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graphs and graph signals

» A finite graph G = (V, E)

» Functions on its nodes

X(G)={z:V >R}
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graph shift operators

Graph shift operators “diffuse” signals using the local topology
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sparse matrix-vector multiplication

» For z € X(G), v € V, graph shift operators follow

ueN (v)

» Identify X(G) with R™
» S becomes a square n X n matrix
» 1 becomes a vector in R™
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graph filtering

» Graph shift operators are “one-hop” diffusions

» A graph filter of degree K is simply a degree K polynomial:

K
H(S) =Y hyS*
k=0

» Yields the following locality property:

[H(S)z], only depends on the signal and topology of N* (v)
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key questions

» What invariants are important in graph filtering?
» How to compare behavior of one filter across two graphs?
» Spectral analysis?

» How can graph signals be understood in the limit?
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machinery: rooted balls

» A rooted graph is a graph with a root
> If a graph is a tuple G = (V, E),
»> A rooted graph is a triple G = (V, E, r), for some r € V

» Signals are the same: X(G) = {z: V — R}
» A rooted K-ball is a rooted graph of radius K
» Denote by Bg(v) the K-ball centered at v, for v € V

» The corresponding signal by Z(v)
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the space of motifs

» K-motifs are elements of

= ] X )
Girad(G)<K (G)gj) — Mg () — (BK(’U),fK(U))
I
» Define Mg : V — Qg as \[H(S)x}v [H (S)z]o
Mic(v) = (Bie(v), 21c(v)) T~

» The diagram commutes
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locality of graph filtering

[’H(‘)x],\,
>

L(’E‘L(«L 49 H

(U]
S
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probabilistic graph representations

» (k is a regular, Hausdorff topological space
» Approach: a graph with a signal is just a big bag of motifs

» For a graph G = (V, F) and signal x € X(G), let U be the uniform
probability measure on V'

» Define p as the pushforward of U by Mg
p= (Mg).(U)
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consequences

» The probability measure i on i does not care too much about the size
of the underlying graph

» A means to look at graphs and graph signals in a way that does not
depend on them having the same size

» Look at graphs through the lens of K-hop functions
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spectral analysis of graph signals

» A GSO of special interest: the graph Laplacian

deg(v) u=w
Al = ¢ —1 (u,v) € B
0 else.

» Spectrum contained in [0, 2 - dyay]

» Measures signal smoothness in the following way

(w.Az) = Y (2(v) = z(w)’

(u,v)EE
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why are these called Fourier modes

» Let the eigenpairs of A be (\j, z;) for 1 < 7 <|V|

> X = (2, Az)
A1=0.00
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the power spectral measure

» The eigenvectors z; form an orthobasis for X(G)
» The “graph Fourier transform” represents a signal in this basis

"i"j = <Zjv IB>

» Define a power distribution function P, : R — R

1

J
| | j:/\j§>\

» A finite measure on [0,2 - dpax]
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moments of the power spectral measure

» For z € X(G) with GFT z, define
mic(z) = / NEAP,(A) = (3. AKg)
R

» For (V,E,r),z) € Qg, put
T?LK((V,E,T),:L’) = [x]T ’ [AKx]T

» It holds that

my(v) = E,[mk]
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descencion to a local map

The following diagram commutes

(G,l’) — (Mg)«—>

S |

my E[m k]

TR

19/ 26



why one ought to care
» For a K/2-tap graph filter H(A) with coefficients {h }H<,

» The MSE under AWGN 7 is given by

B | e — H@) G+ )] -

/ (- B dP(\) + / (HN)?  dP,(\)
R S—m—— ——

R
degree K polynomial degree K polynomial

» Performance in terms of integrals of power spectral measure

» If you know enough moments, you know the MSE
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convergence

> Let {G,,z,}72, be a sequence of graphs and graph signals satisfying the
following assumptions:
1. The nodes of the graphs have uniformly bounded degree (dpax = D)
2. The graph signals are uniformly bounded

Theorem

» Let K > 0 be given
» Denote by p, the pushforward measure of (G, x,)
» [f the measures u, converge weakly, then mg(x,) converges

» [f this holds for all K, the measures P, converge weakly
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proof sketch

Lemma

There exists a compact subspace A C Qg such that for all bounded degree
graphs with bounded signals, the measure p satisfies supp(u) C A

» Compactness: all continuous functions are bounded
» my is continuous, thus bounded
» Weak convergence of measure implies convergence of expectations

» Weak convergence of power measures: Stone-Weierstrass theorem
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finite approximation

Can we approximate arbitrarily large graphs with small graphs?

Theorem

> Suppose a “graph signal property” J descends to the expectation of a
continuous function J on Qp

» Let e >0 be given
» There is an n(e) < oo such that for any (G, x) of degree D and signal in

[—1,1], there exists a graph/signal (Go, zo) on at most n(e) nodes where
|J(G, x) = J(Go, mo)| < €
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proof sketch (1)

» Let Qg p[—1, 1] be the compact subspace of Qx that supports all graphs
of degree bounded by D with signals contained in [—1, 1]

» Qf is very nice — Qg p[—1, 1] admits a metric structure
» Urysohn’s metrization theorem
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proof sketch (2)

» If J is continuous, it is (€, d)-uniformly continuous on Qg p[—1, 1]

» By Prokhorov’s theorem, the set of probability measures of bounded
graphs is compact

» Can argue for the continuity of J by descent to J

» Typical maximal packing arguments for function approximation: put
n(€) to be the maximum graph size of a maximal §/2-packing of the space
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further considerations

» Looking at motif distributions in graph signal processing can be used to
understand the graph Fourier transform
» This talk essentially looked at polynomials on R™
> Attach any compact feature space to the nodes (GNNs)

» Compare graphs using integral probability metrics
» Metrize Qf, yields a meaningful Wasserstein 1-distance between graphs based
on motif densities via the pullback of the metric

» Theory of graph limits
»  Graphons and signals on them are studied by Ruiz, Chamon, Ribeiro, as well as
Morency & Leus
» Only handles dense graph limits: unbounded degree
» Appropriate limit objects for bounded degree (very sparse) graphs: graphings
(Lovész, 2012)
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