
PARTICLE FLOW SMC DELTA-GLMB FILTER

Augustin-Alexandru Saucan, Yunpeng Li and Mark Coates

McGill University, Department of Electrical and Computer Engineering
Montreal, QC, Canada (augustin.saucan@mail.mcgill.ca)

ABSTRACT

In this paper we derive a particle flow particle filter imple-
mentation of the δ-Generalized Labeled Multi-Bernoulli (δ-
GLMB) filter. The bootstrap particle filter δ-GLMB suffers
from weight degeneracy for high-dimensional state systems
or low measurement noise. In order to avoid weight degen-
eracy, we employ particle flow to produce a measurement-
driven importance distribution that serves as a proposal in the
δ-GLMB particle filter. Flow-induced proposals are devel-
oped for both types of targets encountered in the δ-GLMB
filter, i.e., persistent and birth targets. Numerical simulations
reflect the improved performance of the proposed filter with
respect to classical bootstrap implementations.

Index Terms— target tracking, random finite set, Bayesian
estimation, particle filter, particle flow.

1. INTRODUCTION

Multi-target tracking addresses the problem of estimating the
trajectories of an unknown and time-varying number of tar-
gets from a sequence of observations. Labeled Random Finite
Sets (RFS) have been recently proposed in [1] for the specific
task of trajectory inference. Most notably, the δ-GLMB fam-
ily of labeled RFS densities was shown to be closed under the
Chapman-Kolmogorov and Bayes equations. The resulting
δ-GLMB filter was proposed in [2] alongside with Gaussian
mixture and Sequential Monte Carlo (SMC) implementations.

The basic particle filter, referred to as the Bootstrap Parti-
cle Filter (BPF) [3], suffers from the phenomenon of weight
degeneracy, especially for state systems with highly informa-
tive measurements or with a high-dimensional state space [4].
Additionally, we show in this paper that the BPF δ-GLMB
exhibits the same problems whenever the measurement like-
lihood is concentrated with respect to the prior. Particle
flow [5] was proposed as a solution to single target filtering
in such situations. Indeed, particle flow links the prior and
posterior distributions through a log-homotopy and uses par-
tial differential equations to migrate prior particles toward the
posterior distribution. In [6] and [7], particle flow filters are
developed to generate a proposal distribution which serves
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as an importance distribution in a particle filter context. The
particle flow proposal takes into account the current measure-
ment and is capable of generating samples in regions where
the posterior is significant. Most notable, in [7] the flow pro-
posal and the prior distributions are linked through a bijective
transformation and hence the importance weights are easily
calculated.

In this paper, we propose a particle flow SMC implemen-
tation of the δ-GLMB filter. We develop the importance dis-
tributions and derive the importance weights for the two types
of targets (birth and persistent) encountered in the δ-GLMB
filter. The particle flow δ-GLMB retains an efficient paral-
lelizable implementation similar to the standard δ-GLMB fil-
ter. The simulations conducted showcase the improved per-
formance of the particle flow SMC δ-GLMB filter as opposed
to the BPF δ-GLMB with reduced computational overhead.
Additionally, we compare the performance of the the particle
flow SMC δ-GLMB filter with the Extended Kalman [8, Ch.
5.5] and Unscented Kalman [9] filters.

The paper is structured as follows. Section 2 presents a
brief background on labeled RFS filtering and the δ-GLMB
density. Section 3 presents the proposed filter. Numerical
results are presented in Section 4 and concluding remarks are
given in Section 5.

2. BACKGROUND

In order to incorporate target tracks into the Bayes multi-
target filtering framework, targets are identified by a label.
The state of a labeled target, denoted with x = (x, l), is
comprised of the target state x ∈ X and label l ∈ L. The
multi-target stateXk = {xk,1, · · · ,xk,N(k)} is modeled as a
Random Finite Set (RFS) [10], where the number of targets
as well as the individual target states are random.

The objective is the estimation of the labeled multi-target
posterior density πk(Xk|Z0:k), which captures all informa-
tion of the target states and labels given the measurement his-
tory Z0:k = {Z0, . . . , Zk}. The multi-target Bayes filter [10]
propagates πk in time according to

πk(Xk|Z0:k) =
g(Zk|Xk)πk|k−1(Xk)∫
g(Zk|X)πk|k−1(X)δX

(1)

πk+1|k(Xk) =

∫
f(Xk+1|Xk)πk(Xk|Z0:k)δXk, (2)



where g(Zk|Xk) is the RFS counterpart of the single tar-
get likelihood function g(zk|xk, l), and f(Xk+1|Xk) is
the RFS counterpart of the single target transition kernel
fk+1|k(xk+1|xk, l). The integral is a set integral defined
in [11].

