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Abstract

The internal switches in all-photonic networks do not perform data esmreinto the electronic domain,
thereby eliminating a potential capacity bottleneck, but the inability to perfoficieaft optical buffering
introduces network scheduling challenges. In this technical reporbaesfon the problem of scheduling
fixed-length frames in all-photonic star-topology networks with the goal ofmiking rejected demand.
We describe the Fair Matching Algorithm, a novel scheduling technigue Xed{iength frames. FMA
guarantees 100 throughput provided the arrivals to the network induce an admissible demairix,
and results in an allocation that is weighted max-min fair. We compare throutfEDRiImulation the
delay and throughput performance of FMA with the less computationally-leginimum Cost Search
algorithm. We also describe the Minimum Rejection Algorithm (MRA), which minimizeéal t@jection,
and demonstrate that the Fair Matching Algorithm (FMA) minimizes the maximum ipix@e rejection of
any connection. We analyze through simulation the rejection and delayperice.



1 Introduction

Electronic switches in high-speed networks are increasingly proving sodagacity bottleneck. Replace-
ment with all-photonic switches is attractive, particularly as photonic deviitbsswb-microsecond switch-
ing capability become available. The inability of the photonic switches to perfprgniing introduces net-
work design challenges. Control functionality is required to reduce or ditmithe potential of contention
for egress ports. Burst switching and just-in-time reservation appesddh, and routing and wavelength
assignment techniques [2], are some of the many approaches thatdeaveded in general mesh topolo-
gies. An alternative approach is to focus on a simpler architecture thatesthe complexity of the control
challenge.

Photonic Core Switch

Selector/Multiplexer ~ -09¢ Switch

Figure 1. Architecture of the Agile All-Photonic Network described in [3, Zdge nodes perform
electronic-to-optical conversion and transmit scheduling requests tootteephiotonic node(s). Selec-

tors/multiplexor devices are used to merge traffic from multiple sources orgtedibres and to extract
traffic targetted to a specific destination. The structure forms an overlaitbptalogy (see Figurg).

In this research, we focus on the overlaid star topology, as specifie@ ide$ign for the agile all-
photonic network (AAPN) architecture of [3,4]. This architecture (Bagure 1) consists of edge nodes,
where the optical electronic conversion takes place, connected vidosétadtiplexor devices to photonic
core crossbar switches. The overlaid star topology facilitates the intiodws various approaches to time-
sharing link capacity and dramatically reduces the complexity of the coniwblgm. The core switches
act independently, so the control problem becomes one of schedulisgiticl configurations to achieve a
good match with the traffic arrival pattern at the edge nodes.

The star topology also makes the introduction of accurate network-widdgnsymization much more
feasible [5], and this enables the application of a range of Optical TimeiDiviglultiplexing (OTDM)
techniques for sharing link and switch capacity. A source edge-noddamasvare of when it has ownership
of a given time-slot and is allowed to transmit to a specific destination edge Bydmuitably allowing for
the differing propagation delays between various edge nodes and rihetiooe slots arrive at the core
crossbar switch at the same time and can be switched to their appropriatati@ssinvithout output port
collisions.

The slot allocation can be fixed and deterministic, or it can adapt to the &affials through signalling
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Figure 2. The star topology induced by the agile all-photonic network aothie

between the edge nodes and the core switch. In the latter case, adapastibe performed on a per
frame basis (a block of slots) or per time-slot basis. Frame-based dictggidumore appropriate for wide-

area networks since the impact of propagation delay is reduced (bahdsvig@served for predicted traffic
demand in advance of the traffic arrivals) [6]. We focus on fixedtlerigames, because this simplifies
protocol design and implementation of control functions.

The general objectives of bandwidth sharing are to achieve minimum kjsst@d requests) or max-
imum throughput, and minimum end-to-end delay, whilst maintaining fairness imettweork. Minimizing
the number of rejected requests (those not accommodated by the scheameXihas highest priority. A
secondary objective is to minimize the number of switching operations in a framelén to reduce the
power consumed by the core switch. In this report we introduce a slkihgduigorithm called therair
Matching Algorithm (FMA)and compare its performance (utilization and delay behavior) with that of our
previously suggested algorithmiginimum Cost Search (MCSheduling algorithm [7], an&arallel It-
erative Matching (PIM)algorithm [6]. We also introduce the Minimum Rejection Algorithm (MRA), an
algorithm for minimizing total rejection, and compare its performance with thatvoh AVe demonstrate
that FMA minimizes the maximum percentage rejection of any connection.

This technical report is structured as follows. In Secttome define the scheduling problem that we
address. In SectioBwe present a literature review on the variable length scheduling probleGedion4
we present a general solution for the problem of designing a scheflfiked frame length. SectioB
details our proposed frame-based scheduling approaches. Séctestribes the simulation experiments
we have performed to compare the scheduling approaches and ariblyresults. Finally, Sectiondraws
conclusions and indicates intended extensions.



2 Fixed Frame Length Scheduling: Problem Definition

The AAPN architecture is an overlaid star-topology/éfedge nodes that operates over multiple wave-
lengths [4]. It permits each node to transmit to one destination node andedaam one source node
simultaneouslhyon each wavelengthWe consider that (flow-based) load balancing has been conducted to
divide incoming traffic amongst the various stars. The remaining task is énlatéhthe traffic for each star.
We are presented with a demand matkix whereD;; is the number of slots requested by source node
for destination;j during the next fixed-length frame. We consider a frame of ledgtime slots withiW/
available wavelengths, such that there Are: F'TV slots for each destination node available for allocation.
Herein we focus on the case whéié = 1 for clarity, but the algorithms and results are easily extended.
We are presented with a demand mafiixwhereD;; is the number of slots requested by source node
for destinatiory during the next fixed-length frame. We define the followiing sumsf the demand matrix.
Therow-sumr;(D) = I, Dy;, is the total demand at sourgeand thecolumn-sumc; (D) = Y| Dij,
is the total demand for destinatignlt is important to achieve zero rejection if the demanddmissible

Definition 1. A demand matripD is admissiblaf

max{mlax{ri(D)}, mjax{cj(D)}} <L, (1)

whereL is the frame-length, and (D) andc; (D) are thei-th row-sum and-th column-sum of the demand
matrix, respectively.

Our aim is to devise a schedutesuch that the elemerti;;, identifies the source node allocated to
the k-th time slot associated with destinatigrin the frame. The schedule should minimize the number
of rejectionsREJ (S, D, L) whilst also attempting to minimize the number of times that the switch must
reconfigure N4(S). A switch reconfiguration occurs between two consecutive time slatedk + 1 if the
allocated source node to any destinatjas altered;N,(.S) counts the number of switch reconfigurations in
the entire schedule, not merely those within the frame.

The number of rejections is defined as:

L
REJ(S,D,L) =Y > max(0, Dy — > T[S = i), (2)
7 7 k=1

wherell is the indicator function. We can define an objective function (the cosanétnission) as:
C(S,D,L) = REJ(S,D,L) + g.Ns(S), (3)

whereg is a constant that determines the relative importance of reducing the nufrevétah reconfigura-
tions.

We identify two scheduling problems that address bandwidth allocation in &NAA

PROBLEM 1:For an admissible demand matiixand frame of lengtli, generate a schedufethat
achieves zero rejectio®E J (S, D, L) = 0, and allocates spare capacity in the network to the connections
in a (weighted) max-min fair manner.

PROBLEM 2:Solve the following optimization problem for a frame of fixed lengtwith C (S, D, L)
defined by 8) to identify a frame schedule.

ST = argmsinC’(S,D,L) 4)
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The most closely related work to the optimization embodieBROBLEM landand PROBLEM 2s
the problem of finding an optimum schedule for a variable-length frame hit@is been extensively studied
in WDM and satellite systems [8—12]. The goal is to minimize the overall transmisgiery .

