernoulli components of π̂k+1|k+1(·) is:{(

r̂
(j)
k+1|k+1, p̂

(j)
k+1|k+1(·)

)}M̂k+1|k+1

j=1

=
⋃
P∈P

Mk+1|k⋃
j=1

{(
r
(j)
P , p

(j)
P (·)

)}
, (22)

where

r
(j)
P =

αP
r
(j)

k+1|k〈p
(j)

k+1|k , γ〉

1−r(j)
k+1|k+r

(j)

k+1|k〈p
(j)

k+1|k , γ〉
, if W j

1:s = ∅1:s

αP otherwise
(23)
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and

p
(j)
P (x) =


p
(j)

k+1|k(x)γ(x)

〈p(j)
k+1|k , γ〉

, if W j
1:s = ∅1:s.

p
(j)

k+1|k(x)f(W
j
1:s|x)∫

p
(j)

k+1|k(x)f(W
j
1:s|x)dx

, otherwise.
(24)

Note that the PHD function (21) is a mixture of densities, and the choice of updated Bernoulli RFSs is not unique. The
choice made to arrive at (22) involves creating a Bernoulli RFS for each association between a predicted Bernoulli RFS and a
multi-sensor subset. Other choices could be obtained by clustering several updated densities into a single Bernoulli component.
A different proposal involves matching the cardinality distribution in addition to the intensity function of the approximate
multi-Bernoulli RFS to the exact updated RFS. Alternatively, an approximating multi-Bernoulli density could be obtained by
minimizing the Kullback-Leibler divergence from the exact RFS density. In [19], this problem is solved via the expectation-
maximization algorithm where the correspondence between the Bernoulli components in the best-fitting distribution and the
components of the exact distribution are treated as missing data. However, this additional minimization step increases the
computational complexity of the resulting algorithm and the development of efficient algorithms for the multi-sensor case are
left for future investigation.

V. MS-MEMBER PRACTICAL IMPLEMENTATION

The update process involves associating various measurement subsets W1:s with the predicted Bernoulli components without
imposing any restrictions on the shape of the probability density of the Bernoulli components. Indeed, both Gaussian mixture

p
(j)
k+1|k(x) =

J
(j)
k+1∑
n=1

w
(j)
n,k+1 N (x;µ

(j)
n,k+1,Σ

(j)
n,k+1) (25a)

and particle based

p
(j)
k+1|k(x) =

J
(j)
k+1∑
n=1

w
(j)
n,k+1 δx(j)

n,k+1

(x) (25b)

representations are possible.
The challenge posed by the multi-Bernoulli density π̂k+1|k+1(·) is given by the large number of Bernoulli components

resulting after the update step (22). More precisely, starting with a number Mk+1|k of predicted Bernoulli components, defined
in (7), the total number of updated Bernoulli components is

∑
P∈PMk+1|k, the majority of which contribute very little

to the updated PHD function. Therefore, a greedy mechanism for selecting the best associations and subsequently the best
quasi-partitions is necessary. In the following, we show that ϕj

W j
1:s

[1] (defined in (17)) effectively scores the association of

the measurement collection W j
1:s with the j-th Bernoulli component while αP (defined in (19)) represents a score of the

quasi-partition P . Thus, similar to [14] the scores ϕj
W j

1:s

[1] and αP can be employed to select high-scoring measurement

subsets W j
1:s, followed by high-scoring quasi-partitions P . The formation of measurement subsets W1:s and the formation of

quasi-partitions are described in the following two sections.

A. Formation of multi-sensor subsets W1:s

We employ ϕj
W j

1:s

[1] as a measure of the likelihood that W j
1:s was generated by the j-th Bernoulli component. As we can

see from (16) and (17), for non-empty multi-sensor subsets, ϕj
W j

1:s

[1] can be interpreted as a ratio of the likelihood that W j
1:s

was generated by the j-th Bernoulli component to the likelihood that W j
1:s is clutter. For the particular case of W j

1:s = ∅1:s,
ϕj
W j

1:s

[1] quantifies the probability that either all s sensors have failed to detect the j-th Bernoulli component or the component
no longer exists. We propose a greedy algorithm for selecting high-scoring measurement subsets W1:s for each predicted
Bernoulli component by sequentially processing each sensor. The formation of W j

1:p for p = 1, . . . , s is depicted in Fig. 1 as
the formation of paths through the trellis formed with all sensor measurements and the empty measurement set (corresponding
to the missed-detection case). A new measurement znp+1 is appended to an existing path W j

1:p if it maximizes the score
βj1:p+1(W j

1:p+1) = ϕj
W j

1:p+1

[1]. For the two representations of the pdf p(j)k+1|k(·) in (25a) and (25b), the score βj1:p+1(W j
1:p+1)

takes one of the forms

r
(j)
k+1|k

J
(j)
k+1∑
n=1

w
(j)
n,k+1

∫
N (x;µ

(j)
n,k+1,Σ

(j)
n,k+1)f(W j

1:p+1|x)dx (26a)



7

or

r
(j)
k+1|k

J
(j)
k+1∑
n=1

w
(j)
n,k+1f(W j

1:p+1|x
(j)
n,k+1). (26b)

In the Gaussian mixture case, the sensor detection probabilities are constant and the observation model is linear Gaussian, i.e.
hi(z|x) = N (z; Hix,Ri) for some matrices Hi and Ri of appropriate dimensions. In the aforementioned conditions, (26a)
admits an analytic form due to the properties of quadratic combinations [20, App. 3.8].

In order to obtain the njs ≥ 1 best-scoring multi-sensor subsets for the j-th Bernoulli component, at each sensor we keep

at most the highest Wmax scoring subsets. More precisely, starting with the set {W j,i
1:p}

nj
p

i=1 of subsets up to and including
sensor p, we evaluate all possible extensions (W j,i

1:p, {zlp+1}) with zlp+1 ∈ Zp+1. A number njp+1 ≤ Wmax of subsets with
highest βj1:p+1(W j,i

1:p+1) are selected in addition to the empty multi-sensor subset ∅1:p+1 = (∅, . . . , ∅). In this manner and after
processing all s sensors, we obtain njs ≤ Wmax high-scoring multi-sensor subsets in addition to ∅1:s. Note that the maximum
number of non-empty subsets Wmax is treated as a user-defined parameter in this work. A pseudo-code description of the greedy
subset selection algorithm is given in Appendix C. The computational complexity of the algorithm isO(Mk+1|kWmax

∑s
i=1mi),

signifying a linear complexity with respect to the number of predicted Bernoulli components Mk+1|k and with the number of
sensors s. Otherwise, note that an exhaustive enumeration of all

∏s
i=1(1+mi) multi-sensor subsets and their associated scores

for all predicted Bernoulli components involves a computational complexity of O(Mk+1|k
∏s
i=1mi), which is exponential

in the number of sensors s. In the following section, the greedily selected subsets are employed by the partition selection
algorithm to form a number of high-scoring partitions.

