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ABSTRACT

Sequential MCMC (SMCMC) methods are a useful alterna-
tive to particle filters for performing sequential inference in
a Bayesian framework in nonlinear and non-Gaussian state-
space models. The weight degeneracy phenomenon which
impacts the performance of even the most advanced particle
filters in higher dimensions is avoided. In this paper, we ex-
plore the applicability of the discrete bouncy particle sampler,
which is based on constructing a guided random walk and
performing delayed rejection, to perform more effective sam-
pling within SMCMC. We perform numerical simulations to
examine when the proposed method offers advantages com-
pared to state-of-the-art SMCMC techniques.

Index Terms— Markov chain Monte Carlo, Discrete
Bouncy Particle Sampler, Bayesian inference, high dimen-
sional filtering

1. INTRODUCTION

Particle filters [1] are one of the most widely used tools for
performing Bayesian inference in a sequential setting, a cru-
cial ingredient in many tracking and localization tasks. They
rely on sequential importance sampling, which can be very
inefficient in high dimensions as the weights of most of the
particles become negligible, because they fall into the regions
of state-space where the posterior is very low. This leads to
a poor representation and high variance [2]. Although strate-
gies have been explored to improve performance [3–5], parti-
cle filtering in very higher dimensions remains challenging.

Another direction in solving the filtering problem in
higher dimensions is to use Markov chain Monte Carlo
(MCMC) techniques in a sequential setting. Different vari-
ants of Sequential Markov chain Monte Carlo were pro-
posed in [6–8]. In [9], Septier and Peters provide a unifying
framework for SMCMC methods that employ composite
Metropolis-Hastings (MH) kernels. At time-step k, the j’th
iteration of these SMCMC algorithms involves a joint draw
step to sample a trajectory xjk,0:k from the approximate joint
posterior and subsequently two rounds of refinements (partial
updates to the samples) via Metropolis within Gibbs steps.
First xjk,0:k−1 is refined conditioned on xjk,k; this is fol-
lowed by refinement of xjk,k conditioned on xjk,0:k−1. Septier
and Peters [9] compared different MCMC techniques, de-

veloped to efficiently explore high dimensional spaces (e.g.
MALA [10] and mHMC [11]), as refinement strategies for
xjk,k in the SMCMC framework.

Most MCMC algorithms are based on discrete time re-
versible Markov processes, where the transition kernels are
variations of Metropolis-Hastings algorithm, but recently a
novel class of non reversible piecewise deterministic MCMC
(PD-MCMC) methods have been developed where the target
distribution is explored using continuous time non-reversible
piecewise deterministic Markov processes (PD-MP) [12, 13].
Theoretical and empirical results suggest that non-reversible
Markov processes have better mixing properties and thus pro-
vide estimates of ergodic averages with lower variance [14].
Although the continuous-time methods are appealing, they
have several limitations. The algorithms require simulation
of event times (times when the continuous-time process is
updated). The simulation is challenging and problem spe-
cific; often more information about the target distribution is
required than being able to evaluate it and its gradient point-
wise. For example, in order to implement the bouncy particle
sampler (BPS) [15], which is a non-reversible rejection free
MCMC method, one needs to simulate first the arrival times
of a non-homogeneous Poisson process. This requires local
upper bounds on the derivative of the log of the target dis-
tribution. In many problem settings it is difficult to derive
such bounds and evaluating them is computationally expen-
sive. Aside from these limitations, it is not straightforward to
use such continuous time processes directly in the SMCMC
framework. The refinement procedures in SMCMC require
the use of a discrete MCMC scheme.

In recent work, [16, 17] propose several different discrete
MCMC algorithms, which can be viewed as approximations
to the continuous time PD-MCMC algorithms. These algo-
rithms preserve the correct invariant distribution in spite of
the discretizations. Moreover these techniques do not require
event time simulation, which ensures that they have wider ap-
plicability than the continuous-time techniques. In fact, these
methods can be implemented if we can evaluate the target
and its derivative pointwise. In this paper, we propose the use
of the discrete bouncy particle sampler (DBPS) [17] as the
refinement technique within SMCMC. It was shown in [17]
that the BPS of [15] can be understood as a scaling limit of a
special case of the DBPS.

Our motivation in exploring the use of the discrete bouncy



particle sampler is to examine whether we can achieve im-
proved performance compared to existing SMCMC algo-
rithms that rely on Langevin or Hamiltonian-based refine-
ment [9]. The discrete bouncy particle sampler has the poten-
tial to provide faster mixing with reduced computational cost,
meaning that in a sequential setting such as tracking, where
computation time is limited, we can generate more relevant
samples from the posterior and achieve more accurate esti-
mates of the location of a target and improved assessments of
the uncertainty of these estimates.

