
Fair Matching Algorithm: An Optimal Scheduling Algorithm for
the AAPN network

AAPN Technical Report 2004-5

Nahid Saberi and Mark J. Coates
Department of Electrical and Computer Engineering

McGill University

Sept. 2005

Abstract

The internal switches in all-photonic networks do not perform data conversion into the electronic domain,
thereby eliminating a potential capacity bottleneck, but the inability to perform efficient optical buffering
introduces network scheduling challenges. In this technical report we focus on the problem of scheduling
fixed-length frames in all-photonic star-topology networks with the goal of minimizing rejected demand.
We describe the Fair Matching Algorithm, a novel scheduling technique for fixed-length frames. FMA
guarantees 100% throughput provided the arrivals to the network induce an admissible demand matrix,
and results in an allocation that is weighted max-min fair. We compare through OPNET simulation the
delay and throughput performance of FMA with the less computationally-complex Minimum Cost Search
algorithm. We also describe the Minimum Rejection Algorithm (MRA), which minimizes total rejection,
and demonstrate that the Fair Matching Algorithm (FMA) minimizes the maximum percentage rejection of
any connection. We analyze through simulation the rejection and delay performance.

1 Introduction

Electronic switches in high-speed networks are increasingly proving to bea capacity bottleneck. Replace-
ment with all-photonic switches is attractive, particularly as photonic devices with sub-microsecond switch-
ing capability become available. The inability of the photonic switches to performqueuing introduces net-
work design challenges. Control functionality is required to reduce or eliminate the potential of contention
for egress ports. Burst switching and just-in-time reservation approaches [1], and routing and wavelength
assignment techniques [2], are some of the many approaches that have been used in general mesh topolo-
gies. An alternative approach is to focus on a simpler architecture that reduces the complexity of the control
challenge.

Figure 1. Architecture of the Agile All-Photonic Network described in [3, 4]. Edge nodes perform
electronic-to-optical conversion and transmit scheduling requests to the core photonic node(s). Selec-
tors/multiplexor devices are used to merge traffic from multiple sources onto single fibres and to extract
traffic targetted to a specific destination. The structure forms an overlaid star topology (see Figure2).

In this research, we focus on the overlaid star topology, as specified in the design for the agile all-
photonic network (AAPN) architecture of [3, 4]. This architecture (seeFigure 1) consists of edge nodes,
where the optical electronic conversion takes place, connected via selector/multiplexor devices to photonic
core crossbar switches. The overlaid star topology facilitates the introduction of various approaches to time-
sharing link capacity and dramatically reduces the complexity of the control problem. The core switches
act independently, so the control problem becomes one of scheduling theswitch configurations to achieve a
good match with the traffic arrival pattern at the edge nodes.

The star topology also makes the introduction of accurate network-wide synchronization much more
feasible [5], and this enables the application of a range of Optical Time Division Multiplexing (OTDM)
techniques for sharing link and switch capacity. A source edge-node must be aware of when it has ownership
of a given time-slot and is allowed to transmit to a specific destination edge node. By suitably allowing for
the differing propagation delays between various edge nodes and the core, time slots arrive at the core
crossbar switch at the same time and can be switched to their appropriate destinations without output port
collisions.

The slot allocation can be fixed and deterministic, or it can adapt to the trafficarrivals through signalling

1

Figure 2. The star topology induced by the agile all-photonic network architecture.

between the edge nodes and the core switch. In the latter case, adaptation can be performed on a per
frame basis (a block of slots) or per time-slot basis. Frame-based scheduling is more appropriate for wide-
area networks since the impact of propagation delay is reduced (bandwidth is reserved for predicted traffic
demand in advance of the traffic arrivals) [6]. We focus on fixed-length frames, because this simplifies
protocol design and implementation of control functions.

The general objectives of bandwidth sharing are to achieve minimum loss (rejected requests) or max-
imum throughput, and minimum end-to-end delay, whilst maintaining fairness in thenetwork. Minimizing
the number of rejected requests (those not accommodated by the scheduledframe) has highest priority. A
secondary objective is to minimize the number of switching operations in a frame inorder to reduce the
power consumed by the core switch. In this report we introduce a scheduling algorithm called theFair
Matching Algorithm (FMA)and compare its performance (utilization and delay behavior) with that of our
previously suggested algorithms,Minimum Cost Search (MCS)scheduling algorithm [7], andParallel It-
erative Matching (PIM)algorithm [6]. We also introduce the Minimum Rejection Algorithm (MRA), an
algorithm for minimizing total rejection, and compare its performance with that of FMA. We demonstrate
that FMA minimizes the maximum percentage rejection of any connection.

This technical report is structured as follows. In Section2 we define the scheduling problem that we
address. In Section3 we present a literature review on the variable length scheduling problem. InSection4
we present a general solution for the problem of designing a schedule of fixed frame length. Section5
details our proposed frame-based scheduling approaches. Section6 describes the simulation experiments
we have performed to compare the scheduling approaches and analyzesthe results. Finally, Section7 draws
conclusions and indicates intended extensions.

2

2 Fixed Frame Length Scheduling: Problem Definition

The AAPN architecture is an overlaid star-topology ofN edge nodes that operates over multiple wave-
lengths [4]. It permits each node to transmit to one destination node and receive from one source node
simultaneouslyon each wavelength. We consider that (flow-based) load balancing has been conducted to
divide incoming traffic amongst the various stars. The remaining task is to schedule the traffic for each star.
We are presented with a demand matrixD, whereDij is the number of slots requested by source nodei
for destinationj during the next fixed-length frame. We consider a frame of lengthF time slots withW
available wavelengths, such that there areL = FW slots for each destination node available for allocation.
Herein we focus on the case whereW = 1 for clarity, but the algorithms and results are easily extended.

We are presented with a demand matrixD, whereDij is the number of slots requested by source nodei
for destinationj during the next fixed-length frame. We define the followingline sumsof the demand matrix.
Therow-sum, ri(D) =

∑N
j=1 Dij , is the total demand at sourcei, and thecolumn-sum, cj(D) =

∑N
i=1 Dij ,

is the total demand for destinationj. It is important to achieve zero rejection if the demand isadmissible.

Definition 1. A demand matrixD is admissibleif

max{max
i
{ri(D)}, max

j
{cj(D)}} ≤ L, (1)

whereL is the frame-length, andri(D) andcj(D) are thei-th row-sum andj-th column-sum of the demand
matrix, respectively.

Our aim is to devise a scheduleS such that the elementSjk identifies the source node allocated to
the k-th time slot associated with destinationj in the frame. The schedule should minimize the number
of rejectionsREJ(S, D, L) whilst also attempting to minimize the number of times that the switch must
reconfigure,Ns(S). A switch reconfiguration occurs between two consecutive time slotsk andk + 1 if the
allocated source node to any destinationj is altered;Ns(S) counts the number of switch reconfigurations in
the entire schedule, not merely those within the frame.

The number of rejections is defined as:

REJ(S, D, L) =
∑

i

∑

j

max(0, Dij −

L
∑

k=1

I[Sjk = i]), (2)

whereI is the indicator function. We can define an objective function (the cost of transmission) as:

C(S, D, L) = REJ(S, D, L) + g . Ns(S) , (3)

whereg is a constant that determines the relative importance of reducing the number of switch reconfigura-
tions.

We identify two scheduling problems that address bandwidth allocation in an AAPN:
PROBLEM 1:For an admissible demand matrixD and frame of lengthL, generate a scheduleS that

achieves zero rejection,REJ(S, D, L) = 0, and allocates spare capacity in the network to the connections
in a (weighted) max-min fair manner.

PROBLEM 2:Solve the following optimization problem for a frame of fixed lengthL with C(S, D, L)
defined by (3) to identify a frame schedule.

S∗
1 = arg min

S
C(S, D, L) (4)

3

The most closely related work to the optimization embodied inPROBLEM 1andand PROBLEM 2is
the problem of finding an optimum schedule for a variable-length frame, which has been extensively studied
in WDM and satellite systems [8–12]. The goal is to minimize the overall transmissiontimeT :

T (S) = Tx(S) + τ . Ns(S), (5)

whereNs is the number of switch reconfigurations,τ is the switching time, andTx is the time spent trans-
mitting the traffic [9,11]. The minimum traffic transmission timeT ∗

x = max{maxi{ri}, maxj{cj}} [13].
All times are measured in slots.

PROBLEM 3: Solve the following optimization problem for a frame of variable length with total
transmission timeT (S) defined by (5), observing the constraint thatS ∈ S, the set of schedules that satisfy
the demand matrix, i.e.,REJ(S, D, Tx(S)) = 0.

S∗
2 = arg min

S∈S
T (S) (6)

PROBLEM 3is NP -hard for non-negligible values ofτ [11, 14]. Crescenzi et al. demonstrate that
it cannot be approximated by a polynomial algorithm within a factor less than7

6 [14]. For small values
of τ the problem can be closely approximated by the minimization ofTx, which is solvable in polynomial
time [15–17]. The minimum traffic transmission time is [13]:

T ∗
x = max{max

i
{ri}, max

j
{cj}}.

We can then establish:

Claim 1. A scheduleSx that minimizes the traffic transmission time, i.e.,Tx(Sx) = T ∗
x , solves PROBLEM

3 to within an approximation factor of1 + τ .

