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Estimation of time-series on graphs using Bayesian graph
convolutional neural networks

Fatemeh Teimury, Soumyasundar Pal, Arezou Amini, and Mark Coates

Department of Electrical and Computer Engineering, McGill University, Montreal, Canada

ABSTRACT

There has recently been an explosion of interest in graph neural networks, which extend the application of neural
networks to data recorded on graphs. Most of the work has focused on static tasks, where a feature vector is
available at each node in a graph, often with an associated label, and the goal is to perform node classification
or regression, graph classification, or link prediction. Some work has recently emerged addressing the processing
of sequences of data (time-series) on graphs using methods based on neural networks; most strategies involve
combining Long Short-Term Memory units (LSTMs) or Gated Recurrent Units (GRUs) with graph convolution.
However most of these methods process the observed graph as the ground truth, thereby failing to account for
the uncertainty associated with graph structure in the learning task. As a remedy to this issue, in the recently
proposed Bayesian graph convolutional neural networks, the provided graph is treated as a noisy observation
of a true underlying graph or a realization of a random graph model. We can thus model uncertainty in the
identification of relationships between nodes in the graph. We specify a joint posterior probability on the graph
and the weights of the neural network and then perform inference through a combination of variational inference
and Monte Carlo sampling. In this paper, we extend the Bayesian framework to address a regression task for
time-series on graphs.

Keywords: graph convolutional neural network, Bayesian inference, time series estimation, regression

1. INTRODUCTION

There are multiple applications involving data recorded on networks where it is important to infer the attributes
and/or labels of some nodes given the attributes and labels of other nodes. In many cases there can be a
significant measurement cost associated with collecting data in the network, so it is important to be able to
reduce the number of nodes that must be monitored. An example is cellular communication network monitoring,
where we wish to track the traffic load at each base station, but we cannot deploy monitors at all base stations,
either due to cost of monitor deployment or lack of access. Another example is monitoring task-dependent
activity of regions in a brain, where collection of signals can involve invasive implantation of electrodes.

There is a considerable body of work that considers the static task of reconstructing a graph signal.1–7 These
techniques generally exploit an assumption of smoothness of the signal with respect to the graph. In this paper
we focus on the reconstruction of time-series. The challenge is to combine spatial information (contemporaneous
correlations between the signals at different nodes that are related to the topology of the graph) with temporal
information (correlations between subsequent values of the time-series at an individual node).

Several approaches have been adopted to address the reconstruction of time-series on graphs, with some of the
most promising being based around kernel approaches.8,9 Other strategies have included dictionary learning10

and tracking.11For attributed graphs with informative features, graph convolutional neural networks (GCNs)12,13

have proved effective for reconstruction of static signals, and these have recently been combined with recurrent
neural network architectures, including Long Short-Term Memory units (LSTMs) and Gated Recurrent Units
(GRUs), to address reconstruction of time-series on graphs and spatio-temporal forecasting.14–19

Although these methods have demonstrated promising performance, they rely on an accurate knowledge of
the topology of the graph. The GCN-based methods also assume that the correlation structure of the multivariate
time-series corresponds to the provided topology. In many cases we are provided with an erroneous or noisy
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graph, or there can be a mismatch between the graph topology and the correlation structure. We recently
introduced a Bayesian graph convolutional neural network (BGCN) framework that allows us to account for
uncertainty in the topology. In essence, we introduce a prior on the graph topology and treat the observed or
provided topology as a realization from this model. We can then perform approximate Bayesian inference to
jointly estimate the weights of the neural network and the true graph topology.

In this paper, we merge our BGCN approach with GRUs so that we can reconstruct time-series on dynamic
graphs. We illustrate the benefits of the Bayesian approach by addressing the task of reconstructing average
traffic speeds on road networks.

The remainder of the paper is organized as follows. Section 2 presents the problem statement and Section
3 provides relevant background material. Section 4 presents our methodology. We describe the conducted
experiments and report the experimental results in Section 5. Section 6 discusses the results, summarizes our
contribution and suggests future avenues of research.

2. PROBLEM STATEMENT

We have access to an observed graph Gobs = (V, E) with |V| = N nodes, and E ∈ V ×V denotes the set of edges.
Let xi,t ∈ Rdx×1 be the feature vector at node i at time step t ∈

{
1, 2, ..., T

}
and Xt = [x1,t,x2,t, ...,xN,t]

T be
the collection of them across the nodes. yi,t ∈ Rdy×1 is the target label (time series value) at node i at time step
t. The training set at time t is Lt ⊂ V which is constituted of a subset of nodes whose target values at time t
are known. These values are denoted by YLt = {yi,t : i ∈ Lt}. The task is to estimate the unknown target time
series values of a test set defined by V \ Lt for all t.