The δ-GLMB family of multi-target densities, proposed
in [1, 2], represents a closed form solution to the Chapman-
Kolmogorov and the Bayes multi-target filtering equations of
(1) and (2). A δ-GLMB density can be expressed as

πk(X) = ∆(X)
∑

(I,ξ)∈F(L)×Ξ

w
(I,ξ)
k δI(L(X))

[
p

(ξ)
k

]X
, (3)

where L : X × L → L is the projection L((x, l)) = l and
∆(X) , δ|X|(L(X)) is the distinct label indicator. We em-
ploy the following notation hX , Πx∈Xh(x) where δX(Y )
is a generalized Kronecker delta which is equal to unity only
whenX = Y .

The sum in (3) is conducted over the pairs (I, ξ), called
hypotheses, which are composed of a label set I and a map-
ping ξ : I → Z0:k that associates the measurements from
Z or the void measurement (in case of miss detections) with
the labels in I . Furthermore, note that each hypothesis in (3)
has an associated weight w(I,ξ)

k and a set of target probability
densities p(ξ)

k with l ∈ I .
The propagation of the δ-GLMB is achieved through pre-

diction and update and involves the propagation of each hy-
potheses (I, ξ). Both Gaussian mixture and SMC implemen-
tations were given in [2] and in the following section we give
a particle flow implementation of the SMC δ-GLMB.

3. PARTICLE FLOW SMC δ-GLMB

In this section we give a brief description of the particle flow
particle filter followed by its application to the δ-GLMB fil-
ter. Since within the δ-GLMB framework both persistent, i.e.
targets surviving from the last time step and newly born tar-
gets coexist, their particle flows are addressed separately in
Section 3.3 and Section 3.2. Practical implementation issues
are discussed in Section 3.4.

3.1. Particle flow particle filter

At time step k and for each target with label l, the particle
flow particle filter (PF-PF) [7] first propagates the i-th parti-
cle using the kinematic model: ηi0 ∼ fk|k−1(xk|xik−1). An
invertible mapping ηi1 = T i(ηi0) then transports ηi0 via parti-
cle flow into regions where the posterior density is significant.
The transformation is a continuous deformation indexed by
the pseudo-time λ ∈ [0, 1]. The trajectory of ηiλ at λ ∈ [0, 1]
is defined by an ordinary differential equation (ODE)

dηiλ
dλ

= ζ(ηiλ, λ) . (4)

In practice the deformation is achieved by a finite series
of transformations, that is, by the discretized integration of
the above ODE with initial value ηi0. Two numerical solu-
tions exit for ζ(ηiλ, λ) and are referred to as the exact Daum
and Huang (EDH) [12] and the localized Daum and Huang
(LEDH) [13] filters. Both filters are applicable to Gaussian
systems with non-linear measurement equations.

The authors of [7] prove that under mild assumptions on
the smoothness of the measurement function, an invertible
mapping is achievable between ηi1 and ηi0 and the importance
distribution becomes

q(ηi1|xik−1, zk) =
p(ηi0|xik−1)

|det(Ṫ i(ηi0))|
, (5)

where |det(Ṫ i(ηi0))| represents the absolute value of the Ja-
cobian determinant of the mapping T i(·). In the EDH ver-
sion of the PF-PF, the evaluation of the determinant is avoided
since the same mapping is applied to all particles while in the
LEDH version of the PF-PF, the evaluation is straightforward
since the mapping is a series of affine transformations. We
refer the readers to [7] for further implementation details for
both EDH and LEDH variants of the PF-PF.

The δ-GLMB filter has different propagation schemes for
the persistent and birthed targets. Therefore, the design of the
invertible flow will be treated separately in the following for
the two cases. For both types of targets, we will only consider
the case where a detected measurement is available since in
the case of a missed detection no measurement-dependent im-
portance distribution can be constructed.