B. Formation of quasi-partitions P

Quasi-partitions are formed as paths through a trellis constructed from the njs measurement subsets of the j = 1, . . . ,Mk+1|k
predicted Bernoulli components, as seen in Fig. 2. Paths are formed sequentially across the Mk+1|k Bernoulli components in
a similar manner to the formation of multi-sensor subsets described in Section V-A. Note from (19) that αP serves to score
a quasi-partition P . Hence, we define the score of a partial path P1:p , (W 1

1:s, . . . ,W
p
1:s) as α1:p(P1:p) =

∏p
j=1 β

j
1:s(W

j
1:s).

Based on the scores α1:p+1(·) = α1:p(·)βp+1
1:s (W p+1

1:s ), a specific collection W p+1
1:s from the p + 1 Bernoulli component is

appended to the path P1:p in order to form P1:p+1 = (W 1
1:s, . . . ,W

p+1
1:s ). Thus, a complete path P1:Mk+1|k is selected with the

goal of maximizing α1:Mk+1|k(P1:Mk+1|k), which is proportional to (19).
Note that an additional operation needs to be performed in order to ensure that all multi-sensor subsets of a quasi-partition

are pairwise disjoint. In other words, we need to ensure that the same measurement does not appear in two different multi-
sensor subsets of the same quasi-partition. As noted in [14, Sec. V.C], in the formation of a quasi-partition it is necessary
to pre-select only valid multi-sensor subsets, i.e., those which are pairwise disjoint with the multi-sensor subsets in the
current path. More specifically, considering the partial path P1:p, we select the highest-scoring valid multi-sensor subsets
from {∅1:s,W p+1,1

1:s , . . . ,W
p+1,np+1

s
1:s }. Note that the empty multi-sensor subset ∅1:s ensures that there will always exist a valid

path through the trellis of Fig. 2. In Algorithm 2 of Appendix D, we present the pseudo-code for the greedy quasi-partition
formation algorithm. The computational complexity of Algorithm 2 is of O(Pmax Wmax sM

2
k+1|k), involving a linear complexity

with respect to the number of sensors but quadratic with respect to the number of predicted Bernoulli components.
A maximal number of Pmax quasi-partitions, with the largest scores, are formed using a procedure similar to that employed

to identify the Wmax subsets during the multi-sensor subset selection procedure. The updated Multi-Bernoulli RFS will contain

1

∅

z11
...

zm1
1

2

∅

z12
...

zm2
2

3

∅

z13
...

zm3
3

· · ·

· · ·

· · ·

s

∅

z1s
...

zms
s

Sensors:

W j
1:2

Fig. 1: Trellis diagram formed from the measurements of the s sensors. For the j-th predicted Bernoulli component, a partial
collection of measurements W j

1:3 is formed by greedily appending high-scoring measurements from sensor 3 to the previous
partial collection W j

1:2. The candidate measurements from sensor 3 are evaluated through the score βj1:3(W j
1:3).
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1

∅1:s

W 1,1
1:s

...

W
1,n1

s
1:s

2

∅1:s

W 2,1
1:s

...

W
2,n2

s
1:s

3

∅1:s

W 3,1
1:s

...

W
3,n3

s
1:s

· · ·

· · ·

· · ·

M

∅1:s

WM,1
1:s

...

W
M,nM

s
1:s

Predicted Bernoulli components:

P1:2

Fig. 2: Trellis diagram formed with the multi-sensor subsets W j
1:s from the j = 1, . . . ,M predicted Bernoulli components.

Quasi-partitions are formed by sequentially processing the Bernoulli components and greedily appending the highest-scoring
valid multi-sensor subsets.

at most PmaxMk+1|k distinct Bernoulli components. In practice, different quasi-partitions might contain the same subset-to-
Bernoulli assignment and thus create updated Bernoulli components with identical pdfs in (22) but with different probabilities of
existence. Such components can be collapsed into a single Bernoulli component by adding together their existence probabilities.
Thus, we obtain a density π̂k+1|k+1(·) with a number of components M̂k+1|k+1 ≤ PmaxMk+1|k that has a PHD function
approximately equal to (21).

In contrast with the partition selection procedure of the MS-CPHD filter [14], here, quasi-partitions are defined as ordered,
i.e., P = (W 0

1:s, . . . ,W
Mk+1|k
1:s ) and this implicitly ensures the association of the multi-sensor subset W j

1:s with the j-th
Bernoulli component. In [14], each multi-sensor subset W1:s of a partition is employed to update all mixture components
of the predicted PHD function. Following an approach similar to the quasi-partition selection mechanism presented above, a
truncated MS-CPHD (MS-TCPHD) filter algorithm can be developed. In the case of the MS-TCPHD filter, a subset W from
a partition is used to update only the j-th component of the PHD function, i.e., the component that maximizes the association
score β(j)(W) (see equation (35) of [14]). In in Appendix E, we present a detailed description of the MS-TCPHD filter. This
truncated update mechanism of the MS-TCPHD filter is in contrast with the MS-CPHD filter, where each predicted PHD
component is updated using all subsets of a partition.

VI. NUMERICAL SIMULATIONS

In this section we evaluate the performance of the proposed Multi-Sensor MeMBer (MS-MeMBer) filter with respect to
the Multi-Sensor CPHD (MS-CPHD), the Multi-Sensor Truncated CPHD (MS-TCPHD) and the Iterated-Corrector Cardinality
Balanced MeMBer (IC-CBMeMBer) filters. For simplicity the kinematic target model is linear and Gaussian. More specifically,
we employ a white noise acceleration model described in [21, Ch. 6.2.2]. Regarding the measurement model, we consider two
scenarios. The first involves a linear and Gaussian measurement equation so that the target state system becomes linear and
Gaussian. In this case, we use Gaussian mixture implementations for all filters. The second scenario supposes a non-linear
measurement equation (specifically, Doppler-bearing measurements) and consequently we rely on the unscented transform
and SMC methods to implement the different filters. The scenarios aim to compare the performance of the filters and their
computational times. Regarding the performance of filters, we employ the Optimal Sub-Pattern Assignment (OSPA) distance
[22] as the error metric. The OSPA metric measures both errors in the estimated number of targets as well as errors in state
estimates of individual targets. The two parameters employed by OSPA are the cardinality penalty factor c = 100 and order
p = 1. The simulations were performed using MATLAB 2.

A. Target kinematic model

Targets are assumed to evolve in a two dimensional Cartesian system. Target state vectors are taken to be x = [x, y, ẋ, ẏ]T ,
where x and y represent the target coordinates and ẋ and ẏ are its velocities along the two axes. The kinematic model for the
i-th target is a white noise acceleration model:

xk+1,i = Fk+1xk,i + vk+1,i. (27)

2The code is available online at http://networks.ece.mcgill.ca/Augustin-Alexandru.Saucan.
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Fig. 3: The true number of targets and their tracks. Targets are born at locations marked with ×. Sensor placements (only
relevant in the non-linear case) are marked with ©.

