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Abstract—The leader node particle filter is a partially dis-
tributed approach to tracking in a sensor network, in which the
node performing the particle filter computations (the leader node)
changes over time. The primary advantage is that the position
of the leader node can follow the target, improving the efficiency
of data collection. When the leader node changes, the particle
filter must be communicated to the new leader. Exchanging a
complete representation can require many thousands of bits, so
the filtering distribution is more coarsely approximated, either
by transmitting only a subset of particles or by training a
parametric model. The concern is that this approximation could
lead to instability and eventually tracking failure. The major
contribution of this paper is the development of bounds on the
error of the leader node particle filter. In contrast to previous
bounds, which grow exponentially over time, the bounds indicate
convergent behaviour.
Keywords: Tracking, particle filtering, distributed estima-
tion.

I. INTRODUCTION

One of the major concerns in distributed sensor network
tracking is the maintenance of the appropriate tradeoff between
tracking performance and network lifetime. If a centralized
approach is used to process measurements from the sensors
and in scenarios where Gaussian approximation is justifiable,
one of the following well–established tracking algorithms can
be used to obtain acceptable performance guarantees: the
extended Kalman Filter [1], [2], the Gaussian sum filter [3]
or grid–based filters [4]. However, if better performance
guarantees are required in the situation where the class of
approximated dynamics and/or observation models is substan-
tially non–linear and non–Gaussian, different particle filter
based trackers can be used [5]. In sensor network applications,
there are two major disadvantages: particle filters are generally
more computationally demanding [6], and communication of
a particle filter representation can require the transfer of many
more bits than parametric alternatives.

A particle filter maintains a set of “particles” that are simply
candidate state values of the system (for example, the position
and velocity of the object). The filter evaluates how well
individual particles correspond to the dynamic model and set
of observations, and assigns weights accordingly. The set of
weighted particles provides a pointwise approximation to the
filtering distribution, which represents the posterior probability

of the state. This approximation allows one to form estimates
of the state values and hence track the state.

Tracking algorithms using particle filters in sensor networks
frequently adopt a centralized approach, wherein the particle
filter resides at a computation centre and measurements are
collected at this centre. This approach has several disadvan-
tages. Centralization introduces a single point of failure and
can lead to high, unevenly distributed energy consumption
because of the heavy communication cost involved in trans-
mitting the data to the fusion centre.

Distributed algorithms, such as the distributed particle filter-
ing algorithms proposed in [7], [8], address the aforementioned
problems. These algorithms decentralize the computation or
communication so that a single fusion centre is not required.
Multiple particle filters run concurrently at different sensor
nodes and compressed data or approximate filtering distribu-
tions are shared between them. These distributed algorithms,
while mitigating some of the inherent problems of central-
ization, can be computationally expensive, because multiple
nodes are required to perform computation throughout the
entire tracking procedure.

This paper considers the partially distributed scenario,
where the node performing the particle filtering (the leader
node) changes over time, as proposed in [9] and refined and
analyzed in [10]. A hand–off of information to a new leader
node is therefore required whenever the leader changes. This
involves either transmitting the particle filter in the form of
raw particle values and weights or training and communicating
a parametric approximation. For convenience, we will refer
to this approach as the leader node particle filter. It has the
benefit of sharing the computational burden amongst the nodes
in the network. Perhaps more importantly, the choice of leader
node is governed by a desire for the leader node to be close
to the object’s position. The leader node can then poll nearby
sensor nodes that are in close proximity to the object and
hence are likely to generate more accurate measurements.
The ability to collect measurements through local, one–hop
communication can be critical in cases where the data volume
is high.

In attempting to alleviate the communication cost of trans-
mitting all particle values when the leader node is exchanged
(which can involve thousands of bits), the filtering distribution



is often more coarsely approximated, either by transmitting
only a subset of the particles or by training a parametric model.