T(S) = To(S) + 7. Ns(5), (5)

where N is the number of switch reconfigurationsis the switching time, and’,. is the time spent trans-
mitting the traffic [9, 11]. The minimum traffic transmission tiMg¢ = max{max;{r; }, max;{c;}} [13].
All times are measured in slots.

PROBLEM 3: Solve the following optimization problem for a frame of variable length with total
transmission timg’(.S) defined by §), observing the constraint thdte S, the set of schedules that satisfy
the demand matrix, i.eREJ(S, D, T,(S)) = 0.

Sy = argmin T(S) (6)

PROBLEM 3is N P-hard for non-negligible values of [11, 14]. Crescenzi et al. demonstrate that
it cannot be approximated by a polynomial algorithm within a factor less ghgm]. For small values
of 7 the problem can be closely approximated by the minimizatiof,0fwvhich is solvable in polynomial
time [15—-17]. The minimum traffic transmission time is [13]:

T, = max{max{r;}, max{c;}}.
i J

We can then establish:

Claim 1. A scheduleS, that minimizes the traffic transmission time, iE,(S,) = T}, solves PROBLEM
3 to within an approximation factor af + 7.

Proof. The number of switch reconfiguratiodé;(S) < 7,(S) andT(S5) = T,(S2) + 7Ns(S2) > Ty.
Hence ifS,; minimizes the traffic transmission time, it satisfiésS,) < T (1 +7) < T(S5)(1+ 7). O

For the special case of small approximate algorithms that attempt to minimiXg subject to the
constraint thaf’, is minimum have been proposed in [8,9, 12, 14]. The algorithms achieve mintratfia
transmission timeT’, but do not guarantee minimutatal transmission time]’(.S5), unless the switching
overhead is completely neglected. TEEACTalgorithm, presented in [12, 14], achieves a minimum traffic
transmission time]* and the derived schedule has at mst= N2 — 2N + 2 switch configurations [12].

In the case of an admissible demand matrix, EXACTalgorithm generates a schedlghat has length
less thanL and therefore zero rejection. TEEXACTalgorithm is an iterative procedure that repeatedly
performs maximum cardinality bipartite matching (MCBM) to obtain the schedulieslat the heart of the
algorithms we present in this report for the case of fixed-length frames.

When is very large (on the order of maximum transmission time), the problem is rédagaini-
mizing Tp subject to the constraint thaf, is minimum. Approximate algorithms for this special case have
been proposed in [9, 11]. The intermediate scenario, when it is desicabl#ain near minimum solutions
for both the number of switchings and the traffic transmission time, has beleesadd in [12].
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3 Literature review

Depending on the value af the problem of finding a minimum schedule length given by equdiids
usually reduced to the three following cases.

1) Whenr is negligible compared to the duration of a time slot, the problem is reduced toablepr
of minimizing T, which has been studied in [15-17]. This problem can be solved in polighdime. In
a more precise manner the problem can be reduced to minimi¢jingubject to the constraint thdi, is
minimum [8, 9].

2) Whenr is very large (in the order of minimum transmission time), the problem is reduaathie
mizing Tp subject to the constraint thaf, is minimum [9, 11].

3) Whenr is moderately large, it is more desirable to obtain near minimum solutions for both the
number of switchings and the traffic transmission time [12]. In [14] it is shth@hone cannot approximate
this problem within a factor less th%n

The three problems stated above have been formulated as variants ahapescheduling problem in
literature [10-13, 18].

3.1 Open Shop Formulation

First, we describe a scheme for classifying scheduling problems deddbyp@&raham et al. [19]. Suppose
that A/ machines or processofg, (k = 1,..., M) have to proces®’ jobs J; (i = 1,..., N). A schedule
is an allocation of one or more machines to each job. A schedfdasbleif at any time, there is at most
one job on each machine, each job is run on at most one machine, and iesaistimber of requirements
concerning the machine environment and the job characteristics. A dehedptimum if it minimizes (or
maximizes) a given optimality criterion.

A shop scheduling problem consists of a sef\dfprocessors. Each of these processors performs a
different task. There ar&/ jobs, each consisting a¥/ tasks. Each task of job i denoted by, ; is to be
processed on processpfor a total duration otlur(t; ;). In each time the following restrictions must be
satisfied for the machines and the jobs: (i) each machine can execute anaaask at any given time, and
(ii) for each job at most one task is to be assigned. Depending on thesdrglarhich the jobs and the tasks
should be performed the shop scheduling problem is usually classifiec®libsic groups:

1. When there is no ordering constraints on operations of the jobs théudittigis described as arpen
shop scheduling.

2. When operations of the tasks of each job should follow a specific trdeshop scheduling is called
job shop.

3. When every job goes through alf machines in a unidirectional order the shop schedulirtpis
shop. Each job has exactly tasks. The first task of every job is done on machine 1, second task on
machine 2 and so on. However, the processing time each task spends ohiaenvaries depending
on the job that the task belongs to.

When the shop ispen the jobs and tasks can be executed in any order. The scheduling algoci#imms
be designed for two different categories based on how the tasks dainterruption: preemptiveand
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nonpreemptivechedules. A preemptive schedule is the one which does not restrictkisddebe executed
continuously. A nonpreemptive schedule is the one in which the tasks tée imgerrupted once they have
begun execution [9].

For a given open shop problem, we try to obtain an optimal finish time (OFT)YORR minimizes
the makespan or the time required to complete all the jobs. In generpfegemptive open shgmroblem
can be solved in polynomial time, while a nonpreemptive open shop problehovwensto be N P-hard
1 [11] for more than three machines [13, 20], but many heuristics existttrobear-optimal finish time for
this case [21, 22]. The open shop scheduling problem of N jobs and Mimexcis denoted by | M |
openshop | OFT [9].

3.2 Analogy

The scheduling problem for ai x N optical switch can be translated into an open shop scheduling problem
with M = N processors and/ jobs. The jobs correspond to the inputs of the switch and the processors
correspond to the outputs. Each input-output traffic demdnygl, is represented by a tagk;. Similar

to the open shop formulation each tagk;;, belongs to a specific job (inpu} and is to be processed by

a specific processor (outpy} [9]. The scheduling problem obtained | N | open shog OFT. The
scheduling constraint in an optical switch operating on one wavelengthecaianslated directly to the open
shop scheduling. The constraint in an optical switch is that at each tjiwer{(i.e., a time slot) at most one
request from input can be serviced at each outgut

e One assignment of each input per slot is equivalent to the constraird fbhatcan not be processed by
more than one processor at any given time.

e One assignment of each output per slot is equivalent to the constraiatphacessor can perform at most
one task at any given time [9].

3.3 Scheduling Algorithms

In this section we describe several solutions for open shop schedubbtem which have been designed
for satellite systems and passive star networks. We develop the algorithras # x N nonblocking
optical switch. The first group of the algorithms aim at minimizing the number @€kimgs for a minimum
duration schedule [8,9]. The second group of the algorithms try to minimizectiedule length when the
number of switchings is minimum [9, 11]. The third group of algorithms providarfoptimum solutions
with bounds on the number of switchings and the schedule length [12].

3.3.1 Minimal Duration Scheduling

The problem of finding a schedule with minimum duration has been studied in res@grch areas such as
networks, computers, and satellite systems [8,9,12,17], and was sbdyersolvable in polynomial time.
The algorithms achieve a minimum traffic transmission tifhg, , , but the minimum schedule length,
Tmin, for non-negligible switching overhead is not guaranteed. In this sestqoresent a simple algorithm
which obtains at moslV, = N2 — 2N + 2 switch configurations per port [12]. However, this algorithm
is a pseudopolynomial time algorithm not a polynomial-time one [14]. A similar algorithm propose
in [9, 13] overcomes the problem noted above by obtaining a weight-regpaph from the original one. A

A problem is NP-hard if solving it in polynomial time would make it possible ttvasall problems in class NP in polynomial
time.



weight-regular graph is defined as a graph whose vertices have thensamber of incident edges. Another
algorithm proposed by Pomalaza [10], tries to reduce the number of svgchin the weight matching
algorithm. All of these algorithms assume that the assignments for each demaotted to be continues,
which translates our scheduling problem to solving-eemptive N | N | openshop | OFT problem.