The rest of the paper is organized as follows. Section 2
specifies the filtering problem we address. Section 3 reviews
the unifying framework of the SMCMC methods. The pro-
posed refinement scheme, based on DBPS is described in
Section 4. Section 5 describes the numerical simulations and
reports the results. In Section 6 we conclude the paper and
summarize our observations.

2. PROBLEM STATEMENT

We consider the sequential inference task with the following
state-space model:

xk = gk(xk−1, ζk) , (1)
zk = hk(xk, wk) . (2)

Here gk : Rd × Rd′ → Rd denotes the transition function of
the state xk ∈ Rd at time step k and ζk ∈ Rd′ is the pro-
cess noise. The observation zk ∈ RS is generated from the
measurement model hk : Rd × RS′ → RS and wk ∈ RS′ is
the measurement noise. We also assume that hk(xk, 0) is a
C1 function, i.e., hk(xk, 0) is a differentiable function whose
first derivative is continuous. Given a set of observations
z1:k = {zi, i = 1, . . . , k} and an initial distribution p(x0),
our goal is to generate samples from the posterior p(x0:k|z1:k)
and the marginal posterior p(xk|z1:k). These samples can be
used to form estimates of xk and to assess uncertainty.

3. SMCMC

At time step k, the target distribution p(x0:k|z1:k) is denoted
by πk(x0:k) and can be computed pointwise up to a constant
in a recursive manner as follows :

πk(x0:k) ∝ p(xk|xk−1)p(zk|xk)πk−1(x0:k−1) . (3)

As πk−1(x0:k−1) is not analytically tractable, it is impossible
to sample from it in a general nonlinear state-space model. In
all SMCMC methods, that distribution is replaced by its em-
pirical approximation in (3), which leads to an approximation
of the target distribution as follows:

π̆(x0:k) ∝ p(xk|xk−1)p(zk|xk)π̂k−1(x0:k−1) ; (4)

where,

π̂k−1(x0:k−1) =
1

Np

Nb+Np∑
s=Nb+1

δ(x0:k−1 − xsk−1,0:k−1) . (5)

Here, at time k−1, theNp samples obtained from the Markov
chain are denoted by {xsk−1,0:k−1}

Nb+Np
s=Nb+1 , whose stationary

distribution is π̆k−1(x0:k−1). It is noted in [9] that π̆k →
πk, because π̂k−1 → πk−1 as Np → ∞. At time step k,
Nb + Np iterations of SMCMC are run to generate samples
{xsk,0:k}

Nb+Np
s=Nb+1 from the invariant distribution π̆k(x0:k), and

then the target is approximated as:

π̂k(x0:k) =
1

Np

Nb+Np∑
s=Nb+1

δ(x0:k − xsk,0:k) . (6)

In filtering problems, we are only interested in approximat-
ing the marginal posterior distribution of xk, which is ob-
tained from Eq. (6). In that case, we only need to store
{xsk−1,k−1}

Nb+Np
s=Nb+1 from the previous time step k−1, instead

of the full trajectories of the samples. Different choices of the
MCMC kernels are discussed in [9]. If the target distribution
has high dimensionality or complex structure, it is very dif-
ficult to construct a Metropolis-Hastings (MH) kernel that is
well-matched to the target. This causes poor mixing and the
overall performance deteriorates. Instead [9, 18] propose the
use of composite MH kernels that combine a joint proposal
(where both xjk,0:k−1 and xjk,k are updated) with subsequent
individual state variable refinements using Metropolis within
Gibbs steps, within a single MCMC iteration. The algorithm
is summarized in Algorithm 1.

Algorithm 1: Composite MH Kernels in a unifying
framework of SMCMC [9, 18].
Input: xj−1

k,0:k.
Output: xjk,0:k.

Joint draw:
1: Propose x∗k,0:k ∼ qk,1(x0:k|xj−1

k,0:k);
2: Compute the MH acceptance probability

ρ1 = min
(
1,

π̆k(x∗k,0:k)

qk,1(x∗k,0:k|x
j−1
k,0:k)

qk,1(xj−1
k,0:k|x

∗
k,0:k)

π̆k(xj−1
k,0:k)

)
;

3: Accept xjk,0:k = x∗k,0:k with probability ρ1, otherwise
set xjk,0:k = xj−1

k,0:k;
Individual refinement of xjk,0:k−1:

4: Propose x∗k,0:k−1 ∼ qk,2(x0:k−1|xjk,0:k);
5: Compute the MH acceptance probability ρ2 =

min
(
1,

π̆k(x∗k,0:k−1,x
j
k,k)

qk,2(x∗k,0:k−1|x
j
k,0:k)

qk,2(xjk,0:k−1|x
∗
k,0:k−1,x

j
k,k)

π̆k(xjk,0:k)

)
;

6: Accept xjk,0:k−1 = x∗k,0:k−1 with probability ρ2;
Individual refinement of xjk,k:

7: Propose x∗k,k ∼ qk,3(xk|xjk,0:k);
8: Compute the MH acceptance probability

ρ3 = min
(
1,

π̆k(xjk,0:k−1,x
∗
k,k)

qk,3(x∗k,k|x
j
k,0:k)

qk,3(xjk,k|x
j
k,0:k−1,x

∗
k,k)

π̆k(xjk,0:k)

)
;

9: Accept xjk,k = x∗k,k with probability ρ3;

In this paper, we use invertible particle flow [19] to con-



struct a composite MH kernel for the joint draw in SMCMC,
as proposed in [20]. This was shown to lead to a higher ac-
ceptance rate in the joint draw step compared to employing
an independent MH kernel based on the prior as the proposal,
as used in the numerical experiments with the SmHMC al-
gorithm in [9]. Both the localized exact Daum and Huang
(LEDH) [21] flow and the exact Daum and Huang (EDH) [22]
flow can be used to construct the kernel. We use EDH because
the computational requirements are much less. For individual
refinement of xjk,0:k−1, we use qk,2 = π̂k−1.

4. INDIVIDUAL REFINEMENT BASED ON
DISCRETE BOUNCY PARTICLE SAMPLER

In this section, we introduce a novel individual refinement
scheme for xk (lines 7 and 8 of Algorithm 1) based on the
discrete bouncy particle sampler (DBPS) [17]. The refine-
ment of xk consists of a Metropolis within Gibbs step to sam-
ple a new value of xjk,k ∼ π̆(xjk,0:k−1, xk), based on a local
proposal. We propose to use the DBPS algorithm to accom-
plish this. The DBPS scheme is run for Nthinning iterations,

initialized at x(0)
k = xjk,k, and the output of the Markov chain

x
(Nthinning)

k is taken to be the refined xjk,k. Pseudocode is
provided in Algorithm 2.

The algorithm is based upon a guided random walk and
a delayed rejection procedure [23]. For simplicity, let us as-
sume that the preconditioning matrix,M is the identity matrix
for now. We will explain its role below.

Once converged, each iteration of DBPS samples form
a extended joint distribution of (xk, v) in a 2d dimensional
space, which admits φ(xk) as its xk marginal. The orienta-
tion v is an auxiliary variable used to explore the space by
local moves. Its marginal is spherically symmetric.

At the beginning of i’th iteration of the DBPS, a move
from the current state (x

(i−1)
k , v(i−1)) to (x

(i−1)
k + v(i−1),

−v(i−1)) is proposed and accepted with the MH acceptance
probability. This move is thus reversible with respect to the
extended target. Irrespective of the acceptance or rejection
of the move, a flip move in orientation v always follows.
The net result of two reversible moves is a non-reversible
Markov chain which keeps moving in the same direction, un-
til a rejection happens at line 7 in algorithm 2. If (x

(i−1)
k +

v(i−1),−v(i−1)) is rejected, the gradient at the rejected point
is calculated and a reflection of (x

(i−1)
k , v(i−1)) in the tangent

hyperplane perpendicular to the gradient is proposed. The ac-
ceptance probability of this proposal is set in such a way that
the detailed balance is preserved with respect to the extended
target, following the delayed rejection approach.

The preconditioning helps the procedure to explore the
space in a more efficient way if the target has significantly
different scales across its various dimensions. When we mul-
tiply byM−1, we adjust for these differences. This eliminates
the need to find a suitable step-size to propose the local move,

without affecting the desirable theoretical properties of the
DBPS.

Algorithm 2: Individual refinement according to DBPS
[17].
Input: x(0)

k , Nthinning.

