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ABSTRACT

In this paper we propose a Superpositional Marginalized δ-GLMB (SMδ-GLMB) filter for multi-target tracking
and we provide bootstrap and particle flow particle filter implementations. Particle filter implementations of the
marginalized δ-GLMB filter are computationally demanding. As a first contribution we show that for the specific
case of superpositional observation models, a reduced complexity update step can be achieved by employing a
superpositional change of variables. The resulting SMδ-GLMB filter can be readily implemented using the
unscented Kalman filter or particle filtering methods.

As a second contribution, we employ particle flow to produce a measurement-driven importance distribution
that serves as a proposal in the SMδ-GLMB particle filter. In high-dimensional state systems or for highly-
informative observations the generic particle filter often suffers from weight degeneracy or otherwise requires a
prohibitively large number of particles. Particle flow avoids particle weight degeneracy by guiding particles to
regions where the posterior is significant. Numerical simulations showcase the reduced complexity and improved
performance of the bootstrap SMδ-GLMB filter with respect to the bootstrap Mδ-GLMB filter. The particle
flow SMδ-GLMB filter further improves the accuracy of track estimates for highly informative measurements.

Keywords: random finite sets, δ-GLMB filter, particle filter, particle flow, track before detect, superpositional
model.

1. INTRODUCTION

In general, radar and sonar systems are employed to detect, localize and track various targets. Target tracking
systems can be classified into Track While Scan (TWS) and Track Before Detect (TBD) systems. In TWS
systems the sensor signals are pre-processed in order to obtain a set of point-measurements that contain a noisy
measurement for each detected target and clutter points, i.e., false alarms. The associations between targets
and measurements are unknown and the resulting incertitude is referred to as origin uncertainty. Probabilistic
data association1–3 filters have been developed to associate the detected points with tracks and eliminate clutter.
Alternatively, the Probability Hypothesis Density (PHD) filter4 models the set of multiple targets as a Random
Finite Set (RFS) and propagates the first-order moment (called PHD or intensity function) of the RFS posterior.
The PHD filter avoids the explicit association step of classical probabilistic data association filters.1 Within
the TWS framework, the PHD filter has found numerous applications in diverse fields.5–8 More recently, the
δ-Generalized Labeled Multi-Bernoulli (δ-GLMB) RFS density9 was proposed as a conjugate prior for point-
measurement model and tractable filters were proposed by Vo et al.10,11

Filters developed within the TBD framework track targets directly from the sensor signals, without the need
for pre-processing (detection and estimation) procedures. For the specific case of a separable likelihood function,
a TBD-Multi-Bernoulli filter has been proposed.12 However, in practice the separable likelihood model is only a
valid approximation if the targets are sufficiently separated. Additionally, the separable likelihood condition is
not achieved by several important types of superpositional sensors, e.g., those that record the sum of individual
target-generated (or backscattered) signals. Accordingly, superpositional PHD and CPHD filters were proposed
for acoustical amplitude sensors and radio-frequency tomography13 and for phased-arrays.14 Contrary to the
TWS case, the δ-GLMB density no longer represents a conjugate prior for the likelihood function induced by
the superpositional observation model. For superpositional amplitude models, Papi et al. have developed a
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particle implementation of the GLMB filter.15 This filter employs the superpositional CPHD filter to construct
a proposal density. For a generic observation model, including the superpositional case, Papi et al. propose a
marginalized δ-GLMB (Mδ-GLMB) that approximates the true posterior with a δ-GLMB density that minimizes
the Kullback-Leibler divergence from the true posterior.16

In this paper, we focus on superpositional observation models and develop a tractable alternative to the Mδ-
GLMB filter. We describe two particle filter implementations. A direct particle implementation of the Mδ-GLMB
filter is computationally intensive due to the Cartesian product of target particle sets required in the marginaliza-
tion step. In order to avoid this step, we propose the Superpositional Mδ-GLMB (SMδ-GLMB) filter that relies
on a change of variables similar to the superpositional PHD filter13 followed by a Gaussian approximation. We
provide a Bootstrap Particle Filter17 implementation of the SMδ-GLMB (BPF-SMδ-GLMB) filter. Additionally,
we extend the previous implementation by using particle flow as a means to produce measurement-driven impor-
tance distributions. The resulting implementation is referred to as the Particle Flow Particle Filter SMδ-GLMB
(PFPF-SMδ-GLMB) filter. Particle flow particle filters18 where shown to offer superior performance with respect
to the standard bootstrap particle filter for high-dimensional state systems or highly-informative measurements.
The particle flow proposal takes into account the current measurement and is capable of generating samples in
regions where the posterior is significant and hence avoids particle weight degeneracy. In this work we rely on
the particle filter particle flow developed by Li et al.18 for which the flow proposal and the prior distributions
are linked through a bijective transformation, allowing the importance weights to be easily computed.