Given a set of N jobs with task timées;;,1 < i < N andl < j < N, for an N-processor open shop
problem, we define the following quantities:

r; = Z D;; = length of jobi,
1<j<N

cj = Z D;; = total time needed on processor j,
1<i<N

(7)

wherer;, is the amount of the demand at inguaindc; is the total demand for outptit It is easily under-
stood thatlp, ,, = max{max;{r;}, max;{c;}} (the maximum Line-sum in the traffic matrix ).

Before describing the algorithms, we review some terminology and fundahusiitaitions concern-
ing bipartite graphs. The following definitions are presented from [1]3, 23

Definition 2. A graphG is a pairG = (Y, E') whereY is a finite set of nodes or vertices and the elements in
E consist of subsets af of cardinality two called edges. # = [v1,v2] € E, then we say that is incident
uponv; (andwvs). The degree of a vertexof G is the number of edges incident upan

Definition 3. A graphG in which each edge has been assigned a number, or a weight, is calleiglatede
graph. In a weighted graph, the weight of a verteis defined as the sum of the edge weights of all edges
incident tov in graphG.

Definition 4. LetG = (Y, E) is a graph that has the following property: the set of verti¢égan be
partitioned into two setsy andU, and each edge il has one vertex iy and one vertex it/. ThenG is
called a bipartite graph and is usually denoted®y= (V U U, E). Figure 3-(a) shows a bipartite graph of
8 vertices and 9 edges.

Definition 5. LetG = (V U U, E) be a bipartite graph with vertex seté and U, and edge sef. A set
I C Fis a matching if no vertexo € V U U is incident with more than one edge In A matching of
maximum cardinality is called amazimum matching. A matching is called aomplete matching (or

perfect matching ) oV into U if the cardinality (size) of equals the number of verticeslih Figure 3-(b)

shows a matching of maximum cardinality obtained from the graph of figx(ag.

Definition 6. An augmenting patt? relative to a matchind\/ in GG is a path inG such that the first and the
last vertices inP are not covered by, and the edges i# alternate between being i and not being in
M.



Figure 3. (a) A bipartite graph of 8 vertices and 9 edges. (b) A matchimgaaimum cardinality obtained
from the bipartite graph. This matching is a perfect matching.

Note: If there exists such an augmenting path it can be proved that a matchingatégcardinality
can be found inG by augmentingV/ with augmenting patt. Consequently, a matching is of maximum
cardinality if and only if it permits no augmenting path [23].

Definition 7. The degree of a grapt¥ = (Y, E) is defined as the maximum degree of all its vertices. For
example in figure-(a) the degree of the graph is 3.

Maximum Cardinality Matching Algorithm for Bipartite Graph (MCBJhe algorithm starts with an
arbitrary matching Q in graph G. An augmenting path P with respect to Q is follmeh a new matching
is constructed by taking those edges of Q or P that are not in both Q ama Prdcess is repeated and the
matching is maximal when no augmenting path is found.

EXACT Covering Algorithm. The EXACTalgorithm, presented in [12, 14], is based on finding the max-
imum cardinality matching in bipartite graphs. We construct a bipartite g¢aph (V U U, E), whereV/
is the set of vertices corresponding to tNejobs (inputs of the optical switch]/ is the sets of vertices
corresponding to thév processors (outputs of the optical switch), afids the set of edges incident to
each input-output pair. The algorithm repeatedly performs maximum céitdimeatching on the nonzero
elements of the traffic matri®. The weight of each matching, which corresponds to each configuraion
equal to the minimum weight of the edges participating in the matching. The wdightb edge;, u;) is
the amount of the requested traffic from inptid output;.
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Algorithm EXACT.

Y%initialization
i=1,A=D
create graplt- = (VU U, E) from A
% find a maximum matching/ of this graph using algorithm MCB
while A! = 0;
M =MCB(\VUU,E);
% schedule construction
P(i) = M; %construct a permutation matrix
w(i) = min{w(e) : e € M};
%update the graph
A=A—w(i)p(i);
%update the graph
A= A—w(i)p(i);
i=i+1;
%finish when all of the elements it are zero
end

It has been shown in [12,17] that at md$t = N2 — 2N + 2 switch configurations are necessary
to cover the traffic matrix. However, this approach providesaudopolynomial-time algorithm, since its
running time depends linearly on the weights(df[14]. In [9, 13] a similar algorithm, namely Complete
Matching Algorithm (CMA) has been proposed which obtains the schedwdepwlynomial time. In this
approach the bipartite graph is constructed us\hg- M real nodes andv + M fictitious nodes. The
idea is to make each processor to have the same 1Bad. (), and each job to have the same processing
requirement{p, ;. ), hence obtaining a weight-regular graph, that is, a graph whoseegtiave equal
weights. A weight-regular graph guarantees the existence of a completamgatd/ith complete matchings
it is guaranteed that all processors are being used and all jobs aefrecessed in each iteration [13].
Therefore it can be proved that the algorithm CMA always produces @mainm length schedule of duration
Tp,,.. [9,13]. The time complexity of this algorithm @ (|| V||| £||) where||V|| and || E|| are the number
of vertices and the number of edges in the Bipartite graph respectivedysizé of a maximum cardinality
matching, and thus the maximum number of iterations required to comput@(t] 15| ), and the complexity
of a graph search procedure( || E||).

Using parallel processing methods, the fastest known algorithm has decappf O(+/||V]| || E||)
[24]. This algorithm reduces the number of iterations froxj|V||) to O(+/||V]), by looking for a set of
disjoint M-augmenting paths per iteration, then augmenting along all the digcbpaths. In other words,
the algorithm runs the search procedure from all unmatched vertices sienilisly rather than one by one

3.3.2  Minimum Number of Switchings
Recall that the objective function to minimize the overall transmission tiffié4s 7N + Tp, wherer is

the switching overhead)p is the traffic transmission time, and; is the number of switchings that might
be taken to cover the traffic demand. Algorithms described in this sectioragiebedule with minimum
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number of switchings. The algorithms aim at minimizifig subject to the constraint thaf; is minimum.
The problem in this case is formulated asanpreemptive open shegheduling problem. Nonpreemptive
scheduling guarantees that the minimum number of switchings is always abthirj25] it has been proved
that minimizing the makespan (total transmission time) in a nonpreemptive opescmeguling problem
whenM > 2 is N P-complete, wheré/ is the number of processors (for &hx N switchM = N).

The minimum number of switchings is determined by:

N, = max{maz;{[|ri|| }, maz;{|lcj| }}, (8)

where||r;|| is the number of nonzero entries in réewnd||cj|| is the number of nonzero entries in colupn

Nonpreemptive Open shop Scheduling Algorithm. The algorithm presented in [9] is based on the most
number of tasks (demands) first heuristic. The algorithm starts by thetowtpch is requested by the
largest number of inputs. At a given time slot if ti¢h output is available and the inputandk are free, if
the total number of tasks of inputs greater than the total number of tasks of inputhen the demand;;
is processed before the demat)d;. Recall that the total number of tasks of inpus the total number of
outputs for which inpui has requests (the number of nonzero entries inirofva demand matrix). If the
total number of tasks of inputis equal to the total number of tasks of ingytand if the total number of
requests by inputis smaller than the total number of requests by inguhenD;; is processed before the
demandd;, ;. The total number of requests by inplt the sum of the total demands requested by input
This algorithm always produces the minimum number of switching matrices.