3.2. δ-GLMB birth flow

The δ-GLMB updates with the measurement z a birth target
having the prior pb(x, l) via the equation

pb(x, l|z) ∝ pD(x, l)g(z|x, l)pb(x, l). (6)

Let {ηi0}Ni=1 be a set of particles sampled from the prior
pb(x, l) and {ηi1}Ni=1 be the invertible-flow transformation of
these particles. Note that the label l only serves as a function
parameter and no sampling is done for l. The importance
sampling framework that evaluates an arbitrary test function
ϕ(x) is given by∫

ϕ(x)
pD(x, l)g(z|x, l)pb(x, l)

q(x|z, l)
q(x|z, l)dx

=
1

N

N∑
i=1

ϕ(ηi1)
pD(ηi1, l)g(z|ηi1, l)pb(ηi1, l)

q(ηi1|z, l)
,

=
1

N

N∑
i=1

ϕ(ηi1)
pD(ηi1, l)g(z|ηi1, l)pb(ηi1, l)

pb(ηi0, l)
|det(Ṫ i(ηi0))|,

(7)

where the last equality follows from the mapping property
of the invertible flow of (5) and where the flow prior is the



birth density, i.e., pb(ηi0, l). From (7), we can approximate
pb(x, l|z) with the set of weighted particles {(wi, ηi1)}Ni=1,
where the normalized weights (

∑N
i=1 w

i = 1) are propor-
tional to

wi ∝ pD(ηi1, l)g(z|ηi1, l)pb(ηi1, l)
pb(ηi0, l)

|det(Ṫ i(ηi0))|. (8)

3.3. δ-GLMB persistent flow

Consider a persistent target with posterior pk−1|k−1(x, l) at
time k−1. We will consider updating the target with a specific
measurement zk ∈ Zk, and hence the superscript θ referring
to the specific mapping will be dropped.

The particles ηi0 ∼ fk|k−1(·|xik−1, l) are transformed via
the flow into the set {ηi1}Ni=1. The new set of particles is effec-
tively drawn from an importance distribution q(·|xik−1, l, zk).

According to [2, Eqs. 31 and 40], the updated density
pk|k(x, l) is approximated by the particle set {(wik, ηi1)}Ni=1

with associated weights wik and

wi
k ∝

pD(ηi1, l)g(zk|ηi1, l)fk|k−1(η
i
1|xik−1, l)pS(x

i
k−1, l)

q(ηi1|xik−1, l, zk)
wi

k−1.

(9)
Furthermore, by employing the mapping property of the in-
vertible flow (5), the weights become

wik ∝
pD(ηi1, l)g(zk|ηi1, l)fk|k−1(ηi1|xik−1, l)pS(xik−1, l)

fk|k−1(ηi0|xik−1, l)

× | det(Ṫ i(ηi0))|wik−1, (10)

where we employed the label-dependent transition kernel
fk|k−1(ηi0|xik−1, l) as the prior for the flow.

3.4. Algorithm description

The δ-GLMB prediction and update steps involve an increas-
ing number of terms in their respective summations, i.e., num-
ber of hypothesis. In practice, several truncation methodolo-
gies that avoid the explicit enumeration of all hypothesis were
proposed [2, Sec. IV-V].

Prediction in the particle flow δ-GLMB is carried out in
the same manner as in the standard SMC δ-GLMB predic-
tion of [2, Sec. V], where samples are drawn from the prior
birth density pB(·, l) or the kinematic kernel fk−1|k(·|·, l) in
accordance with the type of the target, i.e., birth or persistent.

For each predicted hypothesis (I, ξ), the update step con-
siders first the ranked assignment problem which requires the
evaluation of all associations θ : I → {0, 1, . . . , |Zk|} be-
tween the label set I and the current measurement set Zk.
The costs of these associations, as seen in [2, Eq. 24], ef-
fectively require the updated posterior, which in our case is
obtained via particle flow. Hence, particle flow is used to mi-
grate the particles of the predicted targets to form new particle
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Fig. 1. The true number of targets and their tracks. Targets
are born around the locations marked with ×. The sensor is
marked with © and placed in the center of the coordinate
system.

sets {ηi1}Ni=1. The importance weights of the resulting parti-
cles are computed separately for birth (8) and persistent (10)
targets. Additionally, gating is performed in order to avoid
unnecessary flow operations. Regarding the flow of parti-
cles, both EDH and LEDH approaches are possible. Once
the ranked assignment problem is solved, the new hypothesis
can be formed as described in [2, Sec. IV.B].