Proof. The number of switch reconfigurationsNs(S) < Tx(S) andT (S∗
2) = Tx(S2) + τNs(S2) > T ∗

x .
Hence ifSx minimizes the traffic transmission time, it satisfiesT (Sx) < T ∗

x (1 + τ) < T (S∗
2)(1 + τ).

For the special case of smallτ , approximate algorithms that attempt to minimizeNs subject to the
constraint thatTx is minimum have been proposed in [8,9,12,14]. The algorithms achieve minimumtraffic
transmission time,T ∗

x , but do not guarantee minimumtotal transmission time,T (S∗
2), unless the switching

overhead is completely neglected. TheEXACTalgorithm, presented in [12,14], achieves a minimum traffic
transmission time,T ∗

x and the derived schedule has at mostNs = N2 − 2N + 2 switch configurations [12].
In the case of an admissible demand matrix, theEXACTalgorithm generates a scheduleS that has length
less thanL and therefore zero rejection. TheEXACTalgorithm is an iterative procedure that repeatedly
performs maximum cardinality bipartite matching (MCBM) to obtain the schedule. Itlies at the heart of the
algorithms we present in this report for the case of fixed-length frames.

Whenτ is very large (on the order of maximum transmission time), the problem is reduced to mini-
mizingTD subject to the constraint thatNs is minimum. Approximate algorithms for this special case have
been proposed in [9, 11]. The intermediate scenario, when it is desirableto obtain near minimum solutions
for both the number of switchings and the traffic transmission time, has been addressed in [12].

4

3 Literature review

Depending on the value ofτ the problem of finding a minimum schedule length given by equation5 is
usually reduced to the three following cases.

1) Whenτ is negligible compared to the duration of a time slot, the problem is reduced to the problem
of minimizing TD, which has been studied in [15–17]. This problem can be solved in polynomial time. In
a more precise manner the problem can be reduced to minimizingNs subject to the constraint thatTD is
minimum [8,9].

2) Whenτ is very large (in the order of minimum transmission time), the problem is reduced tomini-
mizingTD subject to the constraint thatNs is minimum [9,11].

3) Whenτ is moderately large, it is more desirable to obtain near minimum solutions for both the
number of switchings and the traffic transmission time [12]. In [14] it is shownthat one cannot approximate
this problem within a factor less than76 .

The three problems stated above have been formulated as variants of openshop scheduling problem in
literature [10–13,18].

3.1 Open Shop Formulation

First, we describe a scheme for classifying scheduling problems developed by Graham et al. [19]. Suppose
thatM machines or processorsPk (k = 1, ..., M) have to processN jobsJi (i = 1, ..., N). A schedule
is an allocation of one or more machines to each job. A schedule isfeasibleif at any time, there is at most
one job on each machine, each job is run on at most one machine, and it satisfies a number of requirements
concerning the machine environment and the job characteristics. A schedule is optimum if it minimizes (or
maximizes) a given optimality criterion.

A shop scheduling problem consists of a set ofM processors. Each of these processors performs a
different task. There areN jobs, each consisting ofM tasks. Each taskj of job i denoted byti,j is to be
processed on processorj for a total duration ofdur(ti,j). In each time the following restrictions must be
satisfied for the machines and the jobs: (i) each machine can execute at mostone task at any given time, and
(ii) for each job at most one task is to be assigned. Depending on the orders by which the jobs and the tasks
should be performed the shop scheduling problem is usually classified to three basic groups:

1. When there is no ordering constraints on operations of the jobs the scheduling is described as anopen
shop scheduling.

2. When operations of the tasks of each job should follow a specific orderthe shop scheduling is called
job shop.

3. When every job goes through allM machines in a unidirectional order the shop scheduling isflow
shop. Each job has exactlyM tasks. The first task of every job is done on machine 1, second task on
machine 2 and so on. However, the processing time each task spends on a machine varies depending
on the job that the task belongs to.

When the shop isopen the jobs and tasks can be executed in any order. The scheduling algorithmscan
be designed for two different categories based on how the tasks deal with interruption: preemptiveand

5

nonpreemptiveschedules. A preemptive schedule is the one which does not restrict the tasks to be executed
continuously. A nonpreemptive schedule is the one in which the tasks can not be interrupted once they have
begun execution [9].

For a given open shop problem, we try to obtain an optimal finish time (OFT). AnOFT minimizes
themakespan or the time required to complete all the jobs. In general apreemptive open shopproblem
can be solved in polynomial time, while a nonpreemptive open shop problem is shown to beNP -hard
1 [11] for more than three machines [13,20], but many heuristics exist to obtain near-optimal finish time for
this case [21, 22]. The open shop scheduling problem of N jobs and M machines is denoted byN | M |
openshop | OFT [9].

3.2 Analogy

The scheduling problem for anN×N optical switch can be translated into an open shop scheduling problem
with M = N processors andN jobs. The jobs correspond to the inputs of the switch and the processors
correspond to the outputs. Each input-output traffic demand,Dij , is represented by a taskti,j . Similar
to the open shop formulation each task,Dij , belongs to a specific job (inputi) and is to be processed by
a specific processor (outputj) [9]. The scheduling problem obtained isN | N | open shop| OFT. The
scheduling constraint in an optical switch operating on one wavelength canbe translated directly to the open
shop scheduling. The constraint in an optical switch is that at each giventime (i.e., a time slot) at most one
request from inputi can be serviced at each outputj:
• One assignment of each input per slot is equivalent to the constraint thata job can not be processed by
more than one processor at any given time.
• One assignment of each output per slot is equivalent to the constraint that a processor can perform at most
one task at any given time [9].

3.3 Scheduling Algorithms

In this section we describe several solutions for open shop scheduling problem which have been designed
for satellite systems and passive star networks. We develop the algorithms for an N × N nonblocking
optical switch. The first group of the algorithms aim at minimizing the number of switchings for a minimum
duration schedule [8,9]. The second group of the algorithms try to minimize theschedule length when the
number of switchings is minimum [9, 11]. The third group of algorithms provide near-optimum solutions
with bounds on the number of switchings and the schedule length [12].

3.3.1 Minimal Duration Scheduling

The problem of finding a schedule with minimum duration has been studied in manyresearch areas such as
networks, computers, and satellite systems [8, 9, 12, 17], and was shownto be solvable in polynomial time.
The algorithms achieve a minimum traffic transmission time,TDmin

, but the minimum schedule length,
Tmin, for non-negligible switching overhead is not guaranteed. In this sectionwe present a simple algorithm
which obtains at mostNs = N2 − 2N + 2 switch configurations per port [12]. However, this algorithm
is a pseudopolynomial time algorithm not a polynomial-time one [14]. A similar algorithm proposed
in [9,13] overcomes the problem noted above by obtaining a weight-regular graph from the original one. A

1A problem is NP-hard if solving it in polynomial time would make it possible to solve all problems in class NP in polynomial
time.

6

weight-regular graph is defined as a graph whose vertices have the samenumber of incident edges. Another
algorithm proposed by Pomalaza [10], tries to reduce the number of switchings by the weight matching
algorithm. All of these algorithms assume that the assignments for each demand do not need to be continues,
which translates our scheduling problem to solving apreemptive N | N | openshop | OFT problem.

Given a set of N jobs with task timesDij , 1 ≤ i ≤ N and1 ≤ j ≤ N , for anN -processor open shop
problem, we define the following quantities:

ri =
∑

1≤j≤N

Dij = length of job i,

cj =
∑

1≤i≤N

Dij = total time needed on processor j,

(7)

whereri, is the amount of the demand at inputi, andcj is the total demand for outputj. It is easily under-
stood thatTDmin

= max{maxi{ri}, maxj{cj}} (the maximum Line-sum in the traffic matrix).

Before describing the algorithms, we review some terminology and fundamental definitions concern-
ing bipartite graphs. The following definitions are presented from [13,23].

Definition 2. A graphG is a pairG = (Y, E) whereY is a finite set of nodes or vertices and the elements in
E consist of subsets ofY of cardinality two called edges. Ife = [v1, v2] ∈ E, then we say thate is incident
uponv1 (andv2). The degree of a vertexv of G is the number of edges incident uponv.

Definition 3. A graphG in which each edge has been assigned a number, or a weight, is called a weighted
graph. In a weighted graph, the weight of a vertexv is defined as the sum of the edge weights of all edges
incident tov in graphG.

Definition 4. Let G = (Y, E) is a graph that has the following property: the set of verticesY can be
partitioned into two sets,V andU , and each edge inE has one vertex inV and one vertex inU . ThenG is
called a bipartite graph and is usually denoted byG = (V ∪U, E). Figure3-(a) shows a bipartite graph of
8 vertices and 9 edges.

Definition 5. Let G = (V ∪ U, E) be a bipartite graph with vertex setsV andU , and edge setE. A set
I ⊆ E is a matching if no vertexw ∈ V ∪ U is incident with more than one edge inI. A matching of
maximum cardinality is called amaximum matching. A matching is called acomplete matching (or
perfect matching) ofV into U if the cardinality (size) ofI equals the number of vertices inU . Figure3-(b)
shows a matching of maximum cardinality obtained from the graph of figure3-(a).

Definition 6. An augmenting pathP relative to a matchingM in G is a path inG such that the first and the
last vertices inP are not covered byM , and the edges inP alternate between being inM and not being in
M .