3.3.3 Near-Optimum Solutions

The algorithms described in sectioBs8.1and3.3.2provide solutions for reducing the number of switch-
ings and the transmission time respectively, but there is no guarantee oertberance of the proposed
algorithms when the amount ofis neither negligible nor very large. Using the proof described in [23]nt ca
be shown that the algorithm described3ir3.2has an unbounded approximation ratio for the transmission
time. On the other hand the algorithms described.ih1provide the minimum traffic transmission time,
but there is not a tight bound on the number of switchings. Consequemrtlgytrall transmission time for
the case that the switching overhead is not negligible is not close to optimal.

In [14] this problem is described as the preemptive bipartite schedulinglaman to beN P-hard
using the proof in [11]. Also it is shown that one cannot approximate tlislem within a factor less than
%, but the best algorithm they proposed approximates this problem withina f#2.

The approximation algorithm described in this section does not restrict tiraadschedule length
or the minimum number of switchings. Instead, by allowing twice as many as the minnmomber of
switchings, it achieves a near-optimum schedule length within a ratio of two.

Graham's List Scheduling. List scheduling (LIST) introduced by R. L. Graham [18] is a greedy-alg
rithm? that approximates the optimal open shop problem within a ratio of two. LISE$taassigning a job
to each processor. If multiple jobs are contending for the same proaassa@f them is chosen arbitrarily.
Once a processor is idle, one of the free jobs which has a task for thesponding processor is chosen
arbitrarily. This procedure continues until all of the jobs are processed

2] greedy algorithm is an algorithm that optimizes the choice at each stagemviggard to previous choices, with the hope
of finding the global optimum.
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The maximum schedule length produced by LIST is bounded by the sum tiftbdo process the
longest job (equal to the maximum row-sum in the traffic demand), and the tiriaéaost heavily loaded
processor needs (equal to the maximum column-sum in the traffic demaijd)frefore this algorithm
tends to a delay overhead of at m@stV;, . ,though the number of switchings at each pomvis .. .

min’

4 Fixed Frame Length Scheduling
4.1 Terminology and Definitions

We now define some terminology that will be used throughout the repontesnadl some definitions. We
denote the line-sum of liné of the demand matriX> by L.S,. Note that linef consists of a set of source-
destination demands (connections). Each of these connections beldagsliiwes (a row and a column).
Thei-th row represents a link from sourééo the optical switch at the core, and tfth column represents
the link from the core to destination nogle

For an inadmissible demand matrix, we denote the set of overflowing rows déthand matrix (rows
with r;(D) > L) asO,, and the set of overflowing columns;(D) > L) asO.. The set of overflowing
lines,0, = {¢ : LS, > L} is the union ofO, andO.. We define ecritical connection or critical
demand element, as any demand etityy, such that, € O, andp € O.. The remaining entries constitute
non-critical connections/demands.

We now recall the definitions déasibility of rate allocation anseighted max-min fairneg&7, 28].

Definition 8. Feasibility: Consider an arbitrary network as a set of linkKswhere each linkk € £ has a
capacityCy > 0. Let{1,--- ,(} be the set of connections in the network. Dgtbe the demand (request)
of connectioru and v, be its assigned rate. We call a rate allocatign;, vs, - - - , v} feasible when for
every link¢ we have:

Zvu§Cg Ve e £. 9)
ueHy,

Definition 9. Weighted max-min fairness Let w, (v, ) be an increasing function representing the weights
assigned to connection at rate v,,. An allocation{vy, vs,--- ,v¢} is weighted max-min faiif for each
connectionu any increase inv, would cause a decrease in transmission rate of connectisatisfying
w;(v,) < wy(vy,). The special case of max-min fairness is obtained /by, ) = v,.

Definition 10. Bottleneck Link: Given a feasible rate vectar and a weight vectaow, we say that link is
a bottleneck linkwith respect to1 , w) for a connectionu crossing?, if Cy = >, vr = Fy andw,, > wy
for all connections: crossingl.

Lemma 1. A feasible rate vector with weight vectow = {}é—z} is weighted max-min fair if and only if
each connection has a bottleneck link with respecttod).

See the Appendix (Sectidhl) for a proof.

4.2 Relationship to Variable-Length Frame Scheduling

TheEXACTalgorithm, presented in [12,14], addresses schedule design faoledgagth frames, primarily
for the case of negligible, and achieves a minimum traffic transmission tirig, Thus in the case of

11



admissible demand matrices, thXACTalgorithm generates a scheduléhat has length less thanand
therefore satisfies the first requiremenP&OBLEM 1 TheEXACTalgorithm is an iterative procedure that
repeatedly performs maximum cardinality bipartite matching (MCBM) to obtain thedsde. It lies at the
heart of the algorithms we present in this report for the case of fixegtHdrames.

We establish two results concerning the complexit?BOBLEM 1

Claim 2. If the demand matridD is admissible and contains no zero entries (forsinx N switch and
frame of lengthL) then the EXACT algorithm provides a solutiS to PROBLEM 2 such that'(Sg) <
C(S7) + g(N? — 3N +2).

Proof. Since the demand matrix is admissible; < L. Hence the schedule devised BXACTresults

in zero rejectionsREJ(S, D, L) = 0. EXACTensures that the number of switch reconfigurations in this
solution is less thalv? — 2N + 2. The minimum number of switch reconfigurations for any schedule
under the constraint of no zero-entries in the demand matrik [85]. Hence the maximum discrepancy is
N% - 3N +2. O

Theorem 1. For large g, such thaty > max(|[D|[, — L,0), where[|D||; = >_, >, D;;, PROBLEM 2 is
reduced to the problem of minimizidE J (S, D, L) subject to the constraint tha¥;(.S) is minimized. For
this range ofy, PROBLEM 2 isV P-hard.

See the Appendix (Sectidh?2) for a proof.

5 AAPN Scheduling Algorithms

In a practical scenario, although it is desirable to reduce power expently minimizing the number of
switchings, minimizing the number of rejections is far more important. Hence wessithe scheduling
problem PROBLEM ) wheng is small. In this case, we can rewrite the problem as:
MINREJ(D,L): For a frame of fixed lengti. with demand matrixD identify a frame schedulé? that
satisfies:

ST = argmsin REJ(S,D, L) (10)

In this section, we describe two algorithms for bandwidth reservation in theMArchitecture that
address fixed-length frame scheduling. The Fair Matching Algorithm minintimesaximum percentage
rejection experienced by any demand, while the Minimum Rejection Algorithm mingntiieetotal rejection
(that is, it provides a solution talINREJ(D,L).

5.1 Fair Matching Algorithm (FMA)

The EXACT algorithm can be applied directly to the case of fixed length frames (Claim & gtade it
provides a solution foPROBLEM 1wheng is small and demand admissible). When the demand matrix
is inadmissible, the schedule determined by the EXACT algorithm must be trdnafiés L time slots.
This can lead to starvation of some source-destination traffic, and resuifditness (such as substantially
different average service times for traffic arriving at differentes)d

If the demand matrix is admissible, FMA incrementally assign additional demanddiealents until
one of the links reaches capacity (its line-sum is equaltdAt that point, the demand elements contributing
to that line are clamped. Extra demand is then gradually added to the remaimrenéden the matrix until
another link (line) reaches its capacity and it too is clamped. The proceefereed to as thevater-filling
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procedure repeats until all lines have reached capacity . FMA assitiasoapacityin proportion to the
original demand

This algorithm can be implemented by processing one line at a time. We firssehio® most con-
strained line (the line that would reach its capacity first under the water-fiflingedure) and increase its
demand to capacity. Then we choose the next most constrained line agas@as demand to capacity. We
repeat until all lines have reached capacity.