The state transition matrix is defined as Fk =
[
I2 TS I2
02 I2

]
where Ts = 1s is the sampling period; 0n and In are the zero and

identity matrices of size n. The process noise is taken to be vk ∼ N (0,Qk) with Qk = σ2
v

[ T3
S
3 I2

T2
S
2 I2

T2
S
2 I2 TSI2

]
. The target tracks

are depicted in Fig. 3, where a single simulation run is composed of 100 scans sampled with TS = 1s. Targets are born at
locations (±400m,±400m) with time of birth and death indicated alongside their respective tracks in Fig. 3. The tracking
domain is restricted to the 2000m × 2000m square. The probability of survival of targets is pS(x) = 0.99 and is constant
throughout the surveillance region. All filters employ a process noise of σv = 1. In the following experiments the target tracks
are kept identical throughout all Monte Carlo simulations, and the measurement noise is randomly generated at each run.

B. Linear Gaussian measurement model

In this section, targets are observed through a linear-Gaussian measurement equation and we evaluate the performance of 4
filters: a Gaussian mixture implementation of the IC-CBMeMBer filter, a Gaussian mixture implementation of the MS-MeMBer
filter as described in Sec. V, the Gaussian mixture implementation of the MS-CPHD filter given in [14] and of the MS-TCPHD
filter.

In this scenario, the target measurement model for the i-th target is

zk,i = Hkxk,i + wk,i, (28)

where the observation matrix is Hk =
[
1 0 0 0
0 1 0 0

]
. The measurement noise is independent from the target states and is modeled

as wk,i ∼ N (0,R) with R = σ2
wI2. In our simulations, the measurement noise has σw = 10m. Furthermore, the probability

of detection of the sensors is constant throughout the surveillance region and takes the value of pD = 0.3, 0.5, 0.7, or 0.9. In
addition to target measurements, each sensor has clutter measurements. We consider a Poisson clutter process with an average
number of clutter points equal to λc = 5 and uniformly spread throughout the surveillance region. The clutter process is
identical for all sensors.

Gaussian mixture implementations are considered for the multi-sensor CPHD (MS-CPHD) and multi-sensor TCPHD (MS-
TCPHD) filters. The MS-CPHD filter represents an exact implementation of [14] with the PHD function represented as
a Gaussian mixture. The MS-TCPHD filter also employs a Gaussian mixture PHD function. In both filters the Gaussian
components are thresholded at a value of 10−3 and merging is performed subsequently.

For a fair comparison, in the Gaussian mixture IC-CBMeMBer and MS-MeMBer filters, we suppose that each Bernoulli
component is represented by a single Gaussian density. For the IC-CBMeMBer filter, the Bernoulli components are pruned at
a threshold of 10−3 while their number is limited at 10 components per estimated target. For MS-MeMBer filter, the Bernoulli
components are pruned at the threshold of 0.05 and their number is limited to 4 per estimated target. The multi-sensor subset
and partition formation mechanism described in Sec. V is employed for the MS-MeMBer filter.

For the MS-CPHD, MS-TCPHD and MS-MeMBer filter implementations, the maximum number of multi-sensor subsets
Wmax and quasi-partitions Pmax are set to 4, as these values were observed in [14] and in our case to yield the best results. The
birth density has 4 components with Gaussian probability densities located at (±400m,±400m) and with identical covariance
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filters with s = 3 sensors each having pD = 0.5.

matrices P = diag(60, 60, 25, 25). In the MS-CPHD and MS-TCPHD filters, the birth PHD is modeled as a mixture of the
aforementioned Gaussian densities each weighted with 0.1, resulting in an average number of birthed targets of 0.4 while the
birth cardinality is Poisson distributed. In the MS-MeMBer filter, we achieve a similar birth process by supposing 4 Bernoulli
components having the same Gaussian probability density and probability of existence of 0.1.

In Fig. 4, we present the mean estimated cardinality for all algorithms coupled with their respective standard deviations. For
this case, we employed s = 3 sensors all with the same probability of detection pD = 0.5 while the mean values are reported
over 100 Monte Carlo runs. Observe that the MS-CPHD has a slightly higher cardinality variance than the MS-TCPHD and
MS-MeMBer filters. Additionally, the cardinality standard deviation of the IC-CBMeMBer filter is significantly higher than
the other filters. We noticed a faster detection of target deaths for the IC-CBMeMBer filter in comparison with the MS-CPHD,
MS-TCPHD and MS-MeMBer filters. A track is terminated when the corresponding probability of existence decreases below
a pre-set threshold. Besides the decrease due to survival thinning, the probability of the track is further decreased due to the
update with the empty subset W1:s = ∅1:s. Survival thinning is identical in all filters, however the update with ∅1:s is handled
differently. In addition to a decrease in component weight due to the update with ∅1:s, the MS-MeMBer track probability of
(23) is also weighted with the partition score αP . Similarly, the PHD mixture weights of the MS-CPHD and MS-TCPHD
filters are decreased due to ∅1:s but also weighted with the partition scores (see coefficient α0 from eq. (23) of [14]). Note that
partition scores can be high even if one subset score is low. This results in a slower track termination for the partitioning-based
algorithms: MS-CPHD, MS-TCPHD and MS-MeMBer filters.

A comparison of time-averaged OSPA errors (that is, averaged over the 100 scans of a single run) reported over the same 100
runs for all filter implementations is given in Fig. 5. These results are summarized in three box plots with pD = 0.5, pD = 0.7
and pD = 0.9 and where each box plot showcases the OSPA errors as a function of the number of sensors s. Observe that OSPA
errors decrease for an increased number of sensors and/or increased pD. As pD and s increase, the MS-CPHD, MS-TCPHD
and MS-MeMBer methods converge in terms of OSPA performance. The performance of the IC-CBMeMBer filter is shown
for the pD = 0.9 case where it is outperformed by the MS-CPHD, MS-TCPHD and MS-MeMBer methods. Additionally,
the performance of IC-CBMeMBer filter was observed to decrease significantly for pD = 0.5 and pD = 0.7 since the filter
derivation is based on the assumption of high pD. In the pD = 0.9 case, note the relative slowly increase in performance of
the IC-CBMeMBer filter with increasing number of sensors s. The IC-CBMeMBer filter sequentially applies the CBMeMBer
update step for each sensor which leads to the accumulation of approximation errors due to the assumptions of high pD, low
density clutter and first-order moment approximations applied at each update step. In contrast, the MS-CPHD, MS-TCPHD
and MS-MeMBer methods simultaneously use the measurements from all sensors (under the form of multi-sensor subsets) to
obtain the exact updated posterior which is subsequently approximated as an iid cluster or a multi-Bernoulli RFS respectively.
The MS-CPHD and MS-TCPHD filters are similar with the difference being in the associations between the predicted PHD
components and multi-sensor subsets. Although the MS-MeMBer filter propagates the full posterior density and employs a