The article is structured as follows. A brief overview of labeled multi-target tracking along with the main
challenge of the particle Mδ-GLMB filter is presented in Section 2. The SMδ-GLMB filter is derived in Section
3. We also describe the bootstrap and particle flow implementations in this section. In Section 4 we present the
results of our numerical experiments and we conclude in Section 5.

2. BACKGROUND AND PROBLEM FORMULATION

In order to incorporate target tracks into the Bayes multi-target filtering framework, targets are identified by a
label. The state of a labeled target, denoted with x = (x, l), is comprised of the target state x ∈ X and label
l ∈ L. The multi-target state Xk = {xk,1, · · · ,xk,N(k)} is modeled as a Random Finite Set (RFS),19 where the
number of targets as well as the individual target states are random.

In TBD systems, the set of multiple targets Xk is observed via the measurement vector zk ∈ Z. The objective
is the estimation of the labeled multi-target posterior density πk(Xk|z0:k), which captures all information of the
target states and labels given the measurement history z0:k = {z0, . . . , zk}. The multi-target Bayes filter4

propagates πk in time according to

πk(Xk|z0:k) =
h(zk|Xk)πk|k−1(Xk)∫
h(zk|X)πk|k−1(X)δX

(1)

πk+1|k(Xk+1) =

∫
fk+1|k(Xk+1|Xk)πk(Xk|z0:k)δXk, (2)

where fk+1|k(Xk+1|Xk) is the RFS counterpart of the single target transition kernel fk+1|k(xk+1|xk, l). Addi-
tionally, the likelihood h(zk|Xk) is induced by the superpositional observation model

zk =
∑

(x,l)∈Xk

gk(x, l) + wk, (3)

where wk ∼ N (0, Rk) is the measurement noise assumed a Gaussian and independent of the targets. Note that
the sensor observation zk is given by the superposition of the individual target contributions gk(x, l), which in
radar/sonar systems would represent the signal backscattered or generated by the respective targets.

The set integral in the case of labeled RFSes is defined19 as∫
f(X)δX ,

∞∑
n=0

1

n!

∑
(l1,...,ln)∈Ln

∫
Xn

f({(x1, l1), . . . , (xn, ln)}) dx1 · · · dxn, (4)
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for a function f : F(X × L) → R and where F(X × L) represents the collection of all finite labeled RFS with
elements in X× L.

Throughout the paper, we use the standard inner product notation 〈f , g〉 ,
∫
X f(x)g(x)dx and the following

multi-object exponential

hX ,
∏
x∈X

h(x), (5)

where h : X × L → R and by convention h∅ = 1. A generalized Kronecker delta is defined for various types of
arguments (e.g, integers, vectors, sets) as

δY (X) =

{
1, if X = Y

0, otherwise.
(6)

A set indicator function is introduced as

1Y (X) =

{
1, if X ⊆ Y
0, otherwise.

(7)

Note that we employ 1Y (x) in place of 1Y ({x}).
In the following we briefly review the family of δ-GLMB densities and we introduce the Mδ-GLMB filter.

Subsequently, we present the limitations of a straightforward particle-filter implementation of the Mδ-GLMB
filter.

2.1 The Mδ-GLMB filter

The δ-GLMB family of multi-target densities9,10 permits the development of a closed form solution to the
Chapman-Kolmogorov (2) and the Bayes multi-target update equation for the point-measurement model. To
ensure distinct labels we employ the pair (k, i) as a label for a target born at time k, where i is a unique index
required to distinguish targets born at the same time.9,10 The label space for a target born at time k is denoted
Lk while the label space of a target at time k (including those born prior to time k) is denoted L0:k. Note that
L0:k = L0:k−1 ∪ Lk and that Lk ∩ L0:k−1 = ∅.