Output: x
(Nthinning)

k .
1: Define the target distribution :
φ(xk) = π̆(xjk,0:k−1, xk) ∝ p(xk|xjk,k−1)p(zk|xk);

2: Compute Γ ≈ −Ezk|xk [∇2 lnφ(xk)]|
xk=x

(0)
k

;
3: Compute the preconditioning matrix, M , from the

Cholesky decomposition of Γ, i.e., Γ = MTM ;
4: Sample initial orientation v(0)

∗ from the uniform
distribution on the unit d dimensional hypersphere;

5: Apply preconditioning : v(0) = M−1v
(0)
∗ ;

6: for i = 1 to Nthinning do

7: Propose, (x
′(i)
k , v′(i)) = (x

(i−1)
k + v(i−1),−v(i−1));

8: Accept the proposal (x
(i)
k , v(i))← (x

′(i)
k , v′(i)) with

probability, α(x
(i−1)
k , x

′(i)
k ) = min

(
1,

φ(x
′(i)
k )

φ(x
(i−1)
k )

)
,

and go to step 11;
9: Propose, (x

′′(i)
k , v′′(i)) where

v′′(i) = −v(i−1) + 2
〈v(i−1),w′(i)〉
w′(i)TΓw′(i)

Γw′(i) ,

w′(i) = ∇ lnφ(xk)|
xk=

′(i)
k

and

x
′′(i)
k = x

(i−1)
k + v(i−1) − v′′(i);

10: Accept the proposal (x
(i)
k , v(i))← (x

′′(i)
k , v′′(i))

with probability, α(x
(i−1)
k , x

′(i)
k , x

′′(i)
k ) =

min
(
1,

(1−α(x
′′(i)
k ,x

′(i)
k ))

(1−α(x
(i−1)
k ,x

′(i)
k ))

φ(x
′′(i)
k )

φ(x
(i−1)
k )

)
, otherwise

set (x
(i)
k , v(i)) = (x

(i−1)
k , v(i−1));

11: Update (x
(i)
k , v(i))← (x

(i)
k ,−v(i));

12: end for

5. NUMERICAL EXPERIMENTS AND RESULTS

The SmHMC (SMCMC with manifold Hamiltonian Monte
Carlo kernel) algorithm achieves the lowest average MSE
among a variety of SMCMC algorithms in the large sen-
sor field simulation setup used in [9]. Thus, we would like
to compare the proposed SDBPS+EDH with SmHMC and
SmHMC+EDH in the same simulation example. The setup
has d sensors uniformly deployed on a two-dimensional
grid {1, 2, . . . ,

√
d} × {1, 2, . . . ,

√
d}. The observation

zk = [z1
k, z

2
k, . . . , z

d
k ] contains noisy measurements condi-

tioned on the state vector xk = [x1
k, x

2
k, . . . , x

d
k]. The state

transition density follows a multivariate generalized hyper-
bolic skewed-t distribution:



p(xk|xk−1) =
e(xk−αxk−1)TΣ−1γ√

(ν +Q(xk))(γTΣ−1γ)
− ν+d2 (1 + Q(xk)

ν )
ν+d
2

×K ν+d
2

(
√

(ν +Q(xk))(γTΣ−1γ)) (7)

where γ and ν determine the shape of the distribution, K ν+d
2

is the modified Bessel function of the second kind of order
ν+d

2 , and Q(xk) = (xk − αxk−1)TΣ−1(xk − αxk−1). The
(i, j)-th entry of the dispersion matrix Σ is:

Σi,j = α0e
− ||R

i−Rj ||22
β + α1δi,j (8)

where || · ||2 is the L2-norm, Ri is the physical location of the
i-th sensor, and δi,j is the Kronecker symbol. The covariance
is given as :

Σ̃ =
ν

ν − 2
Σ +

ν2

(2ν − 8)(
ν

2
− 1)2

γγT . (9)

The measurements are count data which are distributed ac-
cording to:

p(zk|xk) =

d∏
c=1

P(zck;m1e
m2x

c
k) , (10)

where P(·; Λ) is the Poisson distribution with mean Λ. Pa-
rameter values are set according to [9]: α = 0.9, α0 =
3, α1 = 0.01, β = 20, ν = 7. All elements of the skew-
ness parameter vector γ are set to 0.3. True states start with
xc0 = 0, for c = 1, . . . , d. For the measurement model,
m1 = 1 and m2 = 1

3 . We set d = 144. The experiment is
executed 100 times for 10 time steps. We approximate the Γ
matrix required in line 2 in algorithm (2) as follows :

Γ = Σ̃−1 + Λ(x
(0)
k ) , (11)

where Λ(xk) is a d × d diagonal matrix with Λ(xk)(c,c) =

m1m
2
2e
m2x

c
k .