11

 s=3   s=5  s=7   s=9   s=11 

5

10

15

20

25

30

T
im

e-
av

er
ag

e
O

S
P
A

er
ro

r

Time-average OSPA pD = 0.5 and no. sensors

MS-CPHD
MS-TCPHD
MS-MeMBer

 s=3   s=5  s=7   s=9   s=11 

4

6

8

10

12

14

T
im

e-
av

er
ag

e
O

S
P
A

er
ro

r

Time-average OSPA pD = 0.7 and no. sensors

MS-CPHD
MS-TCPHD
MS-MeMBer

  s=3   s=5   s=7 s=9 s=11 

4

6

8

10

12

14

16

T
im

e-
av

er
ag

e
O

S
P
A

er
ro

r

Time-average OSPA pD = 0.9 and no. sensors

IC-CBMeMBer
MS-CPHD
MS-TCPHD
MS-MeMBer

Fig. 5: Linear-Gaussian case: box plot of OSPA errors for different values of pD and s. The horizontal bar reflects the median
value while the box width reflects the first and third quartiles.

different RFS model than the CPHD filters, it also resorts to a first-order approximation (i.e., a PHD approximation) in the
derivation of its updated posterior. Additionally, notice the increased outliers in the box plots of Fig. 5 for lower pD, which
are generated when the filters exhibit a high number of cardinality errors. Such errors occur more often for smaller pD values
and/or smaller number of sensors.

Furthermore, observe the improved performance of the MS-MeMBer filter algorithm at low pD and/or reduced number of
sensors. Reducing pD and/or s leads to an increase of the weights of the miss-detected (i.e., legacy) components of the updated
PHD function of the MS-CPHD and MS-TCPHD filters. On subsequent times, the update step of the MS-CPHD filter forms
all associations between the PHD mixture components (including the previous-time legacy components) and the measurement
subsets within a partition. In the case of the MS-CPHD filter, this translates to higher weights for the previous-time legacy
components as compared to the MS-TCPHD filter. As a result, the MS-CPHD filter has a more dispersed cardinality distribution
estimate and hence a higher OSPA error. The MS-TCPHD and MS-MeMBer filters correct this by updating each component
with its best-scoring multi-sensor subset as given by the greedy method for subsets of Section V-A. The difference between the
MS-MeMBer filter and MS-TCPHD filter resides in the specific form of the probabilities of existence and component weights
which are intrinsic to their prior distributions, i.e., multi-Bernoulli and iid cluster respectively. Numerically, at lower values
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TABLE I: Linear Gaussian case with pD = {0.5, 0.9}: average computational time.

pD Filter s = 3 s = 5 s = 7 s = 9 s = 11

0.9

IC−CB
MeMBer 126ms 283ms 510ms 800ms 1112ms
MS

CPHD 39ms 62ms 86ms 112ms 133ms
MS

TCPHD 12ms 18ms 24ms 30ms 36ms
MS

MeMBer 10ms 16ms 22ms 29ms 35ms

0.5

IC−CB
MeMBer 169ms 303ms 450ms 681ms 952ms
MS

CPHD 47.5ms 67.6ms 71ms 76ms 88ms
MS

TCPHD 19.2ms 26.2ms 27ms 29ms 34ms
MS

MeMBer 9.7ms 15.2ms 21ms 27ms 33ms

of s and pD the mixture weights of the MS-CPHD filter were found to be dispersed between [0, 1] whereas the probabilities
of existence of the MS-MeMBer filter were found to be more concentrated around the limits 0 and 1, which explains the
improved cardinality estimates of the MS-MeMBer filter in Fig. 4.

Table I summarizes the average computation time of the filters for pD = {0.5, 0.9} and a varying number of sensors. The
average computational time for a given filter is defined as the duration the filter takes to process all scans divided by the number
of scans while the values reported in Table I were also averaged over 100 Monte Carlo runs. Observe that the MS-CPHD,
MS-TCPHD and MS-MeMBer filters exhibit a linear complexity with respect to the number of sensors. This fact is supported
by the linear complexity of the greedy subset and quasi-partition formation algorithms V. Additionally, observe the increased
computational load of the MS-CPHD filter, which is caused by the more involved update stage, which updates each mixture
component of the PHD function with all of the multi-sensor subsets from a given partition. The computational requirements
of the MS-MeMBer and MS-TCPHD filters are similar. Note also the high computational requirements of the IC-CBMeMBer
filter due to the high number of Bernoulli components needed to produce satisfactory results.

C. Non-linear measurement model

A Doppler-bearing measurement model is considered in this section, with the measurement vector consisting of a noisy
bearing and Doppler shift. The sensor coordinates are denoted by {(xj , yj)|j = 1, . . . , s}. The measurement of the i-th target
with state vector xi,k = [x y ẋ ẏ]T and collected at the j-th sensor is

zjk,i =

 atan2( y−y
j

x−xj )
2fc
c

(x−xj)ẋ+(y−yj)ẏ√
(x−xj)2+(y−yj)2

+ wj
k,i, (29)

where atan2(·) is the four-quadrant inverse tangent function; fc is the carrier frequency of the received signal; and c is the
wave velocity. In our simulations fc = 300Hz and c = 1450m/s, corresponding to an underwater scenario. The measurement
noise is independent of the target states and is taken to be wk,i ∼ N (0,R) with R = diag(σ2

θ , σ
2
f ). The bearing standard

deviation is σθ = 1 degree while the Doppler standard deviation is σf = 0.7 Hz. Poisson distributed clutter is appended to the
measurement set of each sensor. Unless otherwise stated, the average clutter rate is fixed to 5 points per scan and the clutter
density is uniform over the observation domain of 2π× [−100,+100]. The target tracks and kinematics are as shown in Fig. 3.

In this non-linear scenario, both UKF (Unscented Kalman Filter) and SMC implementations are considered for the MS-
MeMBer, MS-TCPHD, MS-CPHD and IC-CBMeMBer filters. The UKF filters are implemented using Gaussian mixtures in
conjunction with the unscented transform [23] to achieve the non-linear measurement updates. The resulting implementations
are referred to as the UKF MS-CPHD, UKF MS-TCPHD, UKF MS-MeMBer and UKF IC-CBMeMBer filters. In order to
reduce the computational load of the greedy subset and partition selection algorithms for the SMC implementations of the
MS-CPHD and MS-TCPHD filters, clustering of the predicted PHD function could be performed. In our simulation, we employ
a particle PHD function as a mixture of target densities, each having a separate particle representation. To achieve this, the
birth PHD function is represented as a mixture of separate particle sets. This leads to an implicitly clustered PHD function, i.e.,
we avoid the use of clustering methods such as k-means. The birth PHD function is approximated by 4 distinct particle sets
centered around the birth locations (±400, ±400) and sampled from Gaussian probability densities with covariance matrices
P = diag(40, 40, 25, 25). The subsequent predicted and updated PHD functions are represented as a mixture of separate
particle sets, each representing a potential target. The greedy multi-sensor subset mechanism of [14] is applied to each particle
set of the predicted PHD function. Subsequently, partitions are formed from the resulting subsets.