A multi-target labeled set Xk is an element of F(X× L0:k), i.e., the set of all finite sets with elements from
X× L0:k. A δ-GLMB density for the RFS Xk can be expressed as

πk(X) = ∆(X)
∑

I∈F(L0:k)

δI(L(X))w
(I)
k

[
p

(I)
k

]X
, (8)

where we define the label projection L({(x1, l1), . . . , (xn, ln)}) = {l1, . . . , ln} and ∆(X) is the distinct label
indicator defined as

∆(X) ,

{
1, if |L(X)| = |X|
0, otherwise.

The summation terms in (8) are usually referred to as hypotheses and correspond to all finite label sets

I ∈ F(L0:k). Note that for a given hypothesis I, p
(I)
k (·, l) is a density on X and the weights w

(I)
k are non-

negative with
∑
I∈F(L0:k) w

(I)
k = 1. The propagation of the δ-GLMB density is achieved through prediction and

update. For the point measurement model, both Gaussian mixture and SMC implementations were developed
by Vo et al.10 and in the following sections we give a brief overview of the prediction and update steps for the
superpositional model of (1).
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2.1.1 Mδ-GLMB prediction

The measurement zk is not involved in the prediction of (2) and hence the prediction stage of the Mδ-GLMB
filter is similar to the prediction of the δ-GLMB filter.9 In order to account for target births at time k, we
introduce the labeled multi-target set Y with density fB(Y ) defined as

fB(Y ) = ∆(Y )wB(L(Y )) [pB ]
Y
, (9)

where wB(L(Y )) is the weight of the set of birth targets Y and pB(x, l) with l ∈ L(Y ) are their probability
densities. The birth density of (9) includes the labeled Poisson, labeled iid and labeled multi-Bernoulli densities.9

Following,9 if the current multi-target filtering density is a δ-GLMB of the form (8), then the predicted
density is also a δ-GLMB given by

πk+1|k(X) = ∆(X)
∑

I∈F(L0:k+1)

δI(L(X))w
(I)
k+1|k

[
p

(I)
k+1|k

]X
, (10)

where

w
(I)
k+1|k = w

(I)
S (I ∩ L0:k)wB(I ∩ Lk+1),

w
(I)
S (L) =

[
η

(I)
S

]L ∑
J⊆L0:k

1J(L)
[
1− η(I)

S

]J\L
w

(J)
k ,

η
(I)
S (l) = 〈pS(·, l), p(I)

k (·, l)〉,

p
(I)
k+1|k(x, l) = 1L0:k

(l)p
(I)
S (x, l) + 1Lk+1

(l)pB(x, l)

p
(I)
S (x, l) =

1

η
(I)
S (l)

〈pS(·, l)fk+1|k(x|·, l), p(I)
k (·, l)〉,

and where fk+1|k(x|·, l) is the single target kinematic transition kernel and pS(·, l) is the probability of survival.
The birth parameters pB(·, l) and wB(L) are given by the birth density of (9).

2.1.2 Mδ-GLMB update

The update stage of the Mδ-GLMB filter employs the current measurement vector zk+1 to correct the predicted
πk+1|k(·) δ-GLMB density and approximates the resulting RFS posterior with a δ-GLMB density of the form

πk+1(X) ≈ ∆(X)
∑

I∈F(L0:k+1)

w
(I)
k+1δI(L(X))

[
p̂

(I)
k+1

]X
, (11)

where for a label set I = {l1, . . . , ln} the following relationships hold:

w
(I)
k+1 ∝ w

(I)
k+1|kηzk+1

(I), (12)

ηzk+1
(I) =

∫
· · ·
∫
Xn

hk+1(zk+1|(x1, l1), . . . , (xn, ln))

n∏
j=1

[
p

(I)
k+1|k(xj , lj)

]
dx1 · · · dxn , (13)

p̂
(I)
k+1(xi, li) =

1I(li)

ηzk+1
(I)

p
(I)
k+1|k(xi, li)h̃ī(zk+1|xi, li), ∀ i = 1, . . . , n, (14)

h̃ī(zk+1|xi, li) =

∫
· · ·
∫
Xn−1

hk+1(zk+1|(x1, l1), . . . , (xn, ln))

n∏
j=1
j 6=i

[
p

(I)
k+1|k(xj , lj)

]
dx1 · · · dxi−1dxi+1 · · · dxn . (15)