A similar procedure can be used for the case of an inadmissible demand matthis case FMA
identifies the most overloaded line and reduces the demands on that lindhautttey sum to capacityj.
Demand reduction is proportional to the original demand, i.e. each adjusteandl experiences the same
percentage reductionln subsequent iterations, FMA identifies the next most constrained likiagtanto
account the effect of any previous adjustments, and clamps its demanplacitga It repeats the process
until no lines exceed capacity. When there are both overloaded andutilded lines, the overloaded lines
are adjusted first.

Here we describe how FMA treats demands belonging to the adjustable lines $etiti, = {¢ :
LSy(0) # L}, whereLS,(0) is the line sum of lin¢ at the beginning of calculations. We defide, C U,
as the set of unmodified lines ath C U, as the set of modified lines. Initialldp contains all lines in
U, andBp is empty. Similarly, we define, as the set of unmodified demands in lihandb, as the set

of modified demands. Initiallyy, contains all the demands ahgis empty. DefineS,, = 2 (i)eap Dij

ands,, = D (i.j)ebe D;j. We always haves,, + S, = LSy, andD;j is obtained from the following line
adjustment:

/ L*Sb
D..=D,; ¢
UX Sag

ij V(i J) € as (11)
Note that when demanf;; belongs to an overloaded Iiné@ < 1, and whenD;; belongs to an
ag

S , . _
under utilized line"5—¢ > 1. Define for each of line itdp the valueG, £ LL5¢,
ap ag

Algorithm 1 FMA
while Ap # @ do
Identify the linel* = arg mingc 4,, G.
Apply (11) to line ¢*.
Transfer/* from Ap to Bp.
Updatea, andby, for all lines? € Ap.
Re-evaluatd.S, for all lines inAp.
Transfer linesy with LS, = L from Ap to Bp.
end while
Apply EXACTto | D'| to generates.

The following theorem states that prior to rounding, FMA achieves weightdmin fair allocation
of capacity (weighted relative to the original demand). See the Appenditi¢® 8.3) for the proof of the
theorem.

Theorem 2. FMA generates an adjusted demand mafbixwith weighted max-min fair allocation, where

the weight i&;(ng) = g??.
ij

If the demand matrix contains zero entries, then an algorithm that adjustsstequultiplicatively
(such as FMA) cannot always generate full utilization; there candiaral blockingbecause there is no
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demand. We now present some properties of the demand rﬂéitﬁix{D;j} obtained by Algorithm 1 prior
to rounding.

Propertyl Algorithm 1 guarantees full allocation of all links providédcontains no zero elements.
Property2 If there is no natural blocking the maximum total throughput of the netwooktained:

> > Djj=N.L (12)
i

Property3 The while-loop in Algorithm 1 ha®(N?) computational complexity in terms of the number of
edge nodes2(V iterations with a minimization ovelN elements in each iteration). The best current
implementation of th&XACTalgorithm has complexity)(Ng), and hence this is also the complexity
of Algorithm 1.

Property4 Algorithm 1 guarantees minimum rejection if no connections cross two differeerloaded
links, i.e., if the overloaded links correspond entirely to rows (input linksgmtirely to columns
(output links) of D. In this case:

min(REJ) =Y (LS, — L) VL€ O, (13)
¢
whereO is the set of overflowing lines.

/

Define thepercentage rejectioas1 — D— Consider the set of demands that experience the highest
percentage rejection (i.e. the demands on "the most overloaded line). Sineeitdhtw is a monotoni-
cally increasing function of allocated rafe ., weighted max-min fairness implies that it is impossible to
increase the rate allocated to these demands (or decrease the maximumtagercejection) without vi-
olating feasibility. Decreasing the rejection of any of those demands reguitesasing the rejection of
another demand on the same line, and hence the maximum percentage rejectiases. We thus have the
following corollary:

Corollary 1. Subject to the capacity constraints, FMA generates a schedule that misithezenaximum
percentage rejection experienced by any connection.

5.2 Equal Share Algorithm (ESA)

The water-filling procedure can be implemented by assigning equal ambartra capacity to the con-
nections passing underloaded lines. This approach is similar to the max-miatéamllocation of ABR
connections in ATM networks proposed by Charney et. al [29]. Similadyaverloaded lines can be ad-
justed by reducing equal amounts from the demands of the connectigisgtsese lines. We define for
each line the value#l, £ L‘aff, where|a,| is the cardinality of,.

The line with minimumi, is the most constrained line. Repeatedly the most constrained line is defined

and the demands of its connections are adjusted. The demand adjustmentosa jon each line is:
L—LS,

||
The following theorem states that prior to rounding, ESA achieves max-inialfacation of capacity. See
the Appendix (SectioB.4) for the proof of the theorem

D;; = D + YV (i,7) € ag (14)

Theorem 3. ESA generates an adjusted demand mafrixvith max-min fair allocation of extra-capacity,
where the weight of the connection between souesed destinatiory is w;; = D;; — Dj;.
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5.3 Minimum Cost Search Algorithm

This section reviews an alternative approach, the minimum cost searcB)(BIGorithm, which we first
described in [7]. In order to reduce signalling overhead and to resttleeduling complexity, the algorithm
satisfies the transparency property [30]. This requires that the wlitngis only modified for new requests
or tear-downs (ifD;; decreases or increases).

The minimum cost search algorithm we propose does not achieve optimaltitiliZaecause it does
not consider the global allocation problem; instead it allocates requesisrg&ily on a single time slot
basis. The algorithm operates by repeatedly visiting(th¢) entries in the traffic demand matri® in
a round-robin fashion; at each visit, if the requested number of slotadtaget been assigned, the algo-
rithm attempts to allocate a single time slot to tligj) request. The round-robin allocation results in an
approximately fair assignment of slots to each pair.

In order to determine which slot to allocate to the request, we defiostéor the allocation of 4, j)
source-destination pair to a time slot pairfor k£ in 1,... L. This cost is determined entirely by the extant,
partial frame schedule. The cost function is:

Cij(tr) = Nys(tr) + AKij(tk), (15)

whereNy,(t;) is the number of free sources at this time slot, i.e., the number of sourceamsmitting to

any other destinations, is a small positive constant, ardd;;(¢,) = {0, 1,2} is the number of additional
switching operations that the core switch must perform to accommodate thatigifoc The motivation
behind this cost function is simple. The first term represents the cureibifity of that time slot (the

number of free sources for future allocation) and reflects the desiradffiligtaining flexibility by allocating

demands to the most constrained slots where possible. The second teots té# desirability of minimiz-
ing the power consumption of the optical switch, which is partially determineddwntimber of switching
operations that it must perform each frame.

The scheduling of a singl@, j) time slot request is performed by first identifying thej)-eligible
slots in the frame, which are defined as the free time slots during whghot transmitting to any other
destination and is not receiving from another source. The c6%f(t;) of each of these eligible time
slots is evaluated, and the demand is assigned to the slot incurring minimumrcdisé dase of ties, the
demand is assigned to the earliest slot and the lowest wavelength (assuavielgngths are ordered in
some fashion). Deallocation is implemented by a reverse procedure, in whiskek and release the most
costly currently-allocated time slot. This algorithm has a worst case time comptéxidy N.L). (green
numbers)

5.4 Minimum Rejection Algorithm

In this section we describe an algorithm that generates a schedule that miniotederejection. We first
develop a theorem that helps to identify a procedure for soIMH4REJ(D,L) We commence by defining
MAXFLOW(D,X,L) a max-flow linear programming problem.

Problem Y = MAXFLOW(D,X,L) : D is a demand matrixX is a non-negative matrix that specifies capac-
ity bounds, and_ is the frame-length (available capacity on each row/column). Matiize¥ andY are
all of size N x N. Identify a nonnegative matriX such thafy _, ., ZpEOC Y}, iIs maximized, subject to

15



the following constraints:

Yip = 0 ifh¢Ororp¢ O,

Yip < Xpp V(h,p)st.heOrandpe O,
> Yip < m(D)-L Yhe O,
pe O(:
> Yip < (D)-L Vpe O,
he Oy

The following theorem establishes a relationship between a solution to tHeptAXFLOW(D,D,L)
and a solution to the minimum rejection probl&MNREJ(D,L) The proof is in the Appendix (Sectiéhb).