In the case of the SMC MS-MeMBer and SMC IC-CBMeMBer filters, each Bernoulli component has a probability density
represented as a set of discrete points (25b). The scoring of measurement collections W1:s in the SMC MS-MeMBer filter is
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Fig. 6: Non-linear case: estimated cardinality of various filters for pD = 0.3.

TABLE II: Non-linear case: median time-averaged OSPA values, lower Q1 and upper Q3 quartiles are given in brackets
[Q1, Q3]. Clutter rate is fixed to λc = 5 per sensor.

pD = .3 pD = .5 pD = .9

SMC
MS−MeMBer

10.2 6.7 3.9
[9.4, 11.1] [6.4, 7.1] [3.7, 4.1]

UKF
MS−MeMBer

10.8 6.9 4.1
[9.9, 11.9] [6.5, 7.5] [3.8, 4.3]

SMC
MS−CPHD

19.2 8.5 3.9
[18.2, 20.2] [7.9, 9.1] [3.7, 4.1]

UKF
MS−CPHD

17.8 8.5 3.9
[16.3, 18.8] [8.1, 9] [3.7, 4.2]

SMC
MS−TCPHD

15.8 7.5 3.9
[14.7, 16.6] [7.1, 8] [3.7, 4.1]

UKF
MS−TCPHD

15 7.5 4.1
[14, 16.1] [7.1, 8.3] [3.8, 4.4]

SMC
IC−CBMeMBer

36.4 31.9 13.1
[35.6, 37.7] [31.1, 32.9] [12.2, 13.9]

UKF
IC−CBMeMBer

36.1 31 12
[35.1, 37] [30.2, 32.1] [11.4, 13.1]

done via (26b). For both filters, the birth process is composed of 4 Bernoulli components placed at the locations (±400, ±400)
and having covariances equal to P = diag(40, 40, 25, 25).

In all SMC filter implementations, 700 particles per target are used, and sampling is done directly from their respective birth
densities or the prediction kernel.

In this difficult non-linear tracking scenario we employ a threshold of 10−10 for the pruning of Bernoulli and Gaussian
mixture components in the aforementioned filter implementations. Additionally, the number of Bernoulli components in the
MS-MeMBer filter implementations is capped at 4 per estimated target, while this value is increased to 20 for the IC-
CBMeMBer filter implementations; with fewer Bernoulli components per target, the performance of the IC-CBMeMBer filter
is not comparable to the other filters, even at high pD. The MS-CPHD and MS-TCPHD filter implementations cap the
number of PHD mixture components per target at 4. These values are selected on the basis of balancing tracking performance
with computational overhead. We consider the following sensor configuration with s = 5 sensors placed at coordinates
(x, y) ∈ {(−350, 0), (350, 0), (0, 0), (0,−350), (0, 350)} as seen in Fig. 3. Throughout the following simulations, the
sensors have equal probabilities of detection that are constant over the surveillance region. Note that the SMC implementations
are capable of handling non-constant pD(x), as opposed to the UKF implementations.



14

  p
D

 = 0.3   p
D

 = 0.5   p
D

 = 0.9

5

10

15

20

T
im

e-
av

er
ag

ed
O

S
P
A

er
ro

r

Time-avr. OSPA error 6c = 5 and various pD:

UKF MS-CPHD
SMC MS-CPHD
UKF MS-TCPHD
SMC MS-TCPHD
UKF MS-MeMBer
SMC MS-MeMBer

  6
c
 = 10   6

c
 = 20   6

c
 = 40

5

10

15

20

T
im

e-
av

er
a
g
ed

O
S
P
A

er
ro

r

Time-avr. OSPA error pD = 0.5 and various 6c:

UKF MS-CPHD
SMC MS-CPHD
UKF MS-TCPHD
SMC MS-TCPHD
UKF MS-MeMBer
SMC MS-MeMBer

Fig. 7: Non-linear case: box plot of OSPA errors for diferent values of pD and clutter rate λc. The horizontal bar reflects the
median value while the box width reflects the first and third quartiles.

For 100 Monte Carlo simulations, the mean and standard deviation of the cardinality estimates of the various filters are
shown in Fig. 6 for the case of pD = 0.3. Notice the overall improved cardinality estimate of the MS-MeMBer filter and
especially of the SMC MS-MeMBer. Furthermore, notice the poor performance of both implementations of the IC-CBMeMBer
filter. We observed that the performance of the IC-CBMeMBer filter only becomes comparable to the performance of the MS-
MeMBer filter when all sensors have very high probabilities of detection, e.g, 0.98. Indeed, the IC-CBMeMBer filter relies
on the application of the CBMeMBer measurement correction step (and the ensuing update approximations) sequentially for
each sensor. Hence, the IC-CBMeMBer filter requires a high detection probability at each sensor, whereas the generalized
multi-sensor variants of the CPHD and MeMBer filters perform a simultaneous update step with all sensor measurements
before resorting to any additional approximations. The time-averaged OSPA errors (i.e., averaged over the 100 scans of a
single run) from the 100 Monte Carlo simulations, are displayed in Fig. 7. The figure shows how the errors change as we
vary the probability of detection or the average number of clutter points per sensor. Notice the improved performance of the
MS-MeMBer filter for lower pD. In the case of the MS-CPHD filters at lower pD, the update step of a specific predicted
component includes significant contributions from subsets that correlate highly with other components and which degrade its
performance. The UKF and SMC MS-MeMBer filters both provide better cardinality estimates as compared with their CPHD
counterparts. This is attributed to the different RFS models, i.e., the iid cluster and the multi-Bernoulli RFS, employed by the
two filters in this simulation scenario. As in the linear case, for low pD the normalized mixture weights of the MS-CPHD
filter were found to be dispersed between [0, 1] whereas the probabilities of existence of the MS-MeMBer filter were found
to be more concentrated around the limits 0 and 1. This difference between the concentration of weights and probabilities of
existence leads to a difference in their estimated cardinality distributions. However, at very high clutter rates (λc = 40 per
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Fig. 8: Non-linear case: average computation times for various filter implementations at different probabilities of detection.
The horizontal bar reflects the median value while the box width reflects the first and third quartiles.

sensor), the SMC MS-TCPHD filter and the SMC MS-MeMBer filter have comparable performance. As in the linear-Gaussian
case, for high pD all methods converge in terms of OSPA performance.

In Table II we present several filtering results for pD ∈ {0.3, 0.5, 0.9}. Time-averaged OSPA errors are recorded for each of
the 100 Monte Carlo simulations, while the median, the lower and the upper quartile are shown in Table II. Notice again the
convergence of filters in terms of OSPA error as pD increases and a significant advantage of the MS-MeMBer filters at lower
pD values. Both implementation of the MS-CPHD and MS-TCPHD filters struggle at pD = 0.3 due to increased cardinality
errors. Notice also the poor performance of the UKF and SMC IC-CBMeMBer filters for all values of pD.

Computation times are shown in the box plot of Fig. 8 for different pD values. The average computational time for a given
filter represents the duration the filter takes to process all scans divided by the number of scans.