The modified likelihood of h̃ī(zk+1|xi, li) of (15) is obtained by marginalizing the exact likelihood over all target
densities in the set I \ {i} (i.e., all targets in I except for the target for which the update is being performed).
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The joint posterior of the target set is approximated as the product of marginalized posteriors
[
p̂

(I)
k+1

]X
. The

Bayes normalization constant ηzk+1
(I) of (13) effectively represents the evidence that this specific set of targets I

explains the measurement zk+1. The updated hypothesis weight w
(I)
k+1 is exact, and the marginalization process

only involves the target densities of a specific hypothesis. Papi et al. show that the approximations of (12), (13),
and (14) lead to an approximate δ-GLMB density that minimizes the Kullback-Leibler divergence from the exact
posterior πk(·) and matches its PHD function and cardinality distribution.16 Particle filter implementations
of the Mδ-GLMB filter are usually employed since the observation likelihood hk(·|Xk) is non-linear. In the
following, we highlight the computational challenges associated with such particle filter implementations.

2.2 The computational challenge for sequential Monte Carlo implementations

For a sequential Monte Carlo (SMC) approximation of the Mδ-GLMB filter, we consider that each predicted

single target density p
(I)
k+1|k(·, l) is approximated with a set of weighted particles {(ωjk+1|k(l), xjk+1|k(l))}Nj=1.

Then, equations (13) and (14) become

ηzk+1
(I) ≈

N∑
j1=1

· · ·
N∑

jn=1

hk+1(zk+1|(xj1k+1|k(l1), l1), . . . , (xjnk+1|k(ln), ln))ωj1k+1|k(l1) · · ·ωjnk+1|k(ln),

(16)

p̂
(I)
k+1(xi, li) ≈

1I(li)

ηzk+1
(I)

N∑
j1=1

ωjik+1|k(li)h̃ī(zk+1|xjik+1|k(li), li)δxji
k+1|k(li)

(xi) (17)

h̃ī(zk+1|xjik+1|k(li), li) ≈
N∑
j1=1

· · ·
N∑

ji−1=1

N∑
ji+1=1

· · ·
N∑

jn=1

hk+1(zk+1|(xj1k+1|k(l1), l1), . . . , (xjnk+1|k(ln), ln))

× ωj1k+1|k(l1) · · ·ωji−1

k+1|k(li−1)ω
ji+1

k+1|k(li+1) · · ·ωjnk+1|k(ln). (18)

Notice that the above summations involve the mixing, i.e., the n-fold Cartesian product, of the particle sets in
the current label set I. Except for the scenario where the number of targets n is very small, the computational
complexity of this operation is prohibitively large. Computing (16) involves Nn additions. In the following
section, we provide computationally tractable particle filter approximations that avoid the n-fold Cartesian
product of the target particle sets.

3. COMPUTATIONALLY TRACTABLE SMC Mδ-GLMB FILTERS

In this section we present approximate tractable SMC implementations of the Mδ-GLMB filter. First, we propose
a Truncated Bootstrap Particle Filter Mδ-GLMB (TBPF Mδ-GLMB) filter that employs a reduced number
M � Nn of n-tuples in order order to approximate (16) and (18). Second, we develop the BPF Superpositional
Mδ-GLMB (BPF-SMδ-GLMB) filter which relies on a change of variables and a Gaussian approximation in order
to avoid the Cartesian product of particle sets. Third, we propose a Particle Flow Particle Filter PFPF-SMδ-
GLMB implementation that uses particle flow to guide particles into regions where the posterior is significant
and hence improves the precision of track estimates.

3.1 The truncated BPFδ-GLMB filter

The TBPFδ-GLMB filter achieves a reduced complexity implementation of (16) and (18) by using only a selected
number of particle n-tuples as opposed to using all Nn n-tuples. We consider that each predicted single target

density p
(I)
k+1|k(·, l) is approximated with a set of weighted particles {(ωjk+1|k(l), xjk+1|k(l))}Nj=1. Next we consider

a set of particle indices Υ = {υ = (υ1, . . . , υn)|υ1 ∈ [1, N ], . . . , υn ∈ [1, N ]} where the cardinality of |Υ| � Nn.
The set Υ can be obtained by uniformly sampling n-tuples without replacement from the space [1, N ]×· · ·×[1, N ]
obtained as the n-fold product of the integer sets [1, N ]. The set of n-tuples Υ can be employed to obtain a
reduced complexity estimate of the model evidence term ηzk+1