7

e7

 e
5

 e
3

 e
6

v1
 v5

v4

v3

v2

v8

v7

v6

 e4

e7

 e
5

 e
3
 e1

 e2

 e
6

 e

8

e9

v1
 v5

v4

v3

v2

v8

v7

v6

(a)
 (b)

Figure 3. (a) A bipartite graph of 8 vertices and 9 edges. (b) A matching ofmaximum cardinality obtained
from the bipartite graph. This matching is a perfect matching.

Note: If there exists such an augmenting path it can be proved that a matching of greater cardinality
can be found inG by augmentingM with augmenting pathP . Consequently, a matching is of maximum
cardinality if and only if it permits no augmenting path [23].

Definition 7. The degree of a graphG = (Y, E) is defined as the maximum degree of all its vertices. For
example in figure3-(a) the degree of the graph is 3.

Maximum Cardinality Matching Algorithm for Bipartite Graph (MCB):The algorithm starts with an
arbitrary matching Q in graph G. An augmenting path P with respect to Q is found. Then a new matching
is constructed by taking those edges of Q or P that are not in both Q and P. The process is repeated and the
matching is maximal when no augmenting path is found.

EXACT Covering Algorithm. TheEXACTalgorithm, presented in [12,14], is based on finding the max-
imum cardinality matching in bipartite graphs. We construct a bipartite graphG = (V ∪ U, E), whereV
is the set of vertices corresponding to theN jobs (inputs of the optical switch),U is the sets of vertices
corresponding to theN processors (outputs of the optical switch), andE is the set of edges incident to
each input-output pair. The algorithm repeatedly performs maximum cardinality matching on the nonzero
elements of the traffic matrixD. The weight of each matching, which corresponds to each configuration, is
equal to the minimum weight of the edges participating in the matching. The weight of each edge (vi, uj) is
the amount of the requested traffic from inputi to outputj.

8

Algorithm EXACT.

%initialization
i = 1, A = D
create graphG = (V ∪ U, E) from A
% find a maximum matchingM of this graph using algorithm MCB
while A ! = 0̄;

M = MCB(V ∪ U, E);

% schedule construction
P (i) = M ; %construct a permutation matrix
w(i) = min{w(e) : e ∈M};
%update the graph
A = A− w(i)p(i);
%update the graph
A = A− w(i)p(i);
i=i+1;
%finish when all of the elements inA are zero

end

It has been shown in [12, 17] that at mostNs = N2 − 2N + 2 switch configurations are necessary
to cover the traffic matrix. However, this approach provides apseudopolynomial-time algorithm, since its
running time depends linearly on the weights ofG [14]. In [9, 13] a similar algorithm, namely Complete
Matching Algorithm (CMA) has been proposed which obtains the schedule ina polynomial time. In this
approach the bipartite graph is constructed usingN + M real nodes andN + M fictitious nodes. The
idea is to make each processor to have the same load (TDmin

), and each job to have the same processing
requirement (TDmin

), hence obtaining a weight-regular graph, that is, a graph whose vertices have equal
weights. A weight-regular graph guarantees the existence of a complete matching. With complete matchings
it is guaranteed that all processors are being used and all jobs are being processed in each iteration [13].
Therefore it can be proved that the algorithm CMA always produces a minimum length schedule of duration
TDmin

[9, 13]. The time complexity of this algorithm isO(‖V ‖‖E‖) where‖V ‖ and‖E‖ are the number
of vertices and the number of edges in the Bipartite graph respectively. The size of a maximum cardinality
matching, and thus the maximum number of iterations required to compute it, isO(‖V ‖), and the complexity
of a graph search procedure isO(‖E‖).

Using parallel processing methods, the fastest known algorithm has a complexity of O(
√

‖V ‖ ‖E‖)
[24]. This algorithm reduces the number of iterations fromO(‖V ‖) to O(

√

‖V ‖), by looking for a set of
disjoint M-augmenting paths per iteration, then augmenting along all the discovered paths. In other words,
the algorithm runs the search procedure from all unmatched vertices simultaneously rather than one by one
.

3.3.2 Minimum Number of Switchings

Recall that the objective function to minimize the overall transmission time isT = τNs + TD, whereτ is
the switching overhead,TD is the traffic transmission time, andNs is the number of switchings that might
be taken to cover the traffic demand. Algorithms described in this section givea schedule with minimum

9

number of switchings. The algorithms aim at minimizingTD subject to the constraint thatNs is minimum.
The problem in this case is formulated as anonpreemptive open shopscheduling problem. Nonpreemptive
scheduling guarantees that the minimum number of switchings is always obtained. In [25] it has been proved
that minimizing the makespan (total transmission time) in a nonpreemptive open shopscheduling problem
whenM > 2 isNP -complete, whereM is the number of processors (for anN ×N switchM = N).

The minimum number of switchings is determined by:

Nsmin
= max{maxi{‖ri‖}, maxj{‖cj‖}}, (8)

where‖ri‖ is the number of nonzero entries in rowi and‖cj‖ is the number of nonzero entries in columnj.

Nonpreemptive Open shop Scheduling Algorithm. The algorithm presented in [9] is based on the most
number of tasks (demands) first heuristic. The algorithm starts by the output which is requested by the
largest number of inputs. At a given time slot if thej-th output is available and the inputsi andk are free, if
the total number of tasks of inputi is greater than the total number of tasks of inputk, then the demandDij

is processed before the demanddk,j . Recall that the total number of tasks of inputi is the total number of
outputs for which inputi has requests (the number of nonzero entries in rowi of a demand matrix). If the
total number of tasks of inputi is equal to the total number of tasks of inputk, and if the total number of
requests by inputi is smaller than the total number of requests by inputk, thenDij is processed before the
demanddk,j . The total number of requests by inputi is the sum of the total demands requested by inputi.
This algorithm always produces the minimum number of switching matrices.

3.3.3 Near-Optimum Solutions

The algorithms described in sections3.3.1and3.3.2provide solutions for reducing the number of switch-
ings and the transmission time respectively, but there is no guarantee on the performance of the proposed
algorithms when the amount ofτ is neither negligible nor very large. Using the proof described in [23] it can
be shown that the algorithm described in3.3.2has an unbounded approximation ratio for the transmission
time. On the other hand the algorithms described in3.3.1provide the minimum traffic transmission time,
but there is not a tight bound on the number of switchings. Consequently, the overall transmission time for
the case that the switching overhead is not negligible is not close to optimal.

In [14] this problem is described as the preemptive bipartite scheduling andshown to beNP -hard
using the proof in [11]. Also it is shown that one cannot approximate this problem within a factor less than
7
6 , but the best algorithm they proposed approximates this problem within a factor of 2.

The approximation algorithm described in this section does not restrict the optimal schedule length
or the minimum number of switchings. Instead, by allowing twice as many as the minimumnumber of
switchings, it achieves a near-optimum schedule length within a ratio of two.

Graham’s List Scheduling. List scheduling (LIST) introduced by R. L. Graham [18] is a greedy algo-
rithm2 that approximates the optimal open shop problem within a ratio of two. LIST starts by assigning a job
to each processor. If multiple jobs are contending for the same processorone of them is chosen arbitrarily.
Once a processor is idle, one of the free jobs which has a task for the corresponding processor is chosen
arbitrarily. This procedure continues until all of the jobs are processed.

2A greedy algorithm is an algorithm that optimizes the choice at each stage without regard to previous choices, with the hope
of finding the global optimum.

10

The maximum schedule length produced by LIST is bounded by the sum of thetime to process the
longest job (equal to the maximum row-sum in the traffic demand), and the time that the most heavily loaded
processor needs (equal to the maximum column-sum in the traffic demand) [26]. Therefore this algorithm
tends to a delay overhead of at most2τNsmin

, though the number of switchings at each port isNsmin
.

4 Fixed Frame Length Scheduling

4.1 Terminology and Definitions

We now define some terminology that will be used throughout the report andrecall some definitions. We
denote the line-sum of linèof the demand matrixD by LS`. Note that linè consists of a set of source-
destination demands (connections). Each of these connections belongs totwo lines (a row and a column).
Thei-th row represents a link from sourcei to the optical switch at the core, and thej-th column represents
the link from the core to destination nodej.

For an inadmissible demand matrix, we denote the set of overflowing rows of the demand matrix (rows
with ri(D) > L) asOr, and the set of overflowing columns (cj(D) > L) asOc. The set of overflowing
lines, O` = {` : LS` > L} is the union ofOr andOc. We define acritical connection, or critical
demand element, as any demand entryDhp such thath ∈ Or andp ∈ Oc. The remaining entries constitute
non-criticalconnections/demands.

We now recall the definitions offeasibilityof rate allocation andweighted max-min fairness[27,28].

Definition 8. Feasibility: Consider an arbitrary network as a set of linksL where each link̀ ∈ L has a
capacityC` > 0. Let{1, · · · , ζ} be the set of connections in the network. LetDu be the demand (request)
of connectionu andυu be its assigned rate. We call a rate allocation{υ1, υ2, · · · , υζ} feasible, when for
every link` we have:

∑

u∈H`

υu ≤ C` ∀` ∈ £. (9)

Definition 9. Weighted max-min fairness: Let ωu(υu) be an increasing function representing the weights
assigned to connectionu at rateυu. An allocation{υ1, υ2, · · · , υζ} is weighted max-min fairif for each
connectionu any increase inυu would cause a decrease in transmission rate of connectionz satisfying
ωz(υz) ≤ ωu(υu). The special case of max-min fairness is obtained byωu(υu) = υu.