Compared to the MS-TCPHD and MS-MeMBer filters, the MS-CPHD filter is the most computationally expensive because
each multi-sensor subset identified by the greedy subset identification algorithm is used to update all predicted Gaussians or
particle groups. In contrast, the MS-TCPHD and MS-MeMBer filters only update the single predicted component that best
matches each multi-sensor subset (as measured by the score function). In this simulation, the UKF updates are more expensive
than the SMC updates because they involve multiple matrix inversions. Additionally, observe an increase of computational
requirements as pD increases. An increase of pD leads to an increased average number of measurements per sensor which in
turn increases the computational cost of the greedy multi-sensor subset selection method.

VII. CONCLUSIONS

In this paper a multi-sensor multi-Bernoulli filter is derived for multi-target tracking. The proposed filter partitions the multi-
sensor observations into multi-sensor subsets which are associated with the Bernoulli components. We describe computationally
tractable approximate Gaussian mixture and particle filter implementations. The filter is shown to have a reduced computational
load compared to the current implementations of the multi-sensor CPHD filter and improved performance at low probability
of detection.

APPENDIX A
PROOF OF LEMMA IV.1

In this appendix, the time index is dropped to simplify notation. Subscripts refer to sensors and superscripts refer to Bernoulli
components. For example, W j

i denotes the subset of measurements from sensor i associated with the PGFl of the j-th Bernoulli
component while W 0

i denotes the clutter subset from sensor i. Note that W 0
i ,W

1
i , · · · ,WM

i form a quasi-partition of the set of
measurements Zi, i.e., the subsets are allowed to be empty and ]Mj=0W

j
i = Zi with ] indicating the disjoint union operator. The

condition of at most one measurement per target per sensor translates to having
∣∣∣W j

i

∣∣∣ ≤ 1 for j = 1, . . . ,M and i = 1, . . . , s.

Furthermore, whenever W j
i = ∅, the corresponding differential becomes δGj

δW j
i

[g] , Gj [g] [1, Eq. 11.191].

For an arbitrary number of sensors k, we denote the ordered collections W j
1:k = (W j

1 , · · · ,W
j
k ) for j = 0, . . . ,M and by

a slight abuse of notation we introduce δGj

δW j
1:k

, δkGj

δW j
1 ···δW

j
k

, where each differential δ

δW j
i

is taken in gi(z) with respect to the
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measurement set W j
i . Let P1:k = (W 0

1:k,W
1
1:k, · · · ,WM

1:k) and P1:k be the set of all collections P1:k that respect ]Mj=0W
j
i = Zi

for each sensor i = 1, . . . , k and
∣∣∣W j

i

∣∣∣ ≤ 1 for j = 1, . . . ,M and i = 1, . . . , s.
The proof of Lemma IV.1 involves differentiating the functional (14) s times (i.e., with respect to sensors 1, . . . , s) and is

carried out in two different stages. Note that (14) is a product of Bernoulli PGFls and clutter pgfs. In a first step, we employ
mathematical induction and the general product rule [1, Eq. 11.274] in order to write the differentiation of (14) for an arbitrary
s as an expression involving the Bernoulli and clutter derivatives. The differentiation of the individual Bernoulli PGFls and
clutter pgfs is carried out in a second step.

Induction base k = 1. The differentiation of the functional (14), via the general product rule [1, Eq. 11.274], for the first
sensor is given by

δF

δZ1
[g1:s, u] =

[
s∏
i=2

Ci(〈ci, gi〉)

] ∑
W 0

1]W 1
1]···]WM

1 =Z1

δC1

δW 0
1

δG1

δW 1
1

· · · δG
M

δWM
1

. (30)

Note that the sum of (30) comprises additional terms corresponding to partitions of the set Z1 that do not respect the at most
one measurement per target condition. However, these terms vanish since the functionals Gj [u

∏s
i=1 φgi ] for j = 1, . . . ,M are

linear with respect to the function g1(·). Employing the P1:k and P1:k notation for k = 1, we can rewrite (30) as

δF

δZ1
[g1:s, u] =

[
s∏
i=2

Ci(〈ci, gi〉)

] ∑
P1∈P1

P1=(W 0
1 ,W

1
1 ,··· ,W

M
1 )

δC1

δW 0
1

δG1

δW 1
1

· · · δG
M

δWM
1

. (31)

Induction step for k with k < s− 1. Consider that the differentiation of the functional (14) with respect to the first k sensors
has the form

δkF

δZk · · · δZ1
=

[
s∏

i=k+1

Ci(〈ci, gi〉)

] ∑
P1:k∈P1:k

P1:k=(W 0
1:k,W

1
1:k,··· ,W

M
1:k)

[
k∏
i=1

δCi
δW 0

i

]
δG1

δW 1
1:k

· · · δG
M

δWM
1:k

. (32)

We are interested in the differentiation of (32) in gk+1(z) with respect to the measurements of sensor Zk+1, i.e.,

δ

δZk+1

{
δkF

δZk · · · δZ1

}
=

[
s∏

i=k+2

Ci(〈ci, gi〉)

]
×

∑
W 0

k+1]W
1
k+1]···]W

M
k+1=Zk+1

∑
P1:k∈P1:k

[(
k+1∏
i=1

δCi
δW 0

i

)
δG1

δW 1
k+1δW

1
1:k

· · · δGM

δWM
k+1δW

M
1:k

]
, (33)

where the partitioning of the measurement set Zk+1 = W 0
k+1 ] W 1

k+1 ] · · · ] WM
k+1 is given by the general product

rule. Introducing W j
1:k+1 =

(
W j

1:k, W
j
k+1

)
for j = 0, . . . ,M and extending the definition of quasi-partitions to

P1:k+1 =
((
W 0

1:k, W
0
k+1

)
, . . . ,

(
WM

1:k, W
M
k+1

))
we can relabel the sums in (33) to yield

δk+1F

δZk+1δZk · · · δZ1
=

[
s∏

i=k+2

Ci(〈ci, gi〉)

] ∑
P1:k+1∈P1:k+1

[
k+1∏
i=1

δCi
δW 0

i

]
δG1

δW 1
1:k+1

· · · δGM

δWM
1:k+1

. (34)

With the general form (34) for the k+1 order differential, the differentiation of F [g1:s, u] for s sensors is compactly written
as

δsF

δZsδZs−1 · · · δZ1
=

∑
P1:s∈P1:s

[
s∏
i=1

δCi
δW 0

i

]
δG1

δW 1
1:s

· · · δG
M

δWM
1:s

. (35)

Next, we focus on the clutter and Bernoulli PGFl differentials. Recall that Γi =
∏

z∈Zi
ci(z) and Ci(·)(n) is the n-th differential

of the pgf of the cardinality of the clutter process and ci(·) denotes the clutter pdf of sensor i. Additionally, we employ the
convention that whenever

∣∣W 0
i

∣∣ = 0,
∏

z∈W 0
i
(·) = 1. From [14], the derivative of the clutter pgf is given by

δ

δW 0
i

Ci(〈ci, gi〉) = C
(|W 0

i |)
i (〈ci, gi〉)