A. Related Work and Contributions
One of the concerns is that this approximation exercise can

induce errors in the filtering process that lead to instability
and eventual loss of the object’s path. Although simulation
(and to some extent, experimental) results indicate that such
instability effects are rarely observed, the currently available
theoretical bounds on estimation error for leader node particle
filtering grow exponentially over time [10]. Previous analyses
have used maximum log–error to model the approximation
error propagation in a leader node particle filter associated
with an arbitrary dynamic system. Because log–error does not
take into account the structure of the system, the resulting
bounds diverge. However, several authors have investigated
the stability of centralized particle filtering algorithms and
obtained stronger results that use the properties of the under-
lying dynamical system [11], [12]. In particular, these results
indicate that in the case of an exponentially stable or “suf-
ficiently mixing” system, the particle filter error is bounded
and the filter itself is stable. While these results cannot be
used to guarantee the stability of the leader node particle filter
directly, they do suggest an approach that uses information
about the dynamical system to obtain stable bounds in the
distributed framework. The major contribution of this paper is
the provision of weak sense Lp bounds for leader node particle
filtering. We consider two settings. First, we analyze a leader
node particle filter that uses non–parametric bootstrap approx-
imation to the posterior distribution when changing leader
nodes. Second, we examine an alternative filter that employs
parametric posterior distribution approximation based on the
greedy likelihood maximization algorithm developed in [13],
[14]. Unlike [10], the bounds that we obtain indicate that
under reasonable assumptions one should expect a convergent
behaviour from a leader node particle filter in both settings.

We note that these results are relevant to any situation
where a particle filtering representation of a distribution (or
likelihood function) is approximated, either by subsampling
or by a parametric approach. Such situations arise in non–
parametric belief propagation [15], [16] and in the distributed
particle filter [7], [8].

B. Paper Organization
The rest of the paper is organized as follows. The next

section sets up the analysis framework and outlines relevant
terminology. Section III provides the detailed description of
the algorithms that we analyze and states the main results.
Section IV outlines the proofs of these results, and Section V
discusses the implications. Finally, Section VI concludes the
paper.

II. ANALYSIS FRAMEWORK AND TERMINOLOGY

We adopt the following general signal model:

xt = ft(xt−1, %t) (1)

yj
t = gj

t (xt, ζ
j
t ), j = 1 . . . M (2)

where xt is the dx × 1 target state vector at time t, yj
t is the

dj
y × 1 measurement vector at sensor node j, %t and ζj

t are
system excitation and measurement noises correspondingly, ft

is a nonlinear system map ft : Rdx → Rdx , and gj
t is a

nonlinear measurement map gj
t : Rdx → Rdj

y . Denote by yt

the complete vector of observations {yj
t ; j = 1, . . . , M}.

In order to conduct stability analysis, we need to introduce
slightly more rigorous mathematical notations. Let (Et, Et),
t ∈ N be a sequence of measurable spaces. The target state
vector evolves according to a non–homogeneous (discrete–
time) Markov chain Xt with transitions Mt+1 from Et into
Et+1. We denote by X ′

t = X[0:t] the historical path process
associated with Xt, and use M ′

t to denote the Markov tran-
sitions of the path process. Note that in the proposed signal
model, we constrain Et to be Rdx×1, but in general it can be
any measurable space.

Associated with a measurable space of the form (E, E) is
a set of probability measures P(E) and the Banach space of
bounded functions Bb(E) with supremum norm:

||h|| = sup
x∈E

|h(x)|. (3)

We define a convex set Osc1(E) of E–measurable test func-
tions with finite oscillations:

osc(h) = sup(|h(x)− h(y)|; x, y ∈ E) (4)
Osc1(E) = {h : osc(h) ≤ 1} (5)

In order to simplify the representation of integral operators,
we define for a measure µ ∈ P(E), µ(h) ,

∫
E

h(x)µ(dx).
Through the rest of this paper we adopt the methodology

developed in [11] to analyze the behaviour of filtering distri-
butions arising from (1) and (2). This methodology involves
representing the particle filter as an N–particle approximation
of a Feynman–Kac model. In the remainder of this section,
we describe how this representation is performed; for a much
more detailed description and discussion, please refer to [11].

The evolution of the unconditional signal distribution in (1)
is completely defined by the Markov transition kernel M(·, ·)
and the initial signal distribution µ0:

Pr{Xt ∈ dxt|Xt−1 = xt−1} = Mt(xt−1, dxt) (6)

According to (6), the signal distribution at time t, with respect
to the sequence of states x1, . . . , xt, can be written as follows

Pµ,t(d(x0, . . . ,xt)) = µ(dx0)M1(x0, dx1) . . . Mt(xt−1, dxt)
(7)

We now introduce bounded and non–negative potential
functions Gt on Et, and set Gt(xt) = pYt|Xt

(yt|xt) so
that Gt reflects the probabilistic relationship between state
and signal in the measurement process (2). This leads to the
following definition of the unnormalized prediction Feynman–
Kac model, for ht ∈ Bb(Et) and t ∈ N.