Definition 10. Bottleneck Link: Given a feasible rate vectorυ and a weight vectorω, we say that link̀ is
a bottleneck linkwith respect to (υ , ω) for a connectionu crossing`, if C` =

∑

k υk , F` andωu ≥ ωk

for all connectionsk crossing̀ .

Lemma 1. A feasible rate vectorυ with weight vectorω = { υu

Ru
} is weighted max-min fair if and only if

each connection has a bottleneck link with respect to (υ , ω).

See the Appendix (Section8.1) for a proof.

4.2 Relationship to Variable-Length Frame Scheduling

TheEXACTalgorithm, presented in [12,14], addresses schedule design for variable length frames, primarily
for the case of negligibleτ , and achieves a minimum traffic transmission time,T ∗

x . Thus in the case of

11

admissible demand matrices, theEXACTalgorithm generates a scheduleS that has length less thanL and
therefore satisfies the first requirement ofPROBLEM 1. TheEXACTalgorithm is an iterative procedure that
repeatedly performs maximum cardinality bipartite matching (MCBM) to obtain the schedule. It lies at the
heart of the algorithms we present in this report for the case of fixed-length frames.

We establish two results concerning the complexity ofPROBLEM 1:

Claim 2. If the demand matrixD is admissible and contains no zero entries (for anN × N switch and
frame of lengthL) then the EXACT algorithm provides a solutionSE to PROBLEM 2 such thatC(SE) <
C(S∗

1) + g(N2 − 3N + 2).

Proof. Since the demand matrix is admissible,T ∗
x < L. Hence the schedule devised byEXACTresults

in zero rejections,REJ(S, D, L) = 0. EXACTensures that the number of switch reconfigurations in this
solution is less thanN2 − 2N + 2. The minimum number of switch reconfigurations for any schedule
under the constraint of no zero-entries in the demand matrix isN [25]. Hence the maximum discrepancy is
N2 − 3N + 2.

Theorem 1. For large g, such thatg > max(||D||1 − L, 0), where||D||1 =
∑

i

∑

j Dij , PROBLEM 2 is
reduced to the problem of minimizingREJ(S, D, L) subject to the constraint thatNs(S) is minimized. For
this range ofg, PROBLEM 2 isNP -hard.

See the Appendix (Section8.2) for a proof.

5 AAPN Scheduling Algorithms

In a practical scenario, although it is desirable to reduce power expenditure by minimizing the number of
switchings, minimizing the number of rejections is far more important. Hence we address the scheduling
problem (PROBLEM 1) wheng is small. In this case, we can rewrite the problem as:
MINREJ(D,L): For a frame of fixed lengthL with demand matrixD identify a frame scheduleS∗

1 that
satisfies:

S∗
1 = arg min

S
REJ(S, D, L) (10)

In this section, we describe two algorithms for bandwidth reservation in the AAPN architecture that
address fixed-length frame scheduling. The Fair Matching Algorithm minimizesthe maximum percentage
rejection experienced by any demand, while the Minimum Rejection Algorithm minimizes the total rejection
(that is, it provides a solution toMINREJ(D,L)).

5.1 Fair Matching Algorithm (FMA)

The EXACTalgorithm can be applied directly to the case of fixed length frames (Claim 2 states that it
provides a solution forPROBLEM 1wheng is small and demand admissible). When the demand matrix
is inadmissible, the schedule determined by the EXACT algorithm must be truncated afterL time slots.
This can lead to starvation of some source-destination traffic, and result inunfairness (such as substantially
different average service times for traffic arriving at different nodes).

If the demand matrix is admissible, FMA incrementally assign additional demand to allelements until
one of the links reaches capacity (its line-sum is equal toL). At that point, the demand elements contributing
to that line are clamped. Extra demand is then gradually added to the remaining elements in the matrix until
another link (line) reaches its capacity and it too is clamped. The procedurereferred to as thewater-filling

12

procedure repeats until all lines have reached capacity . FMA assigns extra capacityin proportion to the
original demand.

This algorithm can be implemented by processing one line at a time. We first choose the most con-
strained line (the line that would reach its capacity first under the water-fillingprocedure) and increase its
demand to capacity. Then we choose the next most constrained line and increase its demand to capacity. We
repeat until all lines have reached capacity.

A similar procedure can be used for the case of an inadmissible demand matrix.In this case FMA
identifies the most overloaded line and reduces the demands on that line suchthat they sum to capacity (L).
Demand reduction is proportional to the original demand, i.e. each adjusted demand experiences the same
percentage reduction. In subsequent iterations, FMA identifies the next most constrained line, taking into
account the effect of any previous adjustments, and clamps its demand to capacity. It repeats the process
until no lines exceed capacity. When there are both overloaded and under-utilized lines, the overloaded lines
are adjusted first.

Here we describe how FMA treats demands belonging to the adjustable lines in the setU` = {` :
LS`(0) 6= L}, whereLS`(0) is the line sum of linè at the beginning of calculations. We defineAD ⊆ U`

as the set of unmodified lines andBD ⊆ U` as the set of modified lines. InitiallyAD contains all lines in
U` andBD is empty. Similarly, we definea` as the set of unmodified demands in line` andb` as the set
of modified demands. Initially,a` contains all the demands andb` is empty. DefineSa`

,
∑

(i,j)∈a`
Dij

andSb`
,

∑

(i,j)∈b`
D

′

ij . We always haveSa`
+ Sb`

= LS`, andD
′

ij is obtained from the following line
adjustment:

D
′

ij = Dij ×
L− Sb`

Sa`

∀ (i, j) ∈ a` (11)

Note that when demandDij belongs to an overloaded line,
L−Sb`

Sa`

< 1, and whenDij belongs to an

under utilized line
L−Sb`

Sa`

> 1. Define for each of line inAD the valueG` ,
L−LS`

Sa`

.

Algorithm 1 FMA
while AD 6= Ø do

Identify the line`∗ = arg min`∈AD
G`.

Apply (11) to line `∗.
Transfer̀ ∗ fromAD toBD.
Updatea` andb` for all lines` ∈ AD.
Re-evaluateLS` for all lines inAD.
Transfer linesγ with LSγ = L fromAD toBD.

end while
Apply EXACTto bD′c to generateS.

The following theorem states that prior to rounding, FMA achieves weightedmax-min fair allocation
of capacity (weighted relative to the original demand). See the Appendix (Section8.3) for the proof of the
theorem.

Theorem 2. FMA generates an adjusted demand matrixD′ with weighted max-min fair allocation, where

the weight isω(D′
ij) =

D′

ij

Dij
.

If the demand matrix contains zero entries, then an algorithm that adjusts requests multiplicatively
(such as FMA) cannot always generate full utilization; there can benatural blockingbecause there is no

13

demand. We now present some properties of the demand matrixD
′

= {D
′

ij} obtained by Algorithm 1 prior
to rounding.

Property1 Algorithm 1 guarantees full allocation of all links providedD contains no zero elements.

Property2 If there is no natural blocking the maximum total throughput of the network isobtained:
∑

i

∑

j

D
′

ij = N.L. (12)

Property3 The while-loop in Algorithm 1 hasO(N2) computational complexity in terms of the number of
edge nodes (2N iterations with a minimization overN elements in each iteration). The best current
implementation of theEXACTalgorithm has complexityO(N

5

2), and hence this is also the complexity
of Algorithm 1.

Property4 Algorithm 1 guarantees minimum rejection if no connections cross two different overloaded
links, i.e., if the overloaded links correspond entirely to rows (input links) or entirely to columns
(output links) ofD. In this case:

min(REJ) =
∑

`

(LS` − L) ∀` ∈ O, (13)

whereO is the set of overflowing lines.

Define thepercentage rejectionas1 −
D′

ij

Dij
. Consider the set of demands that experience the highest

percentage rejection (i.e. the demands on the most overloaded line). Since the weightω is a monotoni-
cally increasing function of allocated rateD′

ij , weighted max-min fairness implies that it is impossible to
increase the rate allocated to these demands (or decrease the maximum percentage rejection) without vi-
olating feasibility. Decreasing the rejection of any of those demands requires increasing the rejection of
another demand on the same line, and hence the maximum percentage rejection increases. We thus have the
following corollary:

Corollary 1. Subject to the capacity constraints, FMA generates a schedule that minimizes the maximum
percentage rejection experienced by any connection.

5.2 Equal Share Algorithm (ESA)

The water-filling procedure can be implemented by assigning equal amount of extra capacity to the con-
nections passing underloaded lines. This approach is similar to the max-min fairrate allocation of ABR
connections in ATM networks proposed by Charney et. al [29]. Similarly the overloaded lines can be ad-
justed by reducing equal amounts from the demands of the connections passing these lines. We define for
each line the valuesH` ,

L−LS`

|a`|
, where|a`| is the cardinality ofa`.

The line with minimumH` is the most constrained line. Repeatedly the most constrained line is defined
and the demands of its connections are adjusted. The demand adjustment we perform on each line is:

D
′

ij = Dij +
L− LS`

|a`|
∀ (i, j) ∈ a` (14)

The following theorem states that prior to rounding, ESA achieves max-min fair allocation of capacity. See
the Appendix (Section8.4) for the proof of the theorem

Theorem 3. ESA generates an adjusted demand matrixD′ with max-min fair allocation of extra-capacity,
where the weight of the connection between sourcei and destinationj is ωij = Dij −D′

ij .