3. BACKGROUND

3.1 GCN

Graph convolutional neural networks have been applied to a variety of learning tasks including node classification,
matrix completion, and learning of node embeddings. In order to provide a concrete description of a GCN, we
consider in this section a graph-based static regression problem. In this setting, each node i has a feature vector
xi ∈ Rdx×1 associated with it and its target is denoted by yi ∈ Rdy×1. The targets are known only for the
training set L ⊂ V. Based on the observed graph Gobs, the feature matrix X = [x1,x2, . . . ,xN ]T and the target
values in the training set YL = {yi : i ∈ L}, we aim to predict the target values at the remaining nodes.

In a GCN, graph convolution operations are performed within a neural network architecture. The propagation
rule for the simpler GCN architectures12,13 can be written as:

H(1) = σ(ÂGXW(0)) , (1)

H(l+1) = σ(ÂGH
(l)W(l)) . (2)

Here, the normalized adjacency operator ÂG is computed based on the observed graph and it controls the mixing
of the output features across the neighbourhood of a node at each layer. A pointwise non-linear activation function
σ is used between layers. H(l) are the output features from layer l− 1. W(l) represents the weights of the neural
network at layer l. We use W = {Wl}Ll=1 to denote the collection of GCN weights across all layers. In an L-layer
network, the final output is collected from the last layer Z = H(L). The weights of the neural network W are
learned via backpropagation with the objective of minimizing an error metric between the known targets in the
training set YL and the network predictions ZL = {zi : i ∈ L} obtained at the same nodes.

3.2 GRU

A Gated Recurrent Unit (GRU)20 is a variant of a Recurrent Neural Network (RNN) proposed to allow each
recurrent unit to adaptively capture dependencies at different time scales.21 A GRU processes sequential input



using the following gates:

Ut = σ(WUIt + VUSt−1 + BU ) , (3)

Rt = σ(WRIt + VRSt−1 + BR) , (4)

S̃t = tanh(WSIt + VS(Rt ◦ St−1) + BS) , (5)

St = (1−Ut) ◦ St−1 + Ut ◦ S̃t . (6)

Here It is the input, St−1 and St are the old and the new states of the GRU. Ut, Rt and S̃t are the outputs of
the update gate, reset gate and pre-output gate respectively. W, V, and B are learnable parameter matrices
and vectors in each of the gates.

3.3 GCN-GRU

Static models are not capable of learning temporal correlation structure from dynamic and spatio-temporal graph
datasets. In order to process time-series on graphs, GRUs have been combined within GCN. The resultant GCN-
GRU uses a GCN and a GRU sequentially to extract spatial and temporal features, respectively. The GCN-GRU
model proposed by Zhao et al.17,18 feeds the input data Xt to a GCN block in order to extract spatial features.
It then passes the output of the GCN, Zt, as the input of a GRU block in order to learn temporal features. The
combined GCN-GRU equations become:

Zt = GCN(Xt,G) , (7)

Ut = σ(WUZt + VUSt−1 + BU ) , (8)

Rt = σ(WRZt + VRSt−1 + BR) , (9)

S̃t = tanh(WSZt + VS(Rt ◦ St−1) + BS) , (10)

St = (1−Ut) ◦ St−1 + Ut ◦ S̃t . (11)

4. METHODOLOGY

Although our problem statement involves regression for time series on graphs, we first present the Bayesian GCN
in a static problem setting and then describe the modifications to handle time series.

4.1 BGCN

In many graph based learning tasks, the observed graph fails to represent the true underlying relationship among
the nodes. This might be due to the fact that often the observed graph is derived from noisy data or inaccurate
modelling assumptions. In the Bayesian graph convolutional neural network framework,22 the uncertainty in
the graph structure is addressed by viewing the observed graph as a random observation from a parametric
family of random graphs. We then perform Bayesian inference of the joint posterior of the graph and the GCN
weights. Since the observed graph often does not fit a parametric random graph model, we have recently proposed
modifications that involve building the posterior distribution of the graphs using a non-parametric model23 or
a node copying procedure.24 These formulations also allow the use of node features and training labels in the
graph inference, in contrast to the approach presented by Zhang et al.22 Although these algorithms address
the node classification task, they can be easily modified to address a regression task. In a BGCN, the posterior
distribution of the predictions Z are given as:

p(Z|YL,X,Gobs) =

∫
p(Z|W,G,X)p(W|YL,X,G)p(G|Gobs, ζ)p(ζ|Gobs,YL,X) dW dG . (12)

The integral in eq. (12) cannot be computed analytically, hence a Monte Carlo approach is adopted. The
inference of the BGCN weights are carried out using Monte Carlo dropout. Different choices for the inference of
the posterior distribution of graphs are discussed below.