∏
z∈W 0

i

ci(z)

= C
(|W 0

i |)
i (〈ci, gi〉)

Γi∏
z∈Zi\W 0

i
ci(z)

. (36)
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For a given measurement zi from the i-th sensor, by differentiating Gj [u
∏s
i=1 φgi ] in gi with respect to the set W j

i = {zi}
we obtain

δ

δW j
i

Gj [u
∏s
l=1 φgl ] =

δ

δW j
i

[
1− r(j) + r(j)〈p(j),u

∏s
l=1φgl〉

]
= r(j)

∫
u(x)p(j)(x)pi,D(x)hi(zi|x)

s∏
l=1
l 6=i

φgl(x)dx,

where we employed the differentiation rule for a linear functional [1, Eq. 11.197]. Let TW1:s = {(i, l)|zli ∈Wi ∀ i = 1, . . . , s}
denote the set of sensor and measurement indices for all measurements in W1:s. Whenever W j

1:s 6= ∅1:s, the differentiation of
the Bernoulli PGFl leads to

δ

δW j
1:s

Gj [u
∏s
i=1φgi ] = r(j)

∫
u(x)p(j)(x)

∏
(i,l)∈T

W
j
1:s

pi,D(x)hi(z
l
i|x)

∏
(i,∗)/∈T

W
j
1:s

φgi(x)dx. (37)

In addition, note the following equality:
∏s
i=1

∏
z∈Zi\W 0

i
ci(z) =

∏M
j=1

∏
(i,l)∈T

W
j
1:s

ci(z
l
i).

Introducing ϕj
W j

1:s

[g1:s, u] as

ϕj
W j

1:s

[g1:s, u] ,

δ

δW j
1:s

Gj [u
∏s
i=1φgi ]∏

(i,l)∈T
W

j
1:s

ci(z
l
i)

(38)

and with the result of (36) we can write (35) as

δsF

δZsδZs−1 · · · δZ1
[g1:s, u] =

[
s∏
i=1

Γi

] ∑
P1:s∈P1:s

[
s∏
i=1

C
(|W 0

i |)
i (〈ci, gi〉)

] M∏
j=1

ϕj
W j

1:s

[g1:s, u]

 . (39)

Additionally, let KP1:s
,
∏s
i=1 C

(|W 0
i |)

i (0) and ϕj
W j

1:s

[u] , ϕj
W j

1:s

[0, . . . , 0, u]. Then evaluating (39) in g1 = 0, · · · , gs = 0

yields

δF

δZ1:s
[0, . . . , 0, u] =

[
s∏
i=1

Γi

] ∑
P1:s∈P1:s

KP1:s

 M∏
j=1

ϕj
W j

1:s

[u]

 ,
which represents the main result (18) of Lemma IV.1.

�

APPENDIX B
PROOF OF THEOREM IV.2

The PHD function corresponding to the updated posterior, as given by (5) and (15), is

Dk+1|k+1(x) =

δs+1F
δxδZ1,k+1···δZs,k+1

[0, 0, . . . , 0, u]

δsF
δZ1,k+1···δZs,k+1

[0, 0, . . . , 0, 1]

∣∣∣∣∣∣
u=1

.

The derivative of the functional F [·] with respect to the test function u(·) yields

δ2F

δxδZ1:s,k+1
[0, . . . , 0, u]

∣∣∣∣
u=1

=

[
s∏
i=1

Γi

] ∑
P1:s∈P1:s

KP1:s

δ

δx


M∏
j=1

ϕj
W j

1:s

[u]


∣∣∣∣∣∣
u=1

=

[
s∏
i=1

Γi

] ∑
P1:s∈P1:s

KP1:s

 M∏
j=1

ϕj
W j

1:s

[1]

 M∑
j=1

ρj
W j

1:s

(x)p(j)(x), (40)

where ρj
W j

1:s

(x) is defined in (20) and ϕjW1:s
[1] is assumed non-zero for ∀ j and ∀ W1:s. �
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Algorithm 1 Greedy subset selection

1: function GREEDY_SUBSET_SELECTION
({r(j)k+1|k, p

(j)
k+1|k(x)}Mk+1|k

j=1 , {Zi,k+1}si=1,Wmax)
2: for j ← 1 to Mk+1|k do
3: Initialize path: L← 1, W j,1

0 ← [ ]
4: for i← 1 to s do
5: U ← [ ], w ← [ ]
6: for n← 0 to mi do
7: for l← 1 to L do
8: if n = 0 then
9: U(l + nL)←

(
W j,l

1:i−1, ∅
)

10: else
11: U(l + nL)←

(
W j,l

1:i−1, {zni }
)

12: end if
13: w(l + nL)← ϕ

(j)
U(l+nL)[1]

14: end for
15: end for
16: L← min(Wmax, (mi + 1)L− 1)
17: βj,11:i ← w(1), W j,1

1:i ← U(1)
18: sort idx← sort(w(2), . . . , w(end))
19: W j,l+1

1:i ← U(sort idx(l) + 1) for l = 1, . . . , L
20: βj,l+1

1:i ← w(sort idx(l) + 1) for l = 1, . . . , L
21: end for
22: njs ← L+ 1
23: end for
24: return {(βj,l1:s,W

j,l
1:s)|l = 1, . . . , njs} for

j = 1, . . . ,Mk+1|k
25: end function

APPENDIX C
GREEDY SUBSET SELECTION ALGORITHM

In Algorithm 1, we present the pseudo-code for the greedy selection algorithm employed to select at most Wmax + 1
best-scoring subsets for each of the Mk+1|k predicted Bernoulli components. The inputs of the algorithm are given by the
parameters of the predicted set of Bernoulli components, the sensor measurements and the maximum number of subsets Wmax.
The algorithm outputs the multi-sensor subsets W j,l

1:s with scores βj,l1:s for l = 1, . . . , njs and each j = 1, . . . ,Mk+1|k. Note
the independent processing of the predicted Bernoulli components. For each Bernoulli component, the sensors are processed
sequentially (line 4). The mi measurements of the i-th sensor are used to branch the existing L partial subsets into L×(mi+1)
candidate subsets U (lines 6 − 15) and evaluated via βj1:i (line 13). The path corresponding to the all empty subset U(1) is
always retained (line 17). The non-empty subsets are sorted (line 18) in decreasing order of their scores w, while the sorting
function sort returns the sorting indices. Finally, at most Wmax subsets are retained from the non-empty candidate subsets
U(2), . . . , U((mi+1)L) on lines 19−20. The complexity of Algorithm 1 is O(Mk+1|kWmax

∑s
i=1mi), where the complexity

of the sorting operation was considered negligible with respect to the complexity of L × (mi + 1) scoring operations, i.e,
computation of ϕ(j)

U [1] which depends on the implementation type (Kalman, EKF, UKF or particle filter).