14

5.3 Minimum Cost Search Algorithm

This section reviews an alternative approach, the minimum cost search (MCS) algorithm, which we first
described in [7]. In order to reduce signalling overhead and to reducescheduling complexity, the algorithm
satisfies the transparency property [30]. This requires that the scheduling is only modified for new requests
or tear-downs (ifDij decreases or increases).

The minimum cost search algorithm we propose does not achieve optimal utilization, because it does
not consider the global allocation problem; instead it allocates requests sequentially on a single time slot
basis. The algorithm operates by repeatedly visiting the(i, j) entries in the traffic demand matrixD in
a round-robin fashion; at each visit, if the requested number of slots hasnot yet been assigned, the algo-
rithm attempts to allocate a single time slot to the(i, j) request. The round-robin allocation results in an
approximately fair assignment of slots to each pair.

In order to determine which slot to allocate to the request, we define acostfor the allocation of a(i, j)
source-destination pair to a time slot pairtk for k in 1, . . . L. This cost is determined entirely by the extant,
partial frame schedule. The cost function is:

Cij(tk) = Nfs(tk) + λKij(tk), (15)

whereNfs(tk) is the number of free sources at this time slot, i.e., the number of sources not transmitting to
any other destinations,λ is a small positive constant, andKij(tk) = {0, 1, 2} is the number of additional
switching operations that the core switch must perform to accommodate the allocation. The motivation
behind this cost function is simple. The first term represents the current flexibility of that time slot (the
number of free sources for future allocation) and reflects the desirabilityof retaining flexibility by allocating
demands to the most constrained slots where possible. The second term reflects the desirability of minimiz-
ing the power consumption of the optical switch, which is partially determined by the number of switching
operations that it must perform each frame.

The scheduling of a single(i, j) time slot request is performed by first identifying the(i, j)-eligible
slots in the frame, which are defined as the free time slots during whichi is not transmitting to any other
destination andj is not receiving from another source. The costCij(tk) of each of these eligible time
slots is evaluated, and the demand is assigned to the slot incurring minimum cost. In the case of ties, the
demand is assigned to the earliest slot and the lowest wavelength (assuming wavelengths are ordered in
some fashion). Deallocation is implemented by a reverse procedure, in whichwe seek and release the most
costly currently-allocated time slot. This algorithm has a worst case time complexityof O(N.L). (green
numbers)

5.4 Minimum Rejection Algorithm

In this section we describe an algorithm that generates a schedule that minimizes total rejection. We first
develop a theorem that helps to identify a procedure for solvingMINREJ(D,L). We commence by defining
MAXFLOW(D,X,L), a max-flow linear programming problem.

Problem Y = MAXFLOW(D,X,L) : D is a demand matrix,X is a non-negative matrix that specifies capac-
ity bounds, andL is the frame-length (available capacity on each row/column). MatricesD, X andY are
all of sizeN ×N . Identify a nonnegative matrixY such that

∑

h∈Or

∑

p∈Oc
Yhp is maximized, subject to

15

the following constraints:

Yhp = 0 if h /∈ Or or p /∈ Oc

Yhp ≤ Xhp ∀ (h, p) s.t. h ∈ Or and p ∈ Oc
∑

p∈ Oc

Yhp ≤ rh(D)− L ∀ h ∈ Or

∑

h∈ Or

Yhp ≤ cp(D)− L ∀ p ∈ Oc

The following theorem establishes a relationship between a solution to the problemMAXFLOW(D,D,L)
and a solution to the minimum rejection problemMINREJ(D,L). The proof is in the Appendix (Section8.5).

Theorem 4. Set A = MAXFLOW(D,D,L). Construct a rejection matrixD
′′

= A+Q, whereQ is an arbitrary
non-negative matrix such thatQhp ≤ D − A ∀ (h, p), rh(Q) = rh(D) − L − rh(A) ∀ h ∈ Or, and
cp(Q) = cp(D) − L − cp(A) ∀ p ∈ Oc. Then ifS is a schedule that generates the decomposition
D = D′ + D

′′

, it is a solution to the problem MINREJ(S,D,L).

 D

kj

 D

kl

 D

ij

D

mj

i
 l

s

m

k
 t

j

D

 m

l

D

il

LS
i

- L

 LS

k

- L

 LS
m

 - L

inputs
 outputs

LS
j

- L

LS
l
 - L

o

Figure 4.s→ t network: In this example the input vertices correspond to the overflowing rows of an arbitrary demand
matrix D (i, k,m ∈ Or), and the output vertices correspond to the overflowing columns of D (l, o, j ∈ Oc). The
numbers over the edges show the edge capacities which correspond to the upper bounds of flows in our maximization
problem. The capacity of each edge (not connected to the source or sink) is equal to the upper bound on the amount
of rejection that can be assigned to the corresponding critical connection.

We now describe an algorithm to identify a solutionA to MAXFLOW(D,D,L). The corresponding
maximum flow problem is depicted in Figure4. We define a network with a sources and a sinkt and try
to maximize the flow between them. A network flow is a vectorf = (fij) where eachfij is a positive real
number representing the flow on arc(i, j), i.e., the flow fromi to j. A flow f is feasible if it satisfies the
capacity constraints and it is conserved at all nodes (total flow out of a node equals total flow in). In our
problem, the total amount of flow emitted from sources (and therefore arriving at sinkt) is equal to the
total amount of rejection contributed byA at the critical connections. The rejection at any specific critical

16

connection (Ahp) is equal to the flow on arc(h, p). The capacities of the edges (upper bounds) are dictated
by the constraints inMAXFLOW(D,D,L). We denote the upper bound on arc(i, j) by κ(i, j). So we have:

κ(s, h) = LSh − L ∀ h ∈ Or

κ(p, t) = LSp − L ∀ p ∈ Oc

For a feasible flow vectorf , anaugmenting pathis a simple path froms to t that can be used to increase
flow from s to t. Note that this path is not necessarily directed. On forward arcs in this path((i, j) points in
the directions→ t) the flowfij must satisfy0 ≤ fij < κ(i, j), and on backward arcs, i.e.(i, j) is reverse,
the flow must satisfy0 < fij ≤ κ(i, j).

Ford and Fulkerson presented a solution to the max-flow problem in 1954 [31]. The algorithm starts
from an arbitrary feasible flow. In subsequent iterations, the Ford-Fulkerson algorithm identifies an aug-
menting path, and augments the flow. If the augmenting path is denoted as a set of arcs{a1, a2, ..., ak},
then the flow augmentation possible isδ = min1≤i≤k δ(ai), whereδ(ai) = κai

− fai
for forward arcs and

δ(ai) = fai
for backward arcs. The flow is adjusted usingfai

← fai
+ δ on forward arcs and on backward

arcs usingfai
← fai

− δ. The algorithm iterates until no augmenting path exists, upon which the maximum
flow is obtained, as specified by the following theorem:

Theorem 5. Ford-Fulkerson [31]: Flowf is maximum in graphG if and only if there is no augmenting path
in G bearing flowf .

When there are no lower bounds on capacity, the flowf defined byfij = 0 ∀(i, j) ∈ A (the set of arcs
in the network) is feasible and can be used to initialize the Ford-Fulkerson algorithm. There are numerous
methods for searching for augmenting paths; techniques include shortestpath (fewest number of edges) and
fattest path (maximum bottleneck capacity along the path) algorithms [32]. Note that the solution to the
maximum flow problem (and hence alsoMAXFLOW(D,D,L)) is in general not unique.

To form a Minimum Rejection Algorithm, we first use the Ford-Fulkerson algorithm to identify A.
Subsequently we setD ← D − A and apply FMA to the resultantD. As described in Section5.1, FMA
processes overflowing lines sequentially, adjusting the demand on the line sothat it sums toL (thereby
identify a line of the rejection matrix). Since we have constructedA so that after modificationD(h, p) = 0
at any intersection point of overflowing linesh andp, when FMA adjusts one of the overflowing lines it
does not affect any other overflowing line. This means that after FMA has been applied, it has generated aQ
that satisfies the requirements of Theorem 1. In the process, FMA has developed a scheduleS that performs
the decompositionD = D′ + D

′′

, whereD
′′

= A + Q. The combined Minimum Rejection Algorithm is
specified in Algorithm 2.

Algorithm 2 Minimum Rejection Algorithm
1: Apply the Ford-Fulkerson algorithm to solveA =MAXFLOW(D,D,L).
2: SetD ← D −A.
3: Apply FMA to D to generateQ and a scheduleS.

6 Simulation Performance

In this section we report the results of simulations of the scheduling approaches performed using OPNET
Modeler [33]. We performed simulations on a 16 edge-node star topology network. The links in the network

17

10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

A
ve

ra
ge

 Q
ue

ue
in

g
de

la
y

(m
se

c)

Offered load %

FMA2
FMA1
MCS
Slot−by−Slot
ESA

Figure 5. Average queuing delay performance achieved by FMA1, FMA2 , ESA (Equal Share Matching), Slot-by-
Slot and MCS under non-uniform, Poisson traffic.

have capacity 10 Gbps and the distance between each edge node and the optical switch is 5 msec. A time slot
is of length 10µsec, and a frame has a fixed length of 1 msec (or 100 slots). Every experiment was run for
a duration of 0.5 sec (equal to 500 frame durations) and the results were averaged over 5 repetitions of the
simulations. The virtual output queues in the simulations have fixed buffer size (90000 packets). Whenever
the buffer is full, arriving packets are dropped.