(I) of (16).
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Direct evaluation of the modified likelihood of (18) requires the computation of likelihoods and weight prod-
ucts associated with N (n−1) (n − 1)-tuples. However, using a set Υi = {υ = (υ1, . . . , υi−1, υi+1, . . . , υn)|υk ∈
[1, N ], k = 1, . . . , i− 1, i+ 1, . . . , n} of unique (n− 1)-tuples, h̃ī(·) (18) can be approximated as

h̃ī(zk+1|xi, li) ≈
∑
υ∈Υi

hk+1(zk+1|(xυ1k+1|k(l1), l1), . . . , (xi, li) · · · , (xυnk+1|k(ln), ln))

×ω̄υ1k+1|k(l1) · · · ω̄υi−1

k+1|k(li−1)ω̄
υi+1

k+1|k(li+1) · · · ω̄υnk+1|k(ln), (19)

where the weights of the (n− 1)-tuples given by Υi must be normalized, i.e.,∑
υ∈Υi

ω̄υ1k+1|k(l1) · · · ω̄υi−1

k+1|k(li−1)ω̄
υi+1

k+1|k(li+1) · · · ω̄υnk+1|k(ln) = 1,

in order to represent a particle approximation of the joint density of the target set I \ li.
By evaluating h̃ī(zk+1|xi, li) for each particle of the i-th target, the updated posterior is obtained via (17)

and involves a total of N · |Υi| additions. The model evidence term ηzk+1
(I) of (16) can also be approximated

as the Bayes normalization constant resulting from the updated posterior of (17).

3.2 The SMδ-GLMB filter

By employing the specific superpositional observation model of (3) and assuming the observation noise is Gaus-
sian, wk ∼ N (0, Rk), we can rewrite (13) as

ηzk+1
(I) =

∫
· · ·
∫
Xn

N (zk+1;

n∑
i=1

gk+1(xi, li), Rk+1)

n∏
j=1

[
p

(I)
k+1|k(xj , lj)

]
dx1 · · · dxn, (20)

where N (z;µ,Σ) stands for the Gaussian density function evaluated at z with mean µ and covariance Σ. Fur-
thermore, if we employ the change of variables y =

∑n
i=1 gk+1(xi, li), we can rewrite (20) using a single integral

as

ηzk+1
(I) =

∫
Z
N (zk+1; y,Rk+1)p(y)dy . (21)

By assuming p(y) ≈ N (µ,Σ), the integral reduces to

ηzk+1
(I) ≈ N (zk+1;µ,Rk+1 + Σ). (22)

The Gaussian assumption on the distribution of y is equivalent to assuming that

n∑
i=1

gk+1(xi, li)
∣∣∣L(Xk+1) = {l1, . . . , ln} ∼ N (µ,Σ), (23)

where the parameters of the Gaussian distribution are approximately given by

µi ,
N∑
j=1

ωjk+1|k(li)gk+1(xjk+1|k(li))

µ ≈
n∑
i=1

µi, (24)

Σ ≈
n∑
i=1

 N∑
ji=1

ωjik+1|k(li)gk+1(xjik+1|k(li))
[
gk+1(xjik+1|k(li))

]T
− µiµTi

 . (25)
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The case of h̃ī(zk+1|xi, li) follows along similar lines:

h̃ī(zk+1|xi, li) =

∫
· · ·
∫
Xn−1

N (zk+1;

n∑
j=1

gk+1(xj , lj), Rk+1)

×
n∏
j=1
j 6=i

[
p

(I)
k+1|k(xj , lj)

]
dx1 · · · dxi−1dxi+1 · · · dxn

=

∫
Z
N (zk+1; gk+1(xi, li) + yī, Rk+1)p(yī)dyī,

≈ N (zk+1; gk+1(xi, li) + µī, Rk+1 + Σī) , (26)

where in the second equation we employed the change of variables yī =
∑n
j=1, j 6=i gk+1(xj , lj) while to obtain

the final result we assumed p(yī) = N (µī,Σī). The parameters of the Gaussian distribution can be obtained
approximately as

µī ≈ µ−
N∑
ji=1

ωjik+1|k(li)gk+1(xjik+1|k(li)), (27)