γ(ht) , Eη0

(
ht(Xt)

t−1∏

i=0

Gi(Xi)

)
(8)



where Eη0 denotes expectation with respect to the distribution
of an Et–valued Markov chain Xt with transitions Mt. The
normalized prediction Feynman–Kac model is then:

ηt(ht) =
γ(ht)
γ(1)

(9)

Note that ηt is closely related to the predictive posterior
probability density function in the Bayesian methodology.

We introduce the Boltzmann–Gibbs transformation Ψt to
reflect the effect of the likelihood function at time t on the
normalized prediction model. The transformation Ψt maps the
set of probability measures on Et onto itself, i.e. Ψt : ν ∈
Pt(Et) 7→ Ψt(ν) ∈ Pt(Et). For a particular measure ν,

Ψt(ν)(dxt) =
1

ν(Gt)
Gt(xt)ν(dxt). (10)

This transformation is used to construct the key operator
Φt : P(Et−1) → P(Et), which is used to update the
predictive posterior distribution from time step t − 1 to time
step t. This operator uses the fitness assessment described by
the likelihood function Gt−1 and the diffusion step described
by the Markov kernel Mt.

Φt(η) = Ψt−1(η)Mt (11)
ηt = Φt(ηt−1) (12)

Let Qi,t and Φi,t, i ≤ t be the semigroups associated
respectively with the Feynman–Kac distribution flows γt and
ηt.

Φi,t = Φt ◦ Φt−1 ◦ . . . ◦ Φi+1 (13)
Qi,t = Qt ◦Qt−1 ◦ . . . ◦Qi+1 (14)

Here Qt(xt−1, dxt) = Gt−1(xt−1)Mt(xt−1, dxt) and Φi,t is
a nonlinear integral operator from P(Ei) to P(Et), defined
for µi ∈ P(Ei) and ht ∈ Bb(Et) as:

Φi,t(µi)(ht) = µi(Gi,tPi,t(ht))/µi(Gi,t)

where Gi,t = Qi,t(1) and Pi,t(ht) = Qi,t(ht)/Qi,t(1).
The semigroup Φi,t describes the evolution of the normal-

ized prediction Feynman–Kac model ηt. We can define an
associated particle filter by developing an N–particle approx-
imation to this model. This consists of N path particles:

ξ′kt = (ξk
i,t)0≤i≤t ∈ E′

t = E[0,t] i ∈ 1, . . . , N

The particle approximation of the prediction Feynman–Kac
model is defined as:

ηN
n =

1
N

N∑

k=1

δξk
t,t

The N–tuple ξt represents the configuration at time t of N
particles ξk

t , and resides in the product space EN
t . The particle

filter then involves a two–step updating process:

ξt ∈ EN
t

selection−→ ξ̂t ∈ EN
t

mutation−→ ξt+1 ∈ EN
t+1

The selection stage consists of selecting randomly N particles

ξ̂k
t . This random selection is achieved by setting, with prob-

ability εtGt(ξk
t ), ξ̂k

t = ξk
t ; otherwise we choose a random

particle ξ̃k
t with distribution

∑N
k=1

Gt(ξ
k
t )∑N

j=1 Gt(ξ
j
t )

δξk
t

, and we set

ξ̂k
t = ξ̃k

t . During the mutation phase, each particle ξ̂k
t evolves

according to the Markov transition Mt+1.

III. LEADER NODE PARTICLE FILTER ERROR BOUNDS

This section presents our main results. Initially we define
two versions of the leader node particle filter, and subsequently
we state weak sense Lp error bounds for these two filters. In
both filters, we assume that there is a change of leader node at
time t with probability q, and communication of the particle
filter occurs at this time. The value of q is related to the rate
of leader node change. Thus the approximation error assessed
using this scheme is clearly related to the allowed frequency
of the leader node exchange. We consider this simplified
communication scheme because our interest is in analyzing
the upper–bounds for the propagation of approximation error.
The total tracking error can be decomposed into the target
state estimation error, which is due to the measurement errors
and randomness of the dynamic system and approximation
error, which is due to the particle or parametric approximation
performed at every step. The bounds on the expected error
of the second kind do not depend on particular sequences of
leader nodes allocated. For the analysis of the first kind of
error please refer to [17], which addresses the sensor selection
problem.