We report mean square error obtained at each sensor lo-
cation, acceptance rates (if applicable) and execution time per
step in Table 1. We observe that the proposed SDBPS+EDH
algorithm performs slightly better than SmHMC+EDH. Both
SmHMC and SDBPS algorithms exhibit considerably lower
MSE if particle flow is incorporated in the joint draw. The
EDH filter achieves the smallest MSE and is computation-
ally very fast, but it is not a statistically consistent algorithm,
because of the approximations in the flow and modelling mis-
match. The PF-PF (EDH) [19] algorithm performs reasonably
whereas the BPF has the highest MSE because of weight de-
generacy. As the computational burden for various SMCMC
methods are quite different form one another, we evaluate the
SMCMC methods while varying the number of particles to
understand the tradeoff between accuracy and execution time.
Figure 1 shows the variation of MSE with execution time for
the SMCMC methods considered here. For comparable com-
putational cost, the SMCMC algorithms employing the DBPS
can generate many more samples than those employing HMC.

Table 1. Average MSE, acceptance rates (if applicable) and
execution time per step based on 100 simulation trials. Re-
sults are produced with an Intel i7-4770K 3.50GHz CPU and
32GB RAM.

Algorithm
No. of

Particles
Avg.
MSE

Acceptance rate
Exec.

time (s)
ρ1 ρ2 ρ3

SmHMC 1000 0.81 0.0007 0.003 0.72 78.93
SDBPS 35000 0.99 0.02 0.0001 0.91 57.82

SmHMC + EDH 1000 0.72 0.0357 0.002 0.69 81.72
SDBPS + EDH 35000 0.71 0.02 0.0001 0.91 70.58

EDH 200 0.69 - - - 0.040
PF-PF (EDH) 105 0.80 - - - 6.07

BPF 106 1.39 - - - 5.32
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Fig. 1. MSE (averaged over 100 trials) vs Exec. time of vari-
ous SMCMC algorithms, Exec. time is shown in log scale.

6. CONCLUSION

In this paper, we explore the use of the discrete bouncy par-
ticle sampler as a refinement strategy within the SMCMC
framework. We use an independent Metropolis-Hastings ker-
nel based on invertible particle flow in the joint draw step.
We observe that for a similar computation time the proposed
algorithm can generate many more samples than SMCMC al-
gorithms employing (manifold) Hamiltonian Monte Carlo for
refinement. Although many more samples are provided, this
translates to only a small improvement in the accuracy of the
state estimates.

Future research will involve more thorough experimenta-
tion with other state-space models and exploration of other
PD-MCMC schemes in SMCMC. The promising perfor-
mance of the discrete bouncy particle sampler suggests that
there is value in exploring other discrete sampling algorithms
that can better exploit the structure of the target distribution.
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[15] A. Bouchard-Côté, S. J. Vollmer, and A. Doucet, “The
bouncy particle sampler: A non-reversible rejection-free
Markov chain Monte Carlo method,” ArXiv e-prints
arXiv:1510.02451v6, Oct. 2015.

[16] P. Vanetti, A. Bouchard-Côté, G. Deligiannidis, and
A. Doucet, “Piecewise deterministic Markov chain
Monte Carlo,” ArXiv e-prints arXiv:1707.05296, July
2017.

[17] C. Sherlock and A. H. Thiery, “A discrete bouncy par-
ticle sampler,” ArXiv e-prints arXiv:1707.05200, July
2017.

[18] F. Septier, S. K. Pang, A. Carmi, and S. Godsill,
“On MCMC-based particle methods for Bayesian fil-
tering: Application to multitarget tracking,” in Proc.
IEEE Intl. Workshop Computational Advances in Multi-
Sensor Adaptive Processing (CAMSAP), Aruba, The
Netherlands, Dec. 2009, pp. 360–363.

[19] Y. Li and M. Coates, “Particle filtering with invertible
particle flow,” IEEE Trans. Signal Processing, vol. 65,
no. 15, pp. 4102–4116, Aug. 2017.

[20] Y. Li and M. Coates, “Sequential MCMC with invertible
particle flow,” in Proc. Intl. Conf. Acoustics, Speech and
Signal Proc. (ICASSP), New Orleans, USA, Mar. 2017,
pp. 3844–3848.

[21] T. Ding and M. J. Coates, “Implementation of the
Daum-Huang exact-flow particle filter,” in Proc. IEEE
Statistical Signal Processing Workshop (SSP), Ann Ar-
bor, MI, USA, Aug. 2012, pp. 257–260.

[22] F. Daum and J. Huang, “Particle flow for nonlinear fil-
ters with log-homotopy,” in Proc. SPIE Conf. Signal and
Data Processing of Small Targets, Orlando, FL, USA,
Apr. 2008, p. 696918.

[23] L. Tierney and A. Mira, “Some adaptive Monte Carlo
methods for Bayesian inference,” Stat. Med., vol. 18,
pp. 2507 – 2515, Aug. 1999.