Σī ≈ Σ−
N∑
ji=1

ωjik+1|k(li)gk+1(xjik+1|k(li))
[
gk+1(xjik+1|k(li))

]T
+ µiµ

T
i . (28)

Finally, from (26) and (14) the posterior p̂
(I)
k+1(xi, li) is

p̂
(I)
k+1(xi, li) ≈ 1I(li)

p
(I)
k+1|k(xi, li)N (zk+1; gk+1(xi, li) + µī, Rk+1 + Σī)∫

X p
(I)
k+1|k(xi, li)N (zk+1; gk+1(xi, li) + µī, Rk+1 + Σī) dx

. (29)

When the particles {(ωjik+1|k(li), x
ji
k+1|k(li))}Nji=1 for i = 1, . . . n are propagated using only the kinematic

kernel, the above equations lead to the Bootstrap Particle Filter SMδ-GLMB (BPF-SMδ-GLMB) filter. In this
case, the posterior (29) for target li becomes

p̂
(I)
k+1(xi, li) ≈

1I(li)

K

N∑
ji=1

ωjik+1|k(li) h̃ī(zk+1|xjik+1|k(li), li)δxji
k+1|k(li)

(xi) ∀ i = 1, . . . , n, (30)

where K is a normalization constant. Additionally, an Unscented Kalman Filter (UKF)20,21 implementation is
also possible, leading to a UKF-SMδ-GLMB filter.

3.3 The PFPF-SMδ-GLMB filter

In this section we propose a particle flow particle filter SMδ-GLMB (PFPF-SMδ-GLMB) filter. Proceeding in a
similar manner to,22 we separate legacy and birth targets and compute accordingly their particle flow.

At time step k and for each legacy target with label li ∈ I and particle set {(ωjik (li), x
ji
k (li))}Nji=1, the

particle flow particle filter (PF-PF)18 first propagates the ji-th particle using the kinematic model: ηji0 ∼
fk+1|k(·|xjik (li), li). Second, using the modified likelihood of (26), we construct an invertible mapping ηji1 =

T ji(ηji0 ) that transports ηji0 via particle flow into regions where the posterior density of (29) is significant. The
transformation is a continuous transport indexed by the pseudo-time λ ∈ [0, 1].

The mapping is defined by an Ordinary Differential Equation (ODE) (see Li and Coates18 for details). In
practice a finite series of transformations is applied to approximate the discretized integration of the ODE with
initial value ηi0. For Gaussian systems with non-linear measurement equations, two numerical solutions exist for
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ζ(ηiλ, λ). The exact Daum and Huang (EDH)23 filter is computationally simpler; the localized Daum and Huang
(LEDH)24 filter can be more accurate in some settings.

Li and Coates prove that under mild assumptions on the smoothness of the measurement function, an
invertible mapping is achievable between ηji1 and ηji0 and the importance distribution becomes:18

q(ηji1 |x
ji
k , li, zk+1) =

p(ηji0 |x
ji
k )

|det(Ṫ ji(ηji0 ))|
, (31)

where p(ηji0 |x
ji
k ) is a prior distribution and |det(Ṫ ji(ηji0 ))| represents the absolute value of the Jacobian deter-

minant of the mapping T ji(·). In the EDH version of the PF-PF, the evaluation of the determinant is avoided
since the same mapping is applied to all particles while in the LEDH version of the PF-PF, the evaluation is
straightforward since the mapping is a series of affine transformations. Li and Coates provide implementation
details for both EDH and LEDH variants of the particle flow particle filter.18

According to (30), the updated density p̂
(I)
k+1(xi, li) is approximated by the particle set {(ωjik+1, η

ji
1 )}Nji=1 with

weights

ωjik+1 ∝
h̃ī(zk+1|ηji1 , li)fk+1|k(ηji1 |x

ji
k , li)pS(xjik , li)

q(ηji1 |x
ji
k , li, zk+1)

ωjik . (32)

Furthermore, by employing the mapping property of the invertible flow (31), the weights become

ωjik+1 ∝
h̃ī(zk+1|ηji1 , li)fk+1|k(ηji1 |x

ji
k , li)pS(xjik , li)

fk+1|k(ηji0 |x
ji
k , li)

|det(Ṫ ji(ηji0 ))|ωjik , (33)

where we employed the label-dependent transition kernel fk+1|k(ηji0 |x
ji
k , l) as the prior for the flow.