A. Particle Filter Descriptions

PF1: Bootstrap Approximation Leader Node Particle Filter:

with probability q, Φt(ηN1
t−1) ⇒ ηN2

t −→ ηN2
t ⇒ ηN1

t (15)

with probability 1− q, Φt(ηN1
t−1) ⇒ ηN1

t (16)

Here the implication sign ⇒ represents a sampling operation
and the right arrow −→ denotes the communication process.
Note that ηN1

t in (15) can be regarded as a bootstrap approx-
imation of size N1 to an empirical distribution ηN2

t . Let us
introduce the following sampling operator SN : P(E) →
P(EN ) to facilitate the analysis of (15)–(16):

SN (η) =
1
N

N∑

i=1

δξi . (17)

Here (ξ1, . . . , ξN ) is the i.i.d sample from η. Using this
operator we can rewrite (15) in a more concise form:

with probability q, ηN1
t = SN1 ◦ SN2 ◦ Φt(ηN1

t−1) (18)

The second particle filter we define relies upon a parametric
approximation of the distribution. Although the parametric
density approximation can be accomplished in many ways, in
order to develop error bounds, we require that the algorithm
has approximation and estimation errors that are controlled
in some well–defined sense. For this reason, we consider the



following family of bounded parametric densities:

C = {φθ(x) : θ ∈ Θ ⊂ Rd, a ≤ φθ ≤ b} (19)

where 0 < a < b < ∞ and Θ defines parameter space. We
are looking for an approximation gk to a true density dηt

dx . The
approximation is restricted to a class of discrete k–component
convex combinations of the form:

Gk = convk(C) =

{
gk : gk(x) =

k∑

i=1

αiφθi
(x), φθ ∈ C,

k∑

i=1

αi = 1, αi ≥ 0, θi ∈ Θ

}
(20)

To analyze the potential performance of the algorithm based
on parametric particle communication we consider the fol-
lowing greedy approximation procedure that is based on the
minimization of some loss function Υ : Bb(Et) → R [14],
[18].

Algorithm 1: Sequential greedy approximation

Given gθ1 ∈ C1

for i = 2 to k do2

Find φθi ∈ C and 0 ≤ αi ≤ 1 to minimize the3

function:
(φ∗θi

, α∗i ) = arg min
αi,φθi

Υ((1− αi)gθi−1 + αiφθi)4

Let gi = (1− α∗i )gθi−1 + α∗i φ
∗
θi

5

endfor6

Algorithm 1 is clearly suboptimal. However, the results
on greedy approximation in non–Hilbert spaces [19] indi-
cate that approximation rates achieved by this procedure
are close or equal to those of the optimum approach. Thus
the analysis of the error bounds of a leader node particle
filter utilizing parametric greedy approximation provides a
good approximation to error bounds that can be achieved
by an equivalent algorithm that uses an optimal distribution
approximation algorithm. In this sense, we hope that this
analysis provides achievable worst–case performance upper–
bounds for any leader node particle filter using a “sufficiently
good” parametric distribution approximation algorithm.

We note that Algorithm 1 can be used to calculate an
estimate g of an unknown density w based on the minimization
of Kullback–Leibler (KL) divergence, which can be defined for
two measures ν and µ:

D(ν||µ) = Eν log
(

dν

dµ

)
, (21)

if the loss function of the form Υ(g) = −Ew log(g) is
used [14]:

g = arg min
g

D(w||g) = arg min
g
Ew log(w)− Ew log(g)

= arg min
g
−Ew log(g). (22)

In practice w is unknown, but its approximation by an empir-
ical equivalent leads to the Maximum Likelihood density esti-

mation algorithm. Accordingly, there are several papers [13],
[14] that develop bounds on approximation and estimation
error of Algorithm 1 in terms of KL–divergence.