4.1.1 Node copying graph model

In the node copying graph model, we construct a posterior distribution which allows sampling of a random graph
by copying the observed graph and then replacing each node’s edges with a high probability by the edges of a
“similar” node randomly selected from the observed graph. The node features are unaffected during copying.
In order to facilitate sampling of a random graph G, we introduce an auxiliary random vector ζ ∈ {1, 2, ...N}N ,
where the i-th entry ζi is used to denote the node whose edges are to replace the edges of the i-th node in
the observed graph. We assume mutual independence for the entries in ζ. A critical part of the construction
of this model is the choice of a similarity metric, which impacts how we sample the ζjs from their posterior
distributions. We adopt the following strategy for the sampling procedure. Using the information provided by
X, YL and Gobs, we construct a symmetric pairwise distance matrix D(X,YL,Gobs) ≥ 0, where Di,j denotes the
distance between nodes i and j. Then for each node i, we form a set of prospective nodes to be copied in place
of node i by including M nodes based on the smallest distance from node i:

Ci = {l | 1 ≤ l ≤ N,Di,l = Di,(j) for 1 ≤ j ≤M} . (13)

We define the posterior distribution of ζ by assigning an equal probability to all of the prospective nodes:

p(ζ|Gobs,X,YL) =

N∏
i=1

p(ζi|Gobs,X,YL) ,

p(ζi = m|Gobs,X,YL) =


1

M
, if m ∈ Ci

0, otherwise ,
(14)

for 1 ≤ i,m ≤ N . Conditioned on ζ and the observed graph Gobs, the sampling of graph G is carried out by
copying the ζi’th node of Gobs in the place of the i’th node of G, independently for all 1 ≤ i ≤ N with a high
probability. More formally, the generative model for G is given as:

p(G|Gobs, ζ) =

N∏
i=1

ε
1{Gi=Gobs,i}(1− ε)1{Gi=G

obs,ζi
}

(15)

where 0 < ε� 1 is a hyperparameter and 1{Gi=Gobs,q} denotes the indicator function of copying the edges of the
q-th node of Gobs to replace the edges of the i-th node of G.

4.1.2 Non-parametric graph model

In the non-parametric graph model,23 the prior distribution for a graph G is defined as:

p(G) ∝

{
exp (α1T log(AG1)− β‖AG‖2F ), if AG ≥ 0, AG = AT

G

0, otherwise ,
(16)

where the symmetric adjacency matrix with non-negative entries of the random undirected graph G is denoted by
AG . The first term in the log prior prevents any isolated node in G and the second encourages low weights for the
edges. The scale and sparsity of AG can be controlled using the hyperparameters α and β. As in Section 4.1.1,
we construct a symmetric pairwise distance matrix D(X,YL,Gobs) ≥ 0 using the information provided by X,
YL and Gobs. Based on this, we define the joint likelihood of X, YL and Gobs to be:

p(X,YL,Gobs|G) ∝ exp (−‖AG ◦D(X,YL,Gobs)‖1,1) , (17)

where the symbol ◦ denotes the Hadamard product and ‖ · ‖1,1 denotes the elementwise l1 norm. This likelihood
encourages high values in AG in those positions where the corresponding node pairs have low distance between
them.



4.2 BGCN-GRU

The main idea behind the proposed BGCN-GRU is to replace the GCN block in the GCN-GRU architecture by
a BGCN block. In order to train the BGCN, we need to perform the inference of the posterior of the graph G.
In this setting, we compute the pairwise distance matrix D, based on the predictions of GCN-GRU algorithm:

Di,j(X,YL,Gobs) =
1

T

T∑
t=1

‖si,t − sj,t‖22 , (18)

where si,t is the output of the GCN-GRU node i, at time stamp t. The architecture of the constructed BGCN-
GRU is depicted in Figure 1.

X1 X2 ... Xt-1 Xt

BGCN BGCN BGCN BGCN BGCN

GRU GRU GRU GRU GRU
S1 S2 St-1 St

...

Z1 Z2 Zt-1 Zt

Figure 1: Architecture of the proposed BGCN-GRU.