A similar particle flow is achievable for the case of birth particles. At time k + 1, consider the case of a
birth target (xi, li) and let {ηji0 }Nji=1 be a set of particles sampled from the prior pB(xi, li) and {ηji1 }Nji=1 be

the invertible-flow transformation of these particles. We can approximate p̂
(I)
k+1(xi, li) with the set of weighted

particles {(ωjik+1, η
ji
1 )}Nji=1, where the normalized weights (

∑N
ji=1 ω

ji
k+1 = 1) are proportional to

ωjik+1 ∝
h̃ī(zk+1|ηji1 , li)pB(ηji1 , li)

pB(ηji0 , li)
|det(Ṫ ji(ηji0 ))|. (34)

4. SIMULATION AND RESULTS

In this section we compare the multi-target tracking performances of the TBPF-Mδ-GLMB, the UKF-SMδ-
GLMB, the BPF-SMδ-GLMB and the PFPF-SMδ-GLMB filters for an acoustic localization scenario. The
PFPF-SMδ-GLMB filter employs the EDH variant of the PFPF filter of.18

4.1 Simulation setup

We construct a multi-target tracking scenario where the number of targets is time-varying. Targets are assumed
to evolve in a two dimensional Cartesian system. Target state vectors are taken to be xk = [pxk, p

y
k, ṗ

x
k, ṗ

y
k]T ,

where pxk and pyk represent the target coordinates and ṗxk and ṗyk are its velocities along the two axes. The
kinematic model for the i-th target is a white noise acceleration model:

xk+1,i = Fk+1xk,i + vk+1,i. (35)

The state transition matrix is defined as Fk =
[
I2 TS I2
02 I2

]
where Ts = 1sec is the sampling period; 0n and In are

the zero and identity matrices of size n. The process noise is taken to be vk ∼ N (0, Qk) where for generating

the tracks we employed Qk = 1
20

[
1/3I2 0.5I2
0.5I2 I2

]
, while for tracking we employ Qk =

[
3I2 0.1I2

0.1I2 0.03I2

]
. The process noise

covariance entries are larger for filtering than those used for generating the true tracks since we suppose the target
model to be only approximately known for tracking. Additionally, the target probability of survival is taken to
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Figure 1. The true number of targets and an example of tracks. Targets are born at locations marked with ×. Sensor
placements are marked with ©.

be a constant pS(x, l) = 0.99. Note that the target propagation model is not made dependent on the target
label. An instance of target tracks can be observed in Fig. 1 along side the true number of targets, i.e., true
cardinality of the set of targets. In the subsequent simulations, the number of targets and their birth coordinates
are identical while the acceleration noise is randomly generated in each Monte Carlo trial. Additionally from
Fig. 1, we can observe the layout of the 25 acoustical sensors in an uniformly spaced X-Y grid. For a sensor s
placed at coordinates (sx, sy), the superpositional measurement model is

zk,s =

N(k)∑
i=1

Ψ√
(pxk − sx)2 + (pyk − sy)2 + d0

+ wk,s, (36)

where Ψ = 10 is the source signal amplitude, d0 = 0.1 and wk,s ∼ N (0, σ2
z) is the measurement noise that is

independent for each sensor and independent from the targets. Note the superpositional nature of (36), where
all N(k) targets contribute to the sensor measurement.

Throughout the following section, we employ the Optimum SubPattern Assignment (OSPA) error metric25

that incorporates both position and cardinality errors. The reported OSPA distances are evaluated between the
true target tracks and the estimated tracks and hence the error is reported in meters. The two parameters of
the OSPA distance are the order and the cut-off, which are set to 1 and 10m in our simulations.

4.2 Numerical results

Several simulation scenarios are created by modifying the measurement noise variance. First we investigate a set
of σz values that ensure highly-informative measurements. The UKF-SMδ-GLMB, BPF-SMδ-GLMB (with 20k
particles per target) and the PFPF-SMδ-GLMB (with 10k particles per target) are considered in this simulation
scenario. For the 3 methods, the OSPA error averaged over 100 Monte Carlo runs is reported in Fig. 2. Note
the improved performance of the PFPF-SMδ-GLMB filter with respect to the BPF-SMδ-GLMB filter for highly-
informative measurements. In this case, the flow induced proposal helps the PFPF-SMδ-GLMB filter outperform
the BPF-SMδ-GLMB filter even with fewer particles. For each Monte Carlo run, we compute the time-averaged
OSPA error and we report the mean time-averaged OSPA values in Table 4.2. Additionally, in Table 4.2 we also
present the average run-time per time step of the different filters. Note the relatively similar run-times of the
PFPF-SMδ-GLMB filter with the BPF-SMδ-GLMB filter for the σz ∈ {0.001, 0.0005, 0.0003} cases, where it also
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Figure 2. Average OSPA error for different values of σz - highly informative measurement case.