The minimization of KL–divergence does not directly lead
to the minimization of Lp error, but it does correspond to the
minimization of a bound on L1 error [10].
PF2: Parametric Approximation Leader Node Particle Filter:

with probability q, Φt(ηN
t−1) V η̂k

t −→ η̂k
t ⇒ ηN

t (23)

with probability 1− q, Φt(ηN
t−1) ⇒ ηN

t (24)

Here the V represents the local distribution approximation
process. Thus instead of a bootstrap approximation, we trans-
mit parameters of the distribution estimated from the particle
approximation available at the current time step. The particle
filter PF2 employs the greedy density approximation algorithm
of [18], detailed above in Algorithm 1.

B. Main Results

Our results are stated in terms of the quantities ri,t, which
measures the relative oscillations of the potential functions
Gi,t, and βi,t, which measures the contraction properties of
the Markov transition Pi,t. These quantities are defined as:

ri,t = sup
xi,yi∈Ei

(Gi,t(xi)/Gi,t(yi)) (25)

β(Pi,t) = sup
xi,yi∈Ei

||Pi,t(xi, ·)− Pi,t(yi, ·)||tv (26)

Theorem 1 specifies a weak sense Lp bound on the error
incurred by the bootstrap approximation particle filter, PF1.

Theorem 1. For any t ≥ 0, p ≥ 1, and ht ∈ Osc1(Et) the
Lp error of the distributed particle filter algorithm (15)–(16)
is upper bounded as follows, for a finite constant d(p):

E
{∣∣∣

[
ηN1

t − ηt

]
(ht)

∣∣∣
p} 1

p ≤

d(p)
1
p

(
1√
N1

+
q√
N2

) t∑

i=0

ri,tβ(Pi,t).

Theorem 2 specifies a weak sense Lp bound on the error
incurred by the parametric approximation particle filter, PF2.

Theorem 2. Let ηN
i be the N–particle approximation of ηi at

each particle filtering step and η̂k
i ∈ Gk be the k–component

mixture approximation constructed by the greedy likelihood
approximation algorithm of [18] applied to Φi(ηN

i−1). Then
for any t ≥ 0, p ≥ 1, and ht ∈ Osc1(Et), ||ht|| ≤ 1, the Lp

error of the distributed particle filter algorithm (23)–(24) is
upper bounded by the following:

E
{∣∣[ηN

t − ηt

]
(ht)

∣∣p
} 1

p ≤ d(p)
1
p

1√
N

t∑

i=0

ri,tβ(Pi,t)

+
√

2q

t∑

i=0

ri,tβ(Pi,t)
( c

k
+ E

{
D(ηN

i ||G)p
} 1

p

)1/2

.

where c is a constant that depends only on the class of



approximating densities, and

D(ηN
i ||G) = inf

η̄∈G
D(ηN

i ||η̄) (27)

IV. STABILITY ANALYSIS AND PROOFS

To analyze the convergence behaviour of the leader node
particle filter we use the following decomposition of sampling
error into the sum of local sampling errors [11]:

ηN
t − ηt =

t∑

i=0

[
Φi,t(ηN

i )− Φi,t(Φi(ηN
i−1))

]
. (28)

Here ηN
t is the N particle approximation of ηt at time t. Using

the triangle inequality and (28) the expected Lp error of the
particle filter at time t can be upper bounded in the following
manner:

E
{∣∣[ηN

t − ηt

]
(ht)

∣∣p
} 1

p ≤
t∑

i=0

E
{∣∣[Φi,t(ηN

i )− Φi,t(Φi(ηN
i−1))

]
(ht)

∣∣p
} 1

p

. (29)

A. Bootstrap Approximation Leader Node Particle Filter

We begin by observing that Φt always operates on the N1

particle approximation in (15)–(16). Following the lines of
analysis in [11], we introduce the N–particle equivalents of
Qi,t, Pi,t, and Gi,t. The random potential function GN1

i,t :
Ei → (0,∞) is defined as:

GN1
i,t (xi) =

Gi,t

Φi(ηN1
i−1)(Gi,t)

(xi). (30)

The random Markov kernel PN1
i,t : Ei → Et is defined for any

(ht,xi) ∈ (Bb(Et)× Ei) as:

PN1
i,t (ht)(xi) =∫

(Pi,tht(xi)− Pi,tht(yi))GN1
i,t (yi)Φi(ηN1

i−1)(dyi), (31)

and

QN1
i,t (ht)(xi) = GN1

i,t (xi)× PN1
i,t (ht)(xi). (32)

Each summand in (29) can be rewritten in terms of QN1
i,t :

Φi,t(ηN1
i )− Φi,t(Φi(ηN1

i−1)) =
1

ηN1
i (GN1

i,t )

[
ηN1

i − Φi(ηN1
i−1)

]
QN1

i,t (33)

We now commence the proof of Theorem 1 concerning the
Lp bounds on the error of PF1. We will need the following
result proven by Del Moral [11] (part of Lemma 7.3.3) that is
cited here without a proof.

Lemma 1. (Del Moral [11], Lemma 7.3.3)
For any p ≥ 1 and sequence of E–measurable functions

(hi)i≥1 with finite oscillations such that µi(hi) = 0 for all
i ≥ 1 we have

√
NE{|m(X)(h)p|} 1

p ≤ d(p)
1
p σ(h) (34)

where the following definitions are used

m(x)(h) =
1
N

N∑

i=1

hi(xi) and σ2(h) =
1
N

N∑

i=1

osc2(hi)

(35)

and finite constants d(p) are given by the following:

d(2p) =
(2p)!
p!

2−p, (36)

d(2p− 1) =
(2p− 1)!

(p− 1)!
√

p− 1/2
2−(p−1/2) (37)

Before deriving Theorem 1 we investigate an important
property of bootstrap approximation.

Lemma 2. For any p ≥ 1, and h ∈ Osc1(E), the uncondi-
tional expected Lp error of a bootstrap approximation P̂n of
size n sampled from an empirical distribution PN of size N
is upper bounded by the following:

E
{∣∣∣

[
P̂n − P

]
(h)

∣∣∣
p} 1

p ≤ d(p)
1
p

(
1√
N

+
1√
n

)
(38)

Proof: Let us introduce X = [X1, . . . , XN ]T , a sample
from probability distribution P , and X∗ = [X∗

1 , . . . , X∗
n]T ,

a bootstrap sample of size n from the empirical distribution
PN . By EX and EX∗ we denote the expectations with respect
to distributions P and PN respectively. Using the triangle
inequality an obvious result follows:

E
{∣∣∣

[
P̂n − P

]
(h)

∣∣∣
p} 1

p ≤ EX,X∗
{∣∣∣

[
P̂n − PN

]
(h)

∣∣∣
p} 1

p

+ EX {|[PN − P ] (h)|p} 1
p (39)

Application of Lemma 1 to the second summand gives:

EX {|[PN − P ] (h)|p} 1
p ≤ d(p)

1
p

1√
N

σ2(h) (40)

≤ d(p)
1
p

1√
N

(41)

On the other hand, the first summand can be written as follows:

EX,X∗
{∣∣∣

[
P̂n − PN

]
(h)

∣∣∣
p} 1

p

=

EX

{
EX∗

{∣∣∣
[
P̂n − PN

]
(h)

∣∣∣
p∣∣∣X

}} 1
p

(42)

It follows that for almost all sequences X [20] Lemma 1 holds
and we have the following result:

EX

{
EX∗

{∣∣∣
[
P̂n − PN

]
(h)

∣∣∣
p∣∣∣X

}} 1
p

≤ EX

{
d(p)

(
1√
n

σ2(h)
)p} 1

p

≤ EX

{
d(p)

(
1√
n

)p} 1
p

= d(p)
1
p

1√
n

(43)

Combining (39), (40) and (43) we obtain the desired result
Proof of Theorem 1:



Taking into account (33) and using the Hölder inequality, each
summand in (29) can be upper bounded as follows:

E
{∣∣∣

[
Φi,t(ηN1

i )− Φi,t(Φi(ηN1
i−1))

]
(ht)

∣∣∣
p} 1

p ≤
∣∣∣∣∣

∣∣∣∣∣
QN1

i,t (ht)

ηN1
i (GN1

i,t )

∣∣∣∣∣

∣∣∣∣∣E
{∣∣∣

[
ηN1

i − Φi(ηN1
i−1)

]
(ht)

∣∣∣
p} 1

p

(44)