5. EXPERIMENTAL RESULTS

5.1 Dataset

We conducted experiments on the PEMS-BAY dataset14 which is a traffic dataset that was collected by the Cal-
ifornia Transportation Agencies’ (CalTrans) Performance Measurement System (PeMS). 325 sensors are selected
from the Bay Area. We analyze 6 months of data ranging from Jan. 1st 2017 to May 31st 2017. The graph
has an adjacency matrix of size 325× 325, which represents the road connectivity. Each timestep represents a 5
minute interval, and the total number of timesteps is thus T = 52, 116. Since the dataset does not possess any
node features, we implement the GCN block in a featureless manner (Xt = I). In our work, in order to provide
a more focused comparison and to explore the capacity of the BGCN-GRU to learn from a smaller amount of
data, we examine performance for the first 10, 100, and 1000 timestamps.

We run all the experiments for 5 trials and report the average of MAE, RMSE, and MAPE values over all
trials. We use 80% of our data as the training set (randomly selected nodes) and 20% as the test set. The results
are presented in Table 1.

5.2 Baseline methods

We compare the performance of our proposed methods with the GCN13 and the GCN-GRU17,18 algorithms. For
the GCN algorithm, we train a separate GCN for each timestep by minimizing the MAE cost function for that
particular timestep. The GCN method thus disregards any temporal correlations in the data. When training
the GCN-GRU algorithm, we minimize the average MAE over the training set across all of the timesteps. In
both cases, the architecture of the GCN consists of 2 layers with a hidden layer of 10 units, and the output is a
scalar embedding for each one of the nodes. For all the experiments in Table 1, we set the learning rate to be
0.005 and dropout probability to be 0.2, and we train all of the algorithms for 1000 epochs.

5.3 Evaluation metrics

For all the nodes, let Y = {Yt}Tt=1 and S = {St}Tt=1 be the prediction and the ground truth for all timestamps
respectively. To evaluate the algorithms, we use the following metrics:
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Figure 2: Mean Absolute Error vs. Time (left: 10 timestep scenario; right: 100 timestep scenario)

Root Mean Square Error (RMSE)

RMSE(Y,S) =
1

T

T∑
t=1

√√√√ 1

|V \ Lt|
∑

i∈V\Lt

(yi,t − si,t)2

Mean Absolute Percentage Error (MAPE)

MAPE(Y,S) =
1

T

T∑
t=1

1

|V \ Lt|
∑

i∈V\Lt

∣∣∣∣yi,t − si,tyi,t

∣∣∣∣
Mean Absolute Error (MAE)

MAE(Y,S) =
1

T

T∑
t=1

1

|V \ Lt|
∑

i∈V\Lt

|yi,t − si,t|

Algorithm
10 timesteps 100 timesteps 1000 timesteps

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

GCN 0.0509 0.0685 0.0548 0.0654 0.0877 0.0728 0.0812 0.0996 0.1078
GCN-GRU 0.0613 0.0896 0.0657 0.0454 0.0689 0.0503 0.0623 0.0906 0.1100

BGCN-GRU (Node copying) 0.0326 0.0385 0.0349 0.0184 0.0285 0.0205 0.0544 0.0786 0.1020
BGCN-GRU (Non-parametric) 0.0305 0.0374 0.0325 0.0184 0.0283 0.0205 0.0506 0.0754 0.0981

Table 1: Average MAE, RMSE, and MAPE for prediction on PEMS-BAY dataset

From Table 1, we observe that the proposed BGCN-GRU algorithms have a significantly reduced estimation
error for the 10 and 100 timestep scenarios. In the longer sequence of 1000 timesteps, there are multiple periods
where the time-series exhibit dramatic changes; all of the estimation algorithms perform poorly during these
periods, so the relative performances are more comparable. Figure 2 depicts how the mean absolute error varies
with respect to time for the 10-timestep and 100-timestep scenarios. Both the GCN-GRU and BGCN-GRU
algorithms have a high error for the first timestep but thereafter exhibit stable estimation performance for the
remaining timesteps.



6. CONCLUSION

We have propose a novel methodology for the task of estimating time series on the nodes of a graph using a
Bayesian graph neural network approach. The proposed techniques combine Bayesian GCNs with GRUs. The
resulting algorithms accounts for the uncertainty in the graph structure in a principled way and outperforms the
non-Bayesian baseline algorithms significantly for moderate sequence lengths. Future research directions include
conducting thorough experiments on multiple datasets, handling time varying graphs in the Bayesian framework
and extending the methodology to other graph-based sequential learning tasks such as forecasting and graph
process inference.
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