Theorem 4. Set A= MAXFLOW(D,D,L). Construct a rejection matfix = A+(Q, whereQ is an arbitrary
non-negative matrix such th&,, < D — A V (h,p), r(Q) = r4(D) — L —rp(A) V h € O,, and
p(Q) = ¢p(D) — L —¢p(A) V p € O.. Then ifS is a schedule that generates the decomposition
D = D'+ D", itis a solution to the problem MINREJ(S,D,L).

inputs outputs

Figure 4.s — t network: In this example the input vertices correspondéaterflowing rows of an arbitrary demand
matrix D (i, k,m € O,), and the output vertices correspond to the overflowing cokiof D (,0,j € O.). The
numbers over the edges show the edge capacities which jpone$o the upper bounds of flows in our maximization
problem. The capacity of each edge (not connected to thesaursink) is equal to the upper bound on the amount
of rejection that can be assigned to the correspondingalitonnection.

We now describe an algorithm to identify a solutidnto MAXFLOW(D,D,L) The corresponding
maximum flow problem is depicted in Figufe We define a network with a soureeand a sinké and try
to maximize the flow between them. A network flow is a vedtet (f;;) where eacly;; is a positive real
number representing the flow on &icj), i.e., the flow fromi to j. A flow f is feasible if it satisfies the
capacity constraints and it is conserved at all nodes (total flow out ofla rquals total flow in). In our
problem, the total amount of flow emitted from sourcéand therefore arriving at sinf) is equal to the
total amount of rejection contributed by at the critical connections. The rejection at any specific critical

16



connection 4,,,) is equal to the flow on arth, p). The capacities of the edges (upper bounds) are dictated
by the constraints iIMAXFLOW(D,D,L) We denote the upper bound on &icj) by (7, j). So we have:

k(s,h)=LS,—L VYhe O,

k(p,t)=LS,—L Vpe O,

For a feasible flow vectdf, anaugmenting patis a simple path from to ¢ that can be used to increase
flow from s to t. Note that this path is not necessarily directed. On forward arcs in thig@agh points in
the directions — ¢) the flow f;; must satisiy0 < f;; < x(i, j), and on backward arcs, i.€i, j) is reverse,
the flow must satisfy < f;; < x(4, ).

Ford and Fulkerson presented a solution to the max-flow problem in 19%4 TBe algorithm starts
from an arbitrary feasible flow. In subsequent iterations, the FotkeFaon algorithm identifies an aug-
menting path, and augments the flow. If the augmenting path is denoted asfeaset {@i;, ag, ..., ax },
then the flow augmentation possiblejis= min;<;<j d(a;), whered(a;) = kq, — fo, for forward arcs and
d(a;) = faq, for backward arcs. The flow is adjusted usifig — f,, + ¢ on forward arcs and on backward
arcs usingf,, < f,, —d. The algorithm iterates until no augmenting path exists, upon which the maximum
flow is obtained, as specified by the following theorem:

Theorem 5. Ford-Fulkerson [31]: Flowf is maximum in graply if and only if there is no augmenting path
in G bearing flowf.

When there are no lower bounds on capacity, the flalefined byf;; = 0 V(i, j) € A (the set of arcs
in the network) is feasible and can be used to initialize the Ford-Fulkersoritalgp. There are numerous
methods for searching for augmenting paths; techniques include shpatkg¢fewest number of edges) and
fattest path (maximum bottleneck capacity along the path) algorithms [32]. Natehin solution to the
maximum flow problem (and hence alsStAXFLOW(D,D,L) is in general not unique.

To form a Minimum Rejection Algorithm, we first use the Ford-Fulkerson dtigar to identify A.
Subsequently we sdd < D — A and apply FMA to the resultadd. As described in Sectioh.1, FMA
processes overflowing lines sequentially, adjusting the demand on the lihatsib sums tol. (thereby
identify a line of the rejection matrix). Since we have constructesb that after modificatio® (h, p) = 0
at any intersection point of overflowing linésand p, when FMA adjusts one of the overflowing lines it
does not affect any other overflowing line. This means that after FMs%kan applied, it has generate@ a
that satisfies the requirements of Theorem 1. In the process, FMA teloded a schedulg that performs
the decompositiod = D’ + D", whereD” = A + Q. The combined Minimum Rejection Algorithm is
specified in Algorithm 2.

Algorithm 2 Minimum Rejection Algorithm
1. Apply the Ford-Fulkerson algorithm to solve=MAXFLOW(D,D,L)
2: SetD «— D — A.
3: Apply FMA to D to generaté&) and a schedul§.

6 Simulation Performance

In this section we report the results of simulations of the scheduling agmegerformed using OPNET
Modeler [33]. We performed simulations on a 16 edge-node star topoktgyork. The links in the network
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Figure 5. Average queuing delay performance achieved by FMAL, FMASAEEqual Share Matching), Slot-by-
Slot and MCS under non-uniform, Poisson traffic.

have capacity 10 Gbps and the distance between each edge node grtttieswitch is 5 msec. A time slot
is of length 10usec, and a frame has a fixed length of 1 msec (or 100 slots). Everyirgmemas run for
a duration of 0.5 sec (equal to 500 frame durations) and the results wasgad over 5 repetitions of the
simulations. The virtual output queues in the simulations have fixed bufie{@@000 packets). Whenever
the buffer is full, arriving packets are dropped.

Comparison between FMA, ESA, MCS, and Slot-by-Slot under Non-giform Traffic. In the simu-
lations, traffic sources inject traffic at rates up to 10 Gbps into the eddgsnd he arrival distribution of the
data packets is Poisson and the size distribution is exponential with mean &i@@0obits. Then multiple
(approximately 100) packets are wrapped into one optical slot. We investig@o cases of destination
distributions: (i) a uniform case, where sources send equal amoutreffaf to each destination, and (ii)
a non-uniform case, where all destinations receive an equal ambtraff@w on average, but each source
sends 5 times as much traffic to one destination. The frame-based schedigdindims compute the sched-
ule ahead of time based on the predicted traffic of 10 msec (round-trip)del&yture. In the first set of
simulations we used the average of the traffic arrivals over the pasarh@ fiurations to form the prediction
of the demand matri@.

FMA and ESA use th&XACTalgorithm, which collocates most of the allocations for a particular
source-destination pair in an attempt to minimize switch reconfigurations. Tindgntration has the impact
of increasing average waiting time of packets. However this effect isdenably reduced if we distribute
similar matchings in two different locations in the frame. In our simulations FMAlocates similar
matchings (applyingXACTin a standard fashion) and FMA2 and ESA separate them into two batciees, o
placed towards the start of the frame and one towards the end. We copgptoanance to two previous
algorithms: Minimum Cost Search (MCS) [7] and a slot-by-slot schedujipgaach based on PIM (Parallel
Iterative Matching) [6].
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Figure 6. Average queuing delay and packet loss performance for FNESA and MCS under bursty traffic and
non-uniform distribution of the destinations.

Figure5 shows the queuing delays over a wide range of offered load, ffdito 90% link capacity
under nonuniform traffic (uniform traffic gives similar results). The-$lg-slot algorithm has large average
gueuing delays, since it is more appropriate for metro and local-area nksty&. FMAL generates addi-
tional average delay compared to FMA2, which is due to the collocation of img&hESA, FMA2 and
MCS exhibit similar performance, achieving low average delays undeutatb highest load. Under higher
loads, the performance of MCS deteriorates due to the additional blockimduites. On average the per-
centage of blocking generated by MCS is 0.9%. The matching algorithms (FidA&S8A) generate 0.02%
blocking (due to natural blocking in the demand matrices). When the load isFigh2 assigns more time
slots to the heavier connections, which can use the extra time slots more #ffidE3A assigns the same
number of extra time slots to each connection irrespective of its load. In #@so only the slot-by-slot
scheduling algorithm experiences packet loss (Up3d% for loads exceeding 70 of capacity).