The second factor in the above formula can be analyzed in
the following way. Given the independence of the events (15)
and (16) from the quantities under the expectation in (44) we
can conclude the following:

E
{∣∣∣

[
ηN1

i − Φi(ηN1
i−1)

]
(ht)

∣∣∣
p} 1

p

=

E
{

q
∣∣∣
[
SN1 ◦ SN2 ◦ Φi(ηN1

i−1)− Φi(ηN1
i−1)

]
(ht)

∣∣∣
p

+ (1− q)
∣∣∣
[
SN1 ◦ Φi(ηN1

i−1)− Φi(ηN1
i−1)

]
(ht)

∣∣∣
p} 1

p

(45)

Using Jensen’s inequality yields:

E
{∣∣∣

[
ηN1

i − Φi(ηN1
i−1)

]
(ht)

∣∣∣
p} 1

p ≤

qE
{∣∣∣

[
SN1 ◦ SN2 ◦ Φi(ηN1

i−1)− Φi(ηN1
i−1)

]
(ht)

∣∣∣
p} 1

p

+ (1− q)E
{∣∣∣

[
SN1 ◦ Φi(ηN1

i−1)− Φi(ηN1
i−1)

]
(ht)

∣∣∣
p} 1

p

(46)

Using Lemma 1 we can see that the second summand in (46)
is upper bounded by the following:

E
{∣∣∣

[
SN1 ◦ Φi(ηN1

i−1)− Φi(ηN1
i−1)

]
(ht)

∣∣∣
p} 1

p ≤ d(p)
1
p

1√
N1

(47)

The application of Lemma 2 to the first summand in (46)
gives:

E
{∣∣∣

[
SN1 ◦ SN2 ◦ Φi(ηN1

i−1)− Φi(ηN1
i−1)

]
(ht)

∣∣∣
p} 1

p ≤

d(p)
1
p

(
1√
N1

+
1√
N2

)
(48)

Combining (46)–(48) results in

E
{∣∣∣

[
ηN1

i − Φi(ηN1
i−1)

]
(ht)

∣∣∣
p} 1

p ≤ d(p)
1
p

(
1√
N1

+
1√
N2

q

)

(49)

Using the properties of the Dobrushin contraction coefficient
[11]: ∣∣∣∣∣

∣∣∣∣∣
QN1

i,t (ht)

ηN1
i (GN1

i,t )

∣∣∣∣∣

∣∣∣∣∣ ≤ ri,tβ(Pi,t) (50)

and combining (44), (49), and (29) gives the desired result. ¥
The following remark discusses a special case in which the

upper bound presented in Theorem 1 becomes slightly tighter.

Remark 1. If the number of particles N1 used in Monte–Carlo

filter calculations is a multiple of the number of particles N2

used for communication between leader nodes, i.e., N1 = kN2

for some k ∈ N, the upper bound of Theorem 1 becomes:

E
{∣∣∣

[
ηN1

t − ηt

]
(ht)

∣∣∣
p} 1

p ≤

d(p)
1
p

(
1− q√

N1

+
q√
N2

) t∑

i=0

ri,tβ(Pi,t), (51)

Proof: It is clear that in the case where N1 = kN2,
a deterministic sampling approach consisting of creating the
N1 particle approximation by just copying the N2 particle
approximation k times can be used in (15). Thus the sampling
error of the SN1 operator in (48) is zero.

B. Parametric Approximation Leader Node Particle Filter
Proof of Theorem 2:

We begin with an error decomposition similar to that used in
Theorem 1:

E
{∣∣[Φi,t(ηN

i )− Φi,t(Φi(ηN
i−1))

]
(ht)

∣∣p
} 1

p ≤
∣∣∣∣∣

∣∣∣∣∣
QN

i,t(ht)
ηN

i (GN
i,t)

∣∣∣∣∣

∣∣∣∣∣×
(

qE
{∣∣[Φi(ηN

i−1)− η̂k
i

]
(hi)

∣∣p
} 1

p

+ qE
{∣∣[η̂k

i − ηN
i

]
(hi)

∣∣p
} 1

p

+ (1− q)E
{∣∣[SN ◦ Φi(ηN

i−1)− Φi(ηN
i−1)

]
(hi)