Comparison between FMA, ESA, MCS, and Slot-by-Slot under Non-uniform Traffic. In the simu-
lations, traffic sources inject traffic at rates up to 10 Gbps into the edge nodes. The arrival distribution of the
data packets is Poisson and the size distribution is exponential with mean size of1000 bits. Then multiple
(approximately 100) packets are wrapped into one optical slot. We investigated two cases of destination
distributions: (i) a uniform case, where sources send equal amounts oftraffic to each destination, and (ii)
a non-uniform case, where all destinations receive an equal amount of traffic on average, but each source
sends 5 times as much traffic to one destination. The frame-based schedulingalgorithms compute the sched-
ule ahead of time based on the predicted traffic of 10 msec (round-trip delay) in future. In the first set of
simulations we used the average of the traffic arrivals over the past 10 frame durations to form the prediction
of the demand matrixD.

FMA and ESA use theEXACTalgorithm, which collocates most of the allocations for a particular
source-destination pair in an attempt to minimize switch reconfigurations. This concentration has the impact
of increasing average waiting time of packets. However this effect is considerably reduced if we distribute
similar matchings in two different locations in the frame. In our simulations FMA1 collocates similar
matchings (applyingEXACTin a standard fashion) and FMA2 and ESA separate them into two batches, one
placed towards the start of the frame and one towards the end. We compareperformance to two previous
algorithms: Minimum Cost Search (MCS) [7] and a slot-by-slot scheduling approach based on PIM (Parallel
Iterative Matching) [6].

18

10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

A
v.

 Q
. d

el
ay

 (
m

se
c) FMA2

ESA
MCS

10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

P
ac

ke
t l

os
s

%

Offered load %

Figure 6. Average queuing delay and packet loss performance for FMA2,ESA and MCS under bursty traffic and
non-uniform distribution of the destinations.

Figure5 shows the queuing delays over a wide range of offered load, from10% to 90% link capacity
under nonuniform traffic (uniform traffic gives similar results). The slot-by-slot algorithm has large average
queuing delays, since it is more appropriate for metro and local-area networks [6]. FMA1 generates addi-
tional average delay compared to FMA2, which is due to the collocation of matchings. ESA, FMA2 and
MCS exhibit similar performance, achieving low average delays under all but the highest load. Under higher
loads, the performance of MCS deteriorates due to the additional blocking itinduces. On average the per-
centage of blocking generated by MCS is 0.9%. The matching algorithms (FMA and ESA) generate 0.02%
blocking (due to natural blocking in the demand matrices). When the load is high, FMA2 assigns more time
slots to the heavier connections, which can use the extra time slots more efficiently. ESA assigns the same
number of extra time slots to each connection irrespective of its load. In this scenario only the slot-by-slot
scheduling algorithm experiences packet loss (up to0.31% for loads exceeding 70% of capacity).

Comparison between FMA2, ESA, MCS under Bursty Traffic. We also performed simulations with
bursty traffic using on/off traffic sources. Every edge node is equipped with 6 on/off sources. The “on” and
“off” periods have Pareto distributions withα = 1.9. The mean of the “off” periods is 5 times greater than
the mean of the “on” periods. During “on” periods the sources generatepackets with an average rate equal
to the full link capacity (10 Gbps). The rate distribution is exponential. Figure6 depicts queuing delays and
packet losses for the FMA2, ESA and MCS algorithms. FMA2 demonstrates marginally superior average
queuing delay performance compared to the other two algorithms (0.3-0.9 msecless when the load exceeds
50%). Under offered loads greater than 80% of capacity, packet loss occurs as a result of traffic bursts over-
flowing the network. At 90% load, MCS generates0.24% loss, FMA2 generates0.14% loss, and ESA does
not generate any packet loss. The loss generated by FMA2 is due to insufficient allocation of additional slots
to temporarily low-rate connections that experience a sudden increase in traffic arrivals when they enter an
“on” period. ESA allocates extra slots irrespective of demand so eliminates this loss at the cost of additional
average delay.

19

0 10 20 30 40 50
0

500

Second

Q
ue

ue
d

pa
ck

et
s

FMA2
MCS

0 10 20 30 40 50

1

3

5

O
ve

rf
lo

w
%

0 10 20 30 40 50
20

40

60

A
v.

 L
oa

d%

Figure 7.The behaviour of FMA2 and MCS in response to traffic loads derived from Internet traces. The upper panel
shows the offered load averaged over all source-destination pairs. The middle panel shows the percentage of overflow
traffic. The lower panel shows the overall number of queued packets at the edge nodes.

Comparison between FMA2 and MCS under Real Traffic. We also explored the performance of our
algorithms using traffic derived from empirical Internet measurements. Weused 50 seconds of packet traces
captured from an OC3 link at Colorado State University [34]. The flows were divided into 16 components
based on IP source/destination addresses, and each component served as one of the edge nodes. Using
auto-regressive flow-based prediction [35], we predicted the trafficdemand 1 second ahead (assuming 1
second round-trip and scheduling delay) and applied the scheduling algorithm for the predicted traffic de-
mand matrix. We used a more sophisticated prediction technique for this simulation scenario because of the
inadequate performance of the simple linear predictor (moving average method) used in the previous simu-
lations. We considered a frame of length 0.1 seconds (equal to 100 time slots of 1 msec.) and for simplicity
assumed that each packet fits one time slot completely. We performed simulationsfor 50 seconds. The
average offered load was around 40%; under this load, MCS and FMA are expected to perform similarly
if the traffic is admissible. The derived traffic is such that the demand is inadmissible for a duration of 10
seconds (from 2–12 seconds), because one of the edge nodes is overloaded. Growth in the queue sizes is
unavoidable during this period. Figure7 shows the total number of queued packets at the edge nodes. FMA2
and MCS adapt to the variations of the arrivals in a very similar fashion, butFMA2 has a lower number of
queued packets because it does not induce blocking.

Comparison between FMA2 and MRA under Bursty Traffic. We performed simulations with bursty
traffic using on/off traffic sources. Every edge node is equipped with 6on/off sources. The “on” and “off”
periods have Pareto distributions withα = 1.9. The mean of the “off” periods is 5 times greater than the
mean of the “on” periods. During “on” periods the sources generate packets with an average rate up to the
full link capacity (10 Gbps). The rate distribution is exponential. The demandmatrix has a non-uniform
distribution; each destination receives on average the same amount of traffic, but each source sends five

20

0 20 40 60 80 100
0

5

10

15

20

25

R
ej

ec
tio

n%

Offered load %

MRA
FMA2

z = 1

z = 1.5

z = 2

Figure 8. Comparison between the rejection obtained by FMA2 and MRA under varying offered load for different
factors of imbalanced load (z). Traffic is bursty (generated by on-off sources) and has uniform distribution, aside from
the impact ofz.

times as much traffic to one specific destination as compared to the others.

Since the behaviour ofMRA andFMA2 only differs when there are critical elements in the demand
matrix, we investigate scenarios where critical demands are likely to exist. In order to do this, in each
frame we choose one arbitrary sourcei and one arbitrary destinationj. Each source generatesz times
as many packets for destinationj compared to other destinations. Similarly sourcei generatesz times as
many packets (to all destinations) as any other source. Asz increases, the elements of the demand matrix
corresponding to these two edge nodes are more likely to be critical connections; the demand elementDij

has even higher likelihood of being critical.

Figure8 compares the percentage of rejected demand achieved by FMA2 and MRA as the offered load
changes for various values ofz. At high load (greater than 70%) withz = 2, there are numerous critical
elements and MRA begins to achieve less rejection than FMA2. The discrepancy is still only 2 percent
at 90% load. Figure9 compares the maximum percentage rejection experienced by any demand when
scheduling is performed by FMA2 and MRA. As the offered load increases, MRA concentrates rejection
on the critical elements; the maximum percentage rejection is thus much (up to 25 percent) higher than
that achieved by FMA2, which distributes rejection fairly amongst all competing connections. Figure10
compares the average end-to-end delay experienced by packets whenscheduling is performed using FMA
and MRA; the approaches yield similar average delay.

21

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

M
ax

. R
ej

ec
tio

n
%

Offered load %

MRA
FMA2

z = 1

z = 1

z = 1.5

z = 2

z = 1.5
z = 2

Figure 9. Comparison between the maximum percentage rejection experienced by any demand after scheduling by
MRA and FMA2 for different values ofz and varying offered load.

7 Conclusion and Future Work

We have formulated the bandwidth allocation problem in the AAPN network as a scheduling problem with
the objective of minimizing rejection whilst reducing the number of switch reconfigurations. We proposed
a novel scheduling algorithms Fair Matching Algorithm (FMA), that achieve zero rejection for admissible
demands and provides (weighted) max-min fair allocation of free capacity. The max-min fairness criterion
does not in general achieve minimum rejection when the traffic is not admissible.