Comparison between FMA2, ESA, MCS under Bursty Traffic. We also performed simulations with
bursty traffic using on/off traffic sources. Every edge node is eqappth 6 on/off sources. The “on” and
“off” periods have Pareto distributions with = 1.9. The mean of the “off” periods is 5 times greater than
the mean of the “on” periods. During “on” periods the sources genpeatkets with an average rate equal
to the full link capacity (10 Gbps). The rate distribution is exponential. Fi§utepicts queuing delays and
packet losses for the FMA2, ESA and MCS algorithms. FMA2 demonstrategimally superior average
gueuing delay performance compared to the other two algorithms (0.3-0.9essethen the load exceeds
50%). Under offered loads greater thar¥80f capacity, packet loss occurs as a result of traffic bursts over-
flowing the network. At 90% load, MCS generate24% loss, FMA2 generatds 14% loss, and ESA does
not generate any packet loss. The loss generated by FMA2 is due fitciest allocation of additional slots
to temporarily low-rate connections that experience a sudden increasdfimadrrivals when they enter an
“on” period. ESA allocates extra slots irrespective of demand so elimindgdess at the cost of additional
average delay.
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Figure 7.The behaviour of FMA2 and MCS in response to traffic loadsvéerfrom Internet traces. The upper panel
shows the offered load averaged over all source-destmptgs. The middle panel shows the percentage of overflow
traffic. The lower panel shows the overall number of queuetigia at the edge nodes.

Comparison between FMA2 and MCS under Real Traffic. We also explored the performance of our
algorithms using traffic derived from empirical Internet measurementsisag 50 seconds of packet traces
captured from an OC3 link at Colorado State University [34]. The flowsawdivided into 16 components
based on IP source/destination addresses, and each component aemne of the edge nodes. Using
auto-regressive flow-based prediction [35], we predicted the trddfinand 1 second ahead (assuming 1
second round-trip and scheduling delay) and applied the schedulingtiatgdor the predicted traffic de-
mand matrix. We used a more sophisticated prediction technique for this simulegioar® because of the
inadequate performance of the simple linear predictor (moving average aheited in the previous simu-
lations. We considered a frame of length 0.1 seconds (equal to 100 timefslatssec.) and for simplicity
assumed that each packet fits one time slot completely. We performed simufatidts seconds. The
average offered load was around 40%; under this load, MCS and F#&l&xected to perform similarly

if the traffic is admissible. The derived traffic is such that the demand is inati@gor a duration of 10
seconds (from 2—-12 seconds), because one of the edge nodeslmded. Growth in the queue sizes is
unavoidable during this period. Figureshows the total number of queued packets at the edge nodes. FMA2
and MCS adapt to the variations of the arrivals in a very similar fashiork-B&2 has a lower number of
gueued packets because it does not induce blocking.

Comparison between FMA2 and MRA under Bursty Traffic. We performed simulations with bursty
traffic using on/off traffic sources. Every edge node is equipped with/6ff sources. The “on” and “off”
periods have Pareto distributions with = 1.9. The mean of the “off” periods is 5 times greater than the
mean of the “on” periods. During “on” periods the sources generatkgiswith an average rate up to the
full link capacity (10 Gbps). The rate distribution is exponential. The demrmaatlix has a non-uniform
distribution; each destination receives on average the same amountfiof tsaf each source sends five
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Figure 8. Comparison between the rejection obtained by FMA2 and MRdeuwarying offered load for different

factors of imbalanced load). Traffic is bursty (generated by on-off sources) and hafotmidistribution, aside from
the impact of:.

times as much traffic to one specific destination as compared to the others.

Since the behaviour a¥/ RA and F'M A2 only differs when there are critical elements in the demand
matrix, we investigate scenarios where critical demands are likely to existrder ¢ do this, in each
frame we choose one arbitrary souricand one arbitrary destinatioh Each source generatestimes
as many packets for destinatigrcompared to other destinations. Similarly sourggenerateg times as
many packets (to all destinations) as any other source: iAsreases, the elements of the demand matrix
corresponding to these two edge nodes are more likely to be critical dowssdhe demand element;
has even higher likelihood of being critical.

Figure8 compares the percentage of rejected demand achieved by FMA2 and 8MiRA affered load
changes for various values of At high load (greater than 70%) with = 2, there are numerous critical
elements and MRA begins to achieve less rejection than FMA2. The discyeastill only 2 percent
at 90% load. Figur® compares the maximum percentage rejection experienced by any demand whe
scheduling is performed by FMA2 and MRA. As the offered load increaBHRA concentrates rejection
on the critical elements; the maximum percentage rejection is thus much (up ta@neigher than
that achieved by FMAZ2, which distributes rejection fairly amongst all comgetonnections. Figur&0
compares the average end-to-end delay experienced by packetseltestuling is performed using FMA
and MRA; the approaches yield similar average delay.
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Figure 9. Comparison between the maximum percentage rejection iexged by any demand after scheduling by
MRA and FMAZ2 for different values of and varying offered load.

7 Conclusion and Future Work

We have formulated the bandwidth allocation problem in the AAPN network ekexdsling problem with
the objective of minimizing rejection whilst reducing the number of switch regarditions. We proposed
a novel scheduling algorithms Fair Matching Algorithm (FMA), that achiex® zejection for admissible
demands and provides (weighted) max-min fair allocation of free capadig.niax-min fairness criterion
does not in general achieve minimum rejection when the traffic is not admissible

We demonstrated that when the demand matrix is inadmissible, the Fair Matchingttxigonini-
mizes the maximum percentage rejection experienced by any connectionsd\g@posed a novel algo-
rithm (MRA) that generates a schedule that minimizes the total rejection of dkn&amulations indicate
that the discrepancy in total rejection achieved by MRA and FMA is relatie@hor, whereas there is a
major difference in the fairness of the allocation of rejection. In additionAMiRpears to be less robust to
demand prediction errors (when traffic arrivals differ substantiallynftioee demand matrix used for schedul-
ing). Thus it appears that whilst MRA achieves minimum rejection schedtM$, is a better choice for
all-photonic scheduling in practice.

8 Appendix
8.1 Proof of Lemmal
Proof of Lemma 1 We prove this lemma using a similar approach to that adopted in [27]. Suppaise th

is weighted max-min fair with the weight vecter To arrive at a contradiction, assume that there exists a
connectiornu with no bottleneck link. Then for each linkcrossed by for which C, = Fy, there must exist
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Figure 10.Average queuing delay performance achieved by MRA and FM&Zdrying offered load and = 2.

a connectiorx # u such thatv, > w,; thus the quantity

Cy—Fy Zf F,<Cy
56{ (We —wy) X Ry if Fy=0Cy (16)

is positive. Therefore, by increasing by the minimumé, over all links¢ crossed by, while decreasing

by the same amount the rates of the connection§the links/ crossed by with F, = C,, we maintain

feasibility without decreasing the rate of any connectiowith w; < w,; this contradicts the weighted

max-min fairness property @b, w). Note that,, — min(d,) is always positive.