APPENDIX D
GREEDY PARTITION SELECTION ALGORITHM

In Algorithm 2, we present the pseudo-code for the greedy selection algorithm employed to select at most Pmax best-scoring
partitions. The inputs of the algorithm are the multi-sensor subsets and their associated scores for each predicted Bernoulli
component and the maximum number of desired partitions Pmax. The algorithm returns the set of selected partitions with their
scores α1:Mk+1|k . The predicted Bernoulli components are sequentially processed (line 3) while existing selected paths P1:j−1
are branched into candidate paths P1:j by appending multi-sensor subsets from the j-th Bernoulli component (lines 5 − 13).
Note that only a non-overlapping multi-sensor subset is added to given partition, i.e., that does not have any measurements in
common with the subsets already contained in the respective partition (line 7). In Algorithm 3, we present the pseudo-code
for the algorithm that verifies the overlap condition. The candidate partitions are scored at line 9 and a sorting operation
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Algorithm 2 Greedy partition selection algorithm

1: function GREEDY_PARTITION_SELECTION
({(βj,l1:s,W

j,l
1:s)|l = 1, . . . , njs}

Mk+1|k
j=1 ,Pmax)

2: Initialize partitions: nP ← 1, P 1
0 ← [ ], α1

0 ← 1
3: for j ← 1 to Mk+1|k do
4: Initialize path: w ← [ ], Q← [ ], n← 1
5: for i← 1 to nP do
6: for l← 1 to njs do
7: if ¬overlap

(
P i1:j−1,W

j,l
1:s

)
then

8: Q(n)←
(
P i1:j−1,W

j,l
1:s

)
9: w(n)← αi1:j−1β

j,l
1:s

10: n← n+ 1
11: end if
12: end for
13: end for
14: nP ← min(Pmax, n− 1)
15: sort idx← sort(w(1), . . . , w(n− 1))
16: P i1:j ← Q(sort idx(i)) for i = 1, . . . , nP
17: αi1:j ← w(sort idx(i)) for i = 1, . . . , nP
18: end for
19: return {(αi1:Mk+1|k

, P i1:Mk+1|k
)}nP
i=1

20: end function

Algorithm 3 Pseudo-code of function evaluating the possible overlap between a partition and a subset

1: function OVERLAP( P1:j−1 =
(
Q

(1)
1:s, . . . , Q

(j−1)
1:s

)
, W j

1:s = (W1, . . . ,Ws))
2: flag← 0, n = 0
3: while (¬flag) ∧ (n < j − 1) do
4: n← n+ 1
5: for i← 1 to s do
6: if (Wi 6= ∅) ∧ (Wi = Q

(n)
i ) then

7: flag← 1
8: end if
9: end for

10: end while
11: return flag
12: end function

is employed to retain at most Pmax high-scoring partitions (lines 16 − 17). In Algorithm 3 on line 6, we verify if the i-th
sensor measurement zi contained in W1:s is also contained in the multi-sensor subset Q(n)

1:s . The worst case computational
complexity of Algorithm 3 is O(sMk+1|k), which leads to a complexity of O(Pmax Wmax sM

2
k+1|k) for Algorithm 2. Note that

the computational complexity of the sorting operation is negligible with respect to the complexity of PmaxWmax repeated calls
to the function overlap.

APPENDIX E
TRUNCATED MS-CPHD FILTER

In this appendix, we present the Truncated MS-CPHD (MS-TCPHD) filter. The MS-TCPHD filter is obtained by modifying
the update step of the MS-CPHD filter while keeping the same prediction step. As described in [14], the MS-CPHD filter
employs the following update equation

DCPHD
k+1|k+1(x) =

(
α0

s∏
i=1

(1− pi,D(x)) +
∑
P∈P

αP
∑
W∈P

ρW(x)

)
DCPHD
k+1|k(x), (41)
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where DCPHD
k+1|k(x) is the normalized (i.e.,

∫
DCPHD
k+1|k(x)dx = 1) predicted PHD function and the expressions of α0, αP and ρW (·)

are found in [14, Eqs. (20-23)]. Considering the predicted PHD function as DCPHD
k+1|k(x) =

∑Jk+1|k
j=1 ω

(j)
k+1|kN (x;µ

(j)
k+1|k,Σ

(j)
k+1|k),

the MS-CPHD filter of [14] updates each Gaussian component with all of the subsets contained in P via ρW(·).
For the MS-TCPHD filter, we employ similar greedy subset and partition formation mechanisms as in [14, Sec.V], where

the Gaussian mixture components represent potential targets. Consequently, the score βj(W) for updating the j-th Gaussian
mixture component with the non-empty subset W is

βj(W) ,

∫
ω
(j)
k+1|kN (x;µ

(j)
k+1|k,Σ

(j)
k+1|k)

(∏
(i,l)∈TW

pi,D(x)hi(z
l
i|x)

)∏
i:(i,∗)/∈TW

(1− pi,D(x))dx∏
(i,l)∈TW

ci(zli)
. (42)

The greedy subset selection procedure yields a set of high-scoring subsets associated with each Gaussian component j =
1, . . . , Jk+1|k. In the following, a subset selected for the j-th Gaussian component will be denoted with W j while V is
the clutter subset. The greedy partition selection procedure generates partitions P = {V,W 1, . . . ,W Jk+1|k} with high scores∏
W j∈P β

j(W j). For a given partition P , the MS-TCPHD filter updates the j-th mixture component with its associated non-
empty subset W j . In contrast, the MS-CPHD filter updates the j-th mixture component with all W i for i = 1, . . . , Jk+1|k.
For well separated targets, the truncated update scheme of the MS-TCPHD filter is justified since the measurement subsets
selected by a mixture component do not significantly correlate with the other mixture components. Hence, for a non-empty
subset W j the subset score dW j =

∑Jk+1|k
i=1 βi(W j) of [14, Eq. (19)] is approximated as d̂W j = βj(W j) in the MS-TCPHD

filter. The subset scores d̂W j are then used to obtain the approximate values α̂0 and α̂P via equations (21) and (22) of [14].
In the MS-TCPHD filter, the updated PHD function is given by

DTCPHD
k+1|k+1(x) = α̂0D

TCPHD
k+1|k (x)

s∏
i=1

(1− pi,D(x)) +
∑
P∈P

α̂P

 ∑
W j∈P

ω
(j)
k+1|k ρ̂

j
W j (x)N (x;µ

(j)
k+1|k,Σ

(j)
k+1|k)

 , (43)

where

ρ̂jW j (x) =

(∏
(i,l)∈TWj

pi,D(x)hi(z
l
i|x)

)∏
i:(i,∗)/∈TWj

(1− pi,D(x))∫
ω
(j)
k+1|kN (x;µ

(j)
k+1|k,Σ

(j)
k+1|k)

(∏
(i,l)∈TWj

pi,D(x)hi(zli|x)
)∏

i:(i,∗)/∈TWj
(1− pi,D(x))dx

. (44)

Observe from (43) that under a partition P and for a non-empty subset W j ∈ P , the j-th PHD mixture component is updated
with its associated measurement subset via ρ̂jW j (x). Given the approximate values d̂W j , the cardinality distribution of the
MS-TCPHD filter is updated via equation (24) of [14].
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