We demonstrated that when the demand matrix is inadmissible, the Fair Matching Algorithm mini-
mizes the maximum percentage rejection experienced by any connection. We also proposed a novel algo-
rithm (MRA) that generates a schedule that minimizes the total rejection of demand. Simulations indicate
that the discrepancy in total rejection achieved by MRA and FMA is relativelyminor, whereas there is a
major difference in the fairness of the allocation of rejection. In addition, MRA appears to be less robust to
demand prediction errors (when traffic arrivals differ substantially from the demand matrix used for schedul-
ing). Thus it appears that whilst MRA achieves minimum rejection schedules,FMA is a better choice for
all-photonic scheduling in practice.

8 Appendix

8.1 Proof of Lemma 1

Proof of Lemma 1.We prove this lemma using a similar approach to that adopted in [27]. Suppose that υ
is weighted max-min fair with the weight vectorω. To arrive at a contradiction, assume that there exists a
connectionu with no bottleneck link. Then for each link̀crossed byu for whichC` = F`, there must exist

22

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

A
v.

Q
ue

ue
in

g
D

el
ay

 (
m

se
c)

Offered load %

MRA
FMA

Figure 10.Average queuing delay performance achieved by MRA and FMA2 for varying offered load andz = 2.

a connectionx 6= u such thatωx > ωu; thus the quantity

δ` =

{

C` − F` if F` < C`

(ωx − ωu)×Rx if F` = C`
(16)

is positive. Therefore, by increasingυu by the minimumδ` over all links` crossed byu, while decreasing
by the same amount the rates of the connectionsx of the links` crossed byu with F` = C`, we maintain
feasibility without decreasing the rate of any connectionk with ωk ≤ ωu; this contradicts the weighted
max-min fairness property of(υ, ω). Note thatυx −min(δ`) is always positive.

Conversely, assume that each connection has a bottleneck link with respect to the feasible set (υ, ω).
Then to increase the rate of any connectionu while maintaining feasibility, we must decrease the rate of some
connectionk crossing bottleneck link̀ of u (because we haveF` = C` by the definition of a bottleneck
link). Sinceωk ≤ ωu for all k crossing` (by the definition of a bottleneck link), the feasible set (υ, ω)
satisfies the requirement for weighted max-min fairness.

8.2 Proof of Theorem 1

Proof. Consider the set of schedules that achieve minimumNs(S) = N∗
s and label the schedule within this

set that achieves minimum rejectionSa. The minimum achievable rejection is no larger thanREJ(S, D, L) =
max(||D||1 − L, 0), where||D||1 =

∑

i

∑

j Dij (at least one demand element must be satisfied each time-
slot). ThusC(Sa) ≤ max(||D||1 − L, 0) + gN∗

s . Now consider schedules that increase the number of
switch reconfigurations toNs(S) = N∗

s + 1 and suppose that one of these,Sb, achieves zero rejection,
so thatC(Sb) = g(N∗

s + 1). The differential in costC(Sb) − C(Sa) ≥ g − max(||D||1 − L, 0). If

23

g > max(||D||1 − L, 0), then this difference is strictly positive and any schedule solvingPROBLEM 1lies
within the set of schedules that achieve minimumNs.

In order to prove that the problem is NP-hard for this range ofg, we considerPROBLEM 2, which
for very large values ofτ is reduced to minimizing the schedule length subject to the constraint thatNs

is minimum. Gopal et al. prove that this problem, which they refer to as the MINSWT problem, isNP -
complete [11].

Suppose we had a deterministic polynomial algorithm calledsolve-G(D,L) that could solvePROBLEM
1 for the identified range ofg for demand matrixD and a frame of lengthL. We could then define the
algorithm Solve-MINSWT (Algorithm 2).

Algorithm 3 Solve-MINSWT
L = 1;
S = solve-G(D,L);
while REJ(S, D, L) > 0 do

L = L + 1;
S = solve-G(D,L);

end while

Upon termination of this algorithm, the identified scheduleS is guaranteed to have the minimum num-
ber of switch reconfigurations (as argued above). Since it is also the minimum length schedule that achieves
REJ(S, D, L) = 0 it is also a solution toPROBLEM 2and hence the MINSWT problem. Algorithm 2 is
thus a deterministic polynomial algorithm to solve the MINSWT problem. Therefore, solvingPROBLEM 1
for the considered range ofg is as hard as solving MINSWT (and any other problem inNP) and hence is
NP -hard.

8.3 Proof of Theorem 2

Proof. Let u ∈ {(i, j), 1 ≤ i, j ≤ N} index the source-destination connections specified by the demand
matrix. We focus on the properties of the modified demand matrix and associatedsets at various iterations
of the while loop in Algorithm 1, so we index entities by iteration number and note that this indicates the
value of the entity at thestart of the iteration. For example,AD(h) denotes the set of unmodified lines at
the start of iterationh of the algorithm.

We prove that FMA achieves weighted max-min fair allocation of the demands. During each iteration
h of the while-loop, FMA identifies the lineγ ∈ AD(h) such thatGγ(h) = min{G`(h); ` ∈ AD(h)}. It
alters the demands inaγ(h) according to (11) and after this modification, there is no subsequent modification
of these demands. Substituting (11) into the definition of the weight, we haveωu = 1 + Gγ(h) for all
u ∈ aγ(h).

We demonstrate that the adjustment at iterationh leads toγ being a bottleneck link (line) foru ∈ aγ(h),
i.e., after this adjustment it holds thatωz ≤ ωu for u ∈ aγ(h) andz ∈ bγ(h). Equivalently, we prove that
min{G} is monotonically increasing with respect to the iteration number, i.e.,min{G(h)} ≤ min{G(h +
1)}. The equivalence follows since theωz are obtained from adjustments prior to iterationh.

Suppose that lineβ has minimumG at iterationh + 1. Linesγ andβ have at most one connection
(demand) in common. If there is no common connection, thenGβ(h + 1) = Gβ(h) ≥ Gγ(h). If there is a

24

common connectionk, then:

LSβ(h + 1) = LSβ(h) + Dk(ωk − 1) (17)

Saβ
(h + 1) = Saβ

(h)−Dk (18)

and hence

Gβ(h + 1) =
L− LSβ(h)−Dk(ωk − 1)

Saβ
(h)−Dk

=
Saβ

(h)Gβ(h)−Dk(ωk − 1)

Saβ
(h)−Dk

≥ Gγ(h) (19)

where the last inequality follows from substitution based onGβ(h) ≥ Gγ(h) = ωk − 1.
Thus the application of FMA upon an arbitrary demand matrixD leads to the generation of a bottleneck

link for each connectionu with weight ωu = D′

u

Du
. By Lemma 1, this establishes that FMA achieves

weighted max-min fair allocation of adjusted demandsD′.

8.4 Proof of Theorem 3

Proof. The proof is similar to the proof of Theorem 2. In this case, we haveωu = Du−D′
u andωu = Hγ(h)

for all u ∈ aγ(h), whereγ is the line with minimumH at iterationh. If β is the line with minimumH at
iterationh+1, then ifγ andβ share an elementk, LSβ(h+1) = LSβ(h)+ωk andaβ(h+1) = aβ(h)−1.
Hence:

Hβ(h + 1) =
L− LSβ(h)− ωk

|aβ(h)| − 1
(20)

=
|aβ(h)|Hβ(h)− ωk

|aβ(h)| − 1
(21)

≥ Hγ(h) (22)

where the last inequality follows from substitutionHβ(h) ≥ Hγ(h) = ωk. Hence, ESA leads to a bottleneck
link with weightωu = Du−D′

u and hence, by Lemma 1, achieves max-min fair allocation of capacity.

8.5 Proof of Theorem 4

Proof. For theMAXFLOW(D,X,L)problem, define the following capacity bounds:

µh(X) = min(
∑

p∈ Oc

Xhp, rh(D)− L) (23)

µp(X) = min(
∑

h∈ Or

Xhp, cp(D)− L) (24)

The optimization in theMAXFLOWproblem generates a matrixY such that:

|Y | =
∑

h

∑

p

Yhp = min(
∑

p

µp(X),
∑

h

µh(X)). (25)

25

This is an application of the max-flow min-cut theorem [36] (see Figure4).
Consider an arbitrary rejection matrixDw and setB =MAXFLOW(D, Dw, L). Then we can write

Dw = B + Q whereQ is a non-negative matrix. Now consider the conditions necessary forDw to achieve
minimum rejection. First,Dw

hp = 0 if h /∈ Or andp /∈ Oc (any non-zero values constitute unnecessary
rejection).

Without loss of generality, suppose that
∑

p µp(D
w) <

∑

h µh(Dw). Then for each rowh ∈ Or,
∑

p Bhp = µp(D
w). This implies that rowh either achieves its required rejection solely fromB (i.e.,

rh(B) = rh(D) − L), or thatBhp = Dw
hp for all p ∈ Oc. In the latter case,Dw must contain additional

rejection (positive entries) on rowh at thenon-critical connections. If Dw is to achieve minimum total
rejection,rh(Q) = rh(D)− L− rh(B).

Now consider the columns ofDw. After the generation ofB, the rejection on columnp is cp(B). Then
for minimum rejection we require thatcp(Q) = cp(D) − L − cp(B). Note that ifrh(B) does not satisfy
the rejection requirements of rowh, thenQhp = 0. Thus, no positive elements ofQ contribute to required
rejection on both a rowh and a columnp.