∣∣p
} 1

p

)

(52)

First, Lemma 1 and Lemma 2 can be used to upper bound the
second and third terms in the bracketed expression. Second,
we observe that:

E
{∣∣[η̂k

i − ηN
i

]
(hi)

∣∣p
} 1

p

= (53)

= E
{∣∣∣∣

∫

Ei

(
dη̂k

i

dx
(x)− dηN

i

dx
(x)

)
hi(x)dx

∣∣∣∣
p} 1

p

≤ E
{(∫

Ei

∣∣∣∣
dη̂k

i

dx
(x)− dηN

i

dx
(x)

∣∣∣∣ dx

)p} 1
p

||hi|| (54)

Furthermore, the following relationship between the L1 norm
and KL–divergence [10] can be used:

(∫

Ei

∣∣∣∣
dη̂k

i

dx
(x)− dηN

i

dx
(x)

∣∣∣∣ dx

)2

≤ 2D(ηN
i ||η̂k

i ) (55)

The results of Li and Barron [13] and Rakhlin [14] demon-
strate that the following holds:

D(ηN
i ||η̂k

i )−D(ηN
i ||G) = − 1

N

N∑

i=1

log
(

dη̂k
i

dx
(xi)

)

+
1
N

N∑

i=1

log
(

dη∗

dx
(xi)

)

≤ γc2
FN ,P

k
(56)



where for densities in class C upper–bounded by b and lower–
bounded by a, γc2

FN ,P < c = 4 b2

a2 (2 + log(b/a)) and

dη∗

dx
= arg min

dη
dx∈G

D(ηN
i ||η) (57)

Finally, exploiting (55) and (56) and using the Cauchy–
Schwarz inequality one can deduce for any p ≥ 1:

E
{(∫

Ei

∣∣∣∣
dη̂k

i

dx
(x)− dηN

i

dx
(x)

∣∣∣∣ dx

)p} 1
p

(58)

≤
√

2E
{( c

k
+ D(ηN

i ||G)
)p/2

} 1
p

(59)

≤
√

2

(
E

{( c

k
+ D(ηN

i ||G)
)2p/2

} 1
2
)1/p

(60)

≤
√

2
( c

k
+ E

{
D(ηN

i ||G)p
} 1

p

)1/2

(61)

Combining this result with the bounds on the other terms in
the error decomposition leads directly to the bound presented
in the theorem. ¥

V. DISCUSSION

Theorems 1 and 2 provide Lp bounds for leader node parti-
cle filtering. Although these bounds are not time–uniform, they
do help us understand the behaviour of leader node particle
filtering. In particular, these bounds show that approximation
errors decrease at the rate 1/

√
N2 and 1/

√
k in the non–

parametric and parametric cases respectively. We can also see
that the approximation error in the parametric case contains
a bias term that has the potential to accumulate over time
even if k is very large. However, if we impose reasonable
conditions on the error terms, we can conclude that this does
not necessarily lead to divergence. The necessary assumption
is analogous to the assumption of exponential stability of the
underlying semigroups that is often made to prove uniform
stability of centralized particle filters. Specifically we assume
that the relative oscillations ri,t of the potential functions are
bounded and that the Markov transitions Pi,t are sufficiently
contracting, so that the following condition holds:

lim
t→∞

t∑

i=0

ri,tβ(Pi,t) = D < ∞. (62)

If the bias introduced at every approximation step can
be bounded uniformly in time supi E{|D(ηN

i ||G)|p}1/p =
supi E{| inf η̄∈G D(ηN

i ||η̄)|p}1/p = F < ∞, then the limiting
error at every time step t, limk,N→∞ E{Lp(t)}, is bounded by
a constant

√
2qFD. A formal development of results of this

type is the subject of future work.

VI. CONCLUSIONS

We have presented the analysis of the leader node dis-
tributed particle filter. Our results have the form of upper
bounds on the expected Lp error of this filter in two scenarios.

First, we considered the case where bootstrap approximation
to a posterior distribution is used to transmit particles during
leader node exchange. Second, we analyzed the situation
where parametric approximation is used for this purpose.
Unlike previous results, our bounds indicate that, under rea-
sonable assumptions about the underlying state–space model,
convergent particle filter behaviour is expected in both scenar-
ios.
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