outperforms all methods in terms of OSPA error. The TBPF-Mδ-GLMB filter is not presented for these highly
informative measurement cases since it greatly under-performed for any practical choice of number of particles
and size of the n-tuple set Υ.

In a second simulation, we investigate the aforementioned methods together with the TBPF-Mδ-GLMB filter
for a less informative measurement case. In this case we employed 2000 particles per target for BPF-SMδ-
GLMB filter, 500 particles per target for the PFPF-SMδ-GLMB filter and 200 particles per target coupled with
|Υ| = |Υi| = 50 ∀ i ∈ [1, n] for the TBPF-Mδ-GLMB filter. In Fig. 3 observe the OSPA values as a function of
time and averaged over 100 Monte Carlo runs while in Table 4.2 we present the mean time-averaged OSPA values
coupled with average run-times per time step. Note that in the case σz = 0.1 the PFPF-SMδ-GLMB filter is
outperformed by the BPF-SMδ-GLMB filter both in terms of OSPA error and run-time. The higher measurement
noise causes the particle flow to produce inaccurate proposals and leads to less precise track estimates which
in turn result in the creation of more GLMB hypotheses and the increase in run-time. Note that for σz = 0.1
the TBPF-Mδ-GLMB filter has slightly higher OSPA with respect to the other methods but the run-time of
the filter still remains prohibitively large. Additionally, for σz = 0.01 from Table 4.2 observe the significant
decrease in performance of the TBPF-Mδ-GLMB filter caused by the insufficient number pf particles per target
and n-tuples |Υ|. From Fig. 3 and for the case of σz = 0.01, we observe a significant increase in OSPA error
after time step 10 when the umber of targets increases to 3. The TBPF-Mδ-GLMB filter performance degrades
when number of targets is high and the measurements are informative since the number (|Υ| = 50) of n-tuples
becomes insufficient to explore the space Xn and thus leads to a poor estimation of the hypothesis weight of
(16). The poor and often under-estimation of hypothesis weights of the TBPF-Mδ-GLMB filter leads to the filter
wrongfully dropping hypotheses that are otherwise informative, which also explains the reduced run-time of the
filter for σz = 0.01.

σz = 0.005 σz = 0.001 σz = 0.0005 σz = 0.0003

UKF
SMδ−GLMB

.16m .055m .039m .031m
0.055sec 0.044sec 0.040sec 0.038sec

BPF
SMδ−GLMB

.13m .054m .050m .064m
0.83sec 0.87sec 0.70sec 0.67sec

PFPF
SMδ−GLMB

.13m .042m .03 .022m
1.12sec 0.88sec 0.81sec 0.80sec

Table 1. Mean time-averaged OSPA values and mean run-time per time step for highly-informative measurements.
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Figure 3. Average OSPA error for different values of σz - high variance measurement noise.

σz = 0.1 σz = 0.05 σz = 0.01

TBPF
Mδ−GLMB

1.58m 1.15m 1.71m
17.5sec 11.2sec 3.5sec

UKF
SMδ−GLMB

1.45m 0.9m 0.28m
0.79sec 0.41sec 0.06sec

BPF
SMδ−GLMB

1.36m 0.85m 0.25m
1.3sec 0.71sec 0.13sec

PFPF
SMδ−GLMB

1.43m 0.87m 0.23m
8.7sec 4.9sec 0.46sec

Table 2. Mean time-averaged OSPA values and mean run-time for high noise variance cases.

5. CONCLUSIONS

In this paper we proposed a superpositional marginalized δ-GLMB filter for superpositional observation models.
Additionally, we provide both a bootstrap and a particle flow particle filter implementation of the proposed filter.
The particle flow superpositional marginalized δ-GLMB filter is shown to provide more accurate track estimates
for highly-informative measurements.
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