Based on this discussion, ifDw achieves minimum rejection, we can express its rejection|Dw| as:

|Dw| =
∑

h

∑

p

(B + Q)

= |B|+
∑

h∈Or

(rh(D)− L− rh(B))

+
∑

p∈Oc

(cp(D)− L− cp(B))

=
∑

h∈Or

(rh(D)− L) +
∑

p∈Oc

(cp(D)− L)− |B| (26)

Therefore, in order forDw to achieve minimum rejection,|B| must be maximized (the first two
terms are functions solely ofD andL). Compare the solutionsB = MAXFLOW(D, Dw, L) andA =
MAXFLOW(D, D, L). SinceDw

hp ≤ Dhp for any (h, p), the constraints in the second problem are looser,
which implies that|A| ≥ |B|, irrespective of the particular values inDw. Note thatA is also a solution to
MAXFLOW(D, A, L).

Hence if we ensure thatDw
hp ≥ Ahp for all (h, p), we derive|B| = |A|, which implies that|B| attains

its maximum value (and hence|Dw| is the minimum rejection). We can thus construct a rejection matrix
that achieves minimum rejection by solving A =MAXFLOW(D, D, L), and settingD

′′

= A + Q, whereQ
satisfies the constraints specified in the theorem. If a scheduleS decomposes the demand into an allocated
matrixD′ and this rejection matrixD

′′

, then it achieves minimum rejection.

References

[1] L. Xu, H.G. Perros, and G. Rouskas, “Techniques for optical packet switching and optical burst
switching,” IEEE Comm. Mag., vol. 39, no. 1, pp. 136–142, Jan. 2001.

[2] R. Ramaswami and K.N. Sivarajan, “Routing and wavelength assignment in all-optical networks,”
IEEE/ACM Trans. Networking, vol. 3, no. 5, pp. 489–500, Oct. 1995.

[3] G.V. Bochmann, M.J. Coates, T. Hall, L.G. Mason, R. Vickers, and O.Yang, “The agile all-photonic
network: An architectural outline,” inProc. Queens’ Biennial Symp. Comms., Kingston, Canada, June
2004.

26

[4] L.G. Mason, A. Vinokurov, N. Zhao, and D. Plant, “Topological design and dimensioning of agile all
photonic networks,”Computer Networks, vol. 50, no. 2, pp. 268–287, Feb. 2006.

[5] I. Keslassy, M. Kodialam, T.V. Lakshman, and D. Stiliadis, “Schedulingschemes for delay graphs
with applications to optical packet networks,” inProc. IEEE Work. High Perf. Switch. and Routing,
Phoenix, AZ, Apr. 2003.

[6] X. Liu, N. Saberi, M.J. Coates, and L.G. Mason, “A comparison between time-slot scheduling ap-
proaches for all-photonic networks,” inInt. Conf. on Inf., Comm. and Sig. Proc (ICICS), Bangkok,
Thailand, Dec. 2005.

[7] N. Saberi and M.J. Coates, “Bandwidth reservation in optical WDM/TDM star networks,” inProc.
Queens’ Biennial Symp. Comms., Kingston, Canada, June 2004.

[8] A. Ganz and Y. Gao, “A time-wavelength assignment algorithm for a WDMstar network,” inProc.
IEEE Infocom, Florence, Italy, 1992.

[9] A.Ganz and Y.Gao, “Efficient algorithms for SS/TDMA scheduling,”IEEE Trans. Comm., vol. 40,
pp. 1367–1374, August 1992.

[10] C. A. Pomalaza-Raez, “A note on efficient SS/TDMA assignment algorithms,” IEEE Trans. Comm.,
vol. 36, pp. 1078–1082, 1988.

[11] I. S. Gopal and C. K. Wong, “Minimizing the number of switchings in an SS/TDMA system,” IEEE
Trans. Comm., vol. 33, pp. 1497–1501, June 1985.

[12] B. Towles and W. J. Dally, “Guaranteed scheduling for switches withconfiguration overhead,”
IEEE/ACM Trans. Networking, vol. 11, pp. 835–847, October 2003.

[13] T. Gonzalez and S. Sahni, “Open shop scheduling to minimize finish time,”J. ACM, vol. 23, pp.
665–679, Oct. 1976.

[14] P. Crescenzi, X. Deng, and C. H. Papadimitriou, “On approximating ascheduling problem,”J. Com-
binatorial Optimization, vol. 5, pp. 287–297, 2001.

[15] G. Bongiovanni, D. Coppersmith, and C.K. Wong, “An optimal time slot assignment algorithm for an
SS/TDMA system with variable number of transponders,”IEEE Trans. Comm., vol. 29, pp. 721–726,
Oct. 1981.

[16] I.S. Gopal, G. Bongiovanni, M. A. Bonuccelli, D. T. Tang, and C. K. Wang, “An optimal switching
algorithm for multibeam satellite systems with variable bandwidth beams,”IEEE Trans. Comm., vol.
30, pp. 2475–2481, Nov. 1982.

[17] T. Inukai, “An efficient SS/TDMA time slot assignment algorithm,”IEEE Trans. Comm., vol. 27, pp.
1449–1455, May 1979.

[18] R. L. Graham, “Bounds on multiprocessing timing anomalies,”SIAM J. Applied Mathematics, vol.
17, pp. 416–429, March 1969.

[19] R. L. Graham, E. L. Lawler, J. K. Lenstra, and K. Rinnooy Kan, “Optimization and approximation in
deterministic scheduling: A survey,”Ann. Disc. Math., pp. 287–326, 1979.

27

[20] D. McLaughlin, S. Sardesai, and P. Dasgupta, “Preemptive scheduling for distributed systems,” in
Proc.11th Int. Conf. Parallel and Distributed Computing Systems, Chicago, Illinois USA, Sept. 1998.

[21] K. Jansen and M.I. Sviridenko, “Polynomial time approximation schemesfor the multiprocessor open
and flow shop scheduling problem,” in27th International Colloquium on Automata, Languages and
Programming, Geneva, Switzerland, July 2000, pp. 878–889.

[22] K. Jansen, R. Solis-Oba, and M.I. Sviridenko, “A linear time approximation scheme for the job shop
scheduling problem,” inProc. Third Inter. Workshop Approximation Algorithms for Combinatorial
Optimization Problems, Aug. 1999, pp. 177–188.

[23] C.H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and complexity,
Prentice-Hall, 1982.

[24] S. Micali and V. V. Vazirani, “AnO(
√

‖V ‖‖E‖) algorithm for finding maximum matching in general
graphs,” inProc. IEEE Symp. on Found. Comp. Sci., Syracuse, NY, 1980, pp. 17–27.

[25] R.M. Karp, “Reducibility among combinatorial problems,” inProc. Complexity of computer compu-
tations, R.E. Miller and J.W. Thatcher, Eds., New York, NY, 1972, pp. 85–103,Plenum Press.

[26] Ed. D. Hochbaum,Approximation Algorithms for NP-Hard Problems, PWS Publishing Company,
Boston, MA, 1996.

[27] D. Bertsekas and R. Gallager,Data Networks, Prentice Hall, Englewood Cliffs, NJ, 1992.

[28] P. Marbach, “Priority service and max-min fairness,”IEEE/ACM Trans. Networking, pp. 733–746,
Oct. 2003.

[29] A. Charny, D. Clark, and R. Jain, “Congestion control with explicitrate indication,” inProc. ICC,
Seattle, WA, Jun. 1995.

[30] M.A. Marsan, A. Bianco, E. Leonardi, F. Neri, and A. Nucci, “Simple on-line scheduling algorithms
for all-optical broadcast-and select networks,”IEEE European Trans. Telecom., vol. 11, no. 1, pp.
109–116, Jan. 2000.

[31] L. R. Ford, Jr., and D. R. Fulkerson, “Maximal flow through a network,” Canadian. J. Math., pp.
399–404, 1956.

[32] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic efficiency for network flow
problems,”J. Assoc. Comput. Mach., pp. 248–264, 1972.

[33] “OPNET modeler 10.5,” http://www.opnet.com.

[34] “Passive measurement and analysis (PMA) project,” http://pma.nlanr.net/Traces/Traces/daily.

[35] T. Ahmed and M.J. Coates, “Predicting flow vectors,” Tech. Rep., McGill University, Mon-
treal, Canada, Sept. 2005, available athttp://www.tsp.ece.mcgill.ca/Networks/
publications.html.

[36] P. Elias, A. Feinstein, and C. E. Shannon, “Note on maximum flow through a network,”IRE Transac-
tions on Information Theory IT-2, pp. 117–119, 1956.

28

http://www.tsp.ece.mcgill.ca/Networks/publications.html
http://www.tsp.ece.mcgill.ca/Networks/publications.html

	Introduction
	Fixed Frame Length Scheduling: Problem Definition
	Literature review
	Open Shop Formulation
	Analogy
	Scheduling Algorithms
	Minimal Duration Scheduling
	Minimum Number of Switchings
	Near-Optimum Solutions

	Fixed Frame Length Scheduling
	Terminology and Definitions
	Relationship to Variable-Length Frame Scheduling

	AAPN Scheduling Algorithms
	Fair Matching Algorithm (FMA)
	Equal Share Algorithm (ESA)
	Minimum Cost Search Algorithm
	Minimum Rejection Algorithm

	Simulation Performance
	Conclusion and Future Work
	Appendix
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