4. NUMERICAL RESULTS

In this section we evaluate the performance of several im-
plementations of the δ-GLMB filter in a non-linear tracking
scenario. The δ-GLMB implementations considered are the
Extended Kalman Filter (EKF), Unscented Kalman Filter
(UKF), the Bootstrap Particle Filter (BPF) and the Flow SMC
δ-GLMB.

Targets are assumed to evolve independently of each other
in a two dimensional Cartesian system. Target state vectors
are taken to be x = [px,k, py,k, ṗx,k, ṗy,k]T , where px and
py represent the target coordinates and ṗx,k and ṗy,k are its
velocities along the two axes. The target kinematic model
induces the Gaussian transition kernel fk+1|k(x|ξ, l) =
N (x;Fk+1ξ,Qk+1) where Fk+1 and Qk+1 are matrices
typical of a white noise acceleration model [14, Ch. 6.2.2],
with a power spectral density of q̃ = 1m2/s3. A single simu-
lation has a duration of 40s and the target tracks are depicted
in Fig. 1. The probability of survival of targets is set to
pS(x) = 0.99.

A single sensor is placed at coordinates (0, 0) and collects
bearing and range measurements, as given by

zk =

[
atan2(

py,k

px,k
)√

(px,k)2 + (py,k)2

]
+ wk, (11)
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Fig. 2. Estimated cardinality of the various filters for pD =
0.9.

for each target where atan2(·) is the four-quadrant inverse tan-
gent function and the measurement noise is wk ∼ N (0,Rk).
In the following simulation, we consider the case of Rk =
diag(0.001, 0.001), thus insuring highly informative mea-
surements. Target births are modeled with a labeled multi-
Bernoulli [1, Eq. 12] containing 4 Bernoulli components with
Gaussian probability densities located at (±400m,±400m)
and with identical P = diag(10, 10, 70, 70) covariance
matrices. The probabilities of existence of the 4 birth com-
ponents are set to 0.1. The BPF δ-GLMB employs 50000
particles and sampling is conducted from the kinematic ker-
nel fk+1|k(·|·). The Flow δ-GLMB employs 1000 particles
with the EDH flow variant described in Section 3. A total of
100 simulations were conducted for the tracks depicted in Fig.
1. Figure 2 presents the estimated cardinality, i.e., the number
of targets, for each filter for a given the probability of detec-
tion pD = 0.9. First notice that the BPF δ-GLMB struggles

Fig. 3. OSPA error box plot at various probabilities of detec-
tion.

Fig. 4. Box plot for the computational time of the various
filters.

to estimate the number of targets due to the degeneracy phe-
nomenon. The performances of the EKF and UKF δ-GLMB
are similar but have difficulties with the initialization of tar-
gets. The Flow δ-GLMB does not exhibit difficulties with
target initialization and has improved cardinality estimates
with respect to the BPF δ-GLMB. The Optimal Sub-Pattern
Assignment (OSPA) [15] is an error metric that incorporates
both cardinality mismatches and position errors between the
estimated and true sets of targets. In this simulation, the
OSPA cutoff and order parameters were set to 100 and 1, re-
spectively. A box plot for the average OSPA errors is depicted
in Fig. 3 for different pD. The average OSPA error is defined
as the mean OSPA error for a single simulation of 40s. Ob-
serve the high error reported for the BPF δ-GLMB which
struggles with the highly informative measurements. Note the
increased performance of the Flow δ-GLMB as opposed to
BPF and also EKF/UKF δ-GLMB for high pD. Additionally,
note that the Flow δ-GLMB outperforms the BPF for all pD.
However at lower pD, the filters often rely only on the kine-
matic model. Due to the linear-Gaussian kinematic model,
the EKF and UKF δ-GLMB filters implement exactly the
prediction step which justifies their improved performance
with respect to the particle implementations.

A similar box-plot is given in Fig. 4 that concerns the
computation time of each filter. The highest computation
load is reported for the BPF δ-GLMB while the Flow, UKF
and EKF implementations have relatively similar computa-
tion loads.

5. CONCLUSIONS

In this paper a particle flow SMC implementation is given for
the δ-GLMB filter for multi-target tracking. For highly in-
formative measurements, the resulting Flow δ-GLMB filter
offers better performance than the standard Bootstrap imple-
mentation with a computational load similar to an EKF/UKF
implementation.
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