Conversely, assume that each connection has a bottleneck link with trésplee feasible set( w).
Thento increase the rate of any connectiamhile maintaining feasibility, we must decrease the rate of some
connectionk crossing bottleneck link of « (because we have;, = C, by the definition of a bottleneck
link). Sincew, < w, for all k£ crossing? (by the definition of a bottleneck link), the feasible set«)
satisfies the requirement for weighted max-min fairness. O

8.2 Proof of Theorem 1

Proof. Consider the set of schedules that achieve minin\yt5) = N7 and label the schedule within this
set that achieves minimum rejectiSp. The minimum achievable rejection is no larger tial.J (S, D, L) =
max(||D|[1 — L,0), where[|D[[y = >_, >, D;; (at least one demand element must be satisfied each time-
slot). ThusC(S,) < max(||D||1 — L,0) + gN;. Now consider schedules that increase the number of
switch reconfigurations t&V,(S) = N + 1 and suppose that one of thesg, achieves zero rejection,

so thatC(Sy) = g(NF + 1). The differential in cosC(Sy) — C(S,) > ¢g — max(||D||y — L,0). If
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g > max(||D||1 — L, 0), then this difference is strictly positive and any schedule solAR@BLEM 1llies
within the set of schedules that achieve minimiin

In order to prove that the problem is NP-hard for this rangg,offe considePROBLEM 2 which
for very large values of is reduced to minimizing the schedule length subject to the constrainf\that
is minimum. Gopal et al. prove that this problem, which they refer to as the MIN$Wblem, isN P-
complete [11].

Suppose we had a deterministic polynomial algorithm caltéde-G(D[) that could solvé®ROBLEM
1 for the identified range of for demand matrixD and a frame of lengtli.. We could then define the
algorithm Solve-MINSWT (Algorithm 2).

Algorithm 3 Solve-MINSWT
L=1,
S = solve-G(D,L);
while REJ(S, D, L) > 0 do

L=L+1;
S = solve-G(D,L);
end while

Upon termination of this algorithm, the identified schedtilis guaranteed to have the minimum num-
ber of switch reconfigurations (as argued above). Since it is also the mimiemgth schedule that achieves
REJ(S,D, L) = 0itis also a solution t*ROBLEM 2and hence the MINSWT problem. Algorithm 2 is
thus a deterministic polynomial algorithm to solve the MINSWT problem. ThegefmlvingPROBLEM 1
for the considered range gfis as hard as solving MINSWT (and any other problenM#) and hence is
N P-hard. O

8.3 Proof of Theorem 2

Proof. Letu € {(4,7),1 < i,j < N} index the source-destination connections specified by the demand
matrix. We focus on the properties of the modified demand matrix and assosédteat various iterations

of the while loop in Algorithm 1, so we index entities by iteration number and notaghimindicates the
value of the entity at thetart of the iteration. For example4(h) denotes the set of unmodified lines at
the start of iteratiorh of the algorithm.

We prove that FMA achieves weighted max-min fair allocation of the demanai$ndpeach iteration
h of the while-loop, FMA identifies the ling € Ap(h) such thatG, (k) = min{G,(h);¢ € Ap(h)}. It
alters the demands in, (k) according to { 1) and after this modification, there is no subsequent modification
of these demands. Substitutingl) into the definition of the weight, we have, = 1 + G, (k) for all
u € ay(h).

We demonstrate that the adjustment at iteratiteads toy being a bottleneck link (line) fax € a~ (h),
i.e., after this adjustment it holds that < w, for v € a,(h) andz € b,(h). Equivalently, we prove that
min{G} is monotonically increasing with respect to the iteration numberma{G(h)} < min{G(h +
1)}. The equivalence follows since thg are obtained from adjustments prior to iteratfan

Suppose that ling has minimumG at iterationh + 1. Lines~ and 3 have at most one connection
(demand) in common. If there is no common connection, thgth + 1) = Gz(h) > G+ (h). If there is a
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common connectiok, then:

LSs(h+1) = LSﬁ(h) + Dy(wr — 1) a7
Sug(h+1) = Sg,(h) — Dy (18)
and hence
_ L—LSg(h) — Dy(wr — 1)
Ggh+1) = Saﬁ(h) ~ Dy
~ Sa(R)Ga(h) — Dy(wy, — 1)
N Say(h) — Dy
> Gy(h) 19)

where the last inequality follows from substitution basedyjth) > G+ (h) = wi, — 1.

Thus the application of FMA upon an arbitrary demand mafrileads to the generation of a bottleneck
link for each connection, with weightw, = gfj. By Lemma 1, this establishes that FMA achieves
weighted max-min fair allocation of adjusted demants

O

8.4 Proof of Theorem 3

Proof. The proof is similar to the proof of Theorem 2. In this case, we have- D,,— D), andw,, = H+(h)
for all v € ay(h), wherey is the line with minimum/ at iterationh. If 3 is the line with minimumH at
iterationh + 1, then ify ands share an elemeit LS3(h+1) = LSg(h) +wy, andag(h+1) = ag(h) — 1.
Hence:

L — LS3(h) — wy

Hg(h—l—l) |ag(h)|—1 (20)
 lag(R) [Ha(h) — w;
T Jas(h) — 1 1)
> H.(h) (22)

where the last inequality follows from substitutiéhs (k) > H.,(h) = wy. Hence, ESA leads to a bottleneck
link with weightw,, = D,, — D}, and hence, by Lemma 1, achieves max-min fair allocation of capadity.

8.5 Proof of Theorem 4

Proof. For theMAXFLOW(D,X,L)yroblem, define the following capacity bounds:

pr(X) = min( Y Xpy,ra(D) - L) (23)
p€ Oc

pp(X) = min( > Xpp,cp(D) — L) (24)
he Oy

The optimization in theAXFLOWproblem generates a matrix such that:
V=" Vip =min(>_ 15p(X), > un(X)). (25)
h p p h

25



This is an application of the max-flow min-cut theorem [36] (see Figre

Consider an arbitrary rejection matrix* and setB =MAXFLOWD, D", L). Then we can write
D" = B + @ where(Q is a non-negative matrix. Now consider the conditions necessaty‘faio achieve
minimum rejection. FirstDy = 0if h ¢ O, andp ¢ O, (any non-zero values constitute unnecessary
rejection).

Without loss of generality, suppose that, 1, (D) < 2, un(D™). Then for each row: € O,
Zp By, = pp(D™). This implies that rowh either achieves its required rejection solely frdn(i.e.,
rh(B) = rp(D) — L), or thatBy,, = Dy forallp € O.. Inthe latter caseD™ must contain additional
rejection (positive entries) on row at thenon-critical connections If D™ is to achieve minimum total
rejection,r,(Q) = rp(D) — L — r(B).

Now consider the columns d@". After the generation aB, the rejection on columpis ¢,(B). Then
for minimum rejection we require tha},(Q) = ¢,(D) — L — ¢,(B). Note that ifr,(B) does not satisfy
the rejection requirements of roly then@y,,, = 0. Thus, no positive elements ¢f contribute to required
rejection on both a row and a columm.

Based on this discussion, f#* achieves minimum rejection, we can express its rejedfig| as:

D=3 (B+Q)
h p
=|Bl+ Y _ (ra(D) — L —ry(B))

heO,
+ 3 (ep(D) = L= cp(B))
p€O0.
=Y (ra(D)= L)+ ) (ep(D) = L) - |B] (26)
heO, p€eO0,

Therefore, in order forD" to achieve minimum rejection,B| must be maximized (the first two
terms are functions solely db and ). Compare the solution8 = MAXFLOWUD, D", L) and A =
MAXFLOWD, D, L). SinceDj;, < Dy, for any (h, p), the constraints in the second problem are looser,
which implies tha A| > |B|, irrespective of the particular values . Note thatA is also a solution to
MAXFLOWD, A, L).

Hence if we ensure thd®;) > Ay, for all (h, p), we derive| B| = | A|, which implies that B| attains
its maximum value (and hend®®| is the minimum rejection). We can thus construct a rejection matrix
that achieves minimum rejection by solving AMAXFLOWD, D, L), and settingD” = A + Q, whereQ
satisfies the constraints specified in the theorem. If a schéddézomposes the demand into an allocated
matrix D’ and this rejection matri®"”, then it achieves minimum rejection. O
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