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Abstract

The use of mobile data services is in high demand ever since the advent of smartphones

and is expected to increase further with the evolution of various services and applications

for future mobile devices. This excessive use of data has caused severe bottlenecks within

the mobile networks due to overloading. The route towards network upgrades is an expen-

sive one especially due to the high licensing fees attached to spectrum acquisition. Traffic

offloading through opportunistic communication is a new paradigm exploiting the meeting

opportunities within emerging Mobile Social Networks for the dissemination of delay toler-

ant contents without any additional investment. The idea is to save the network bandwidth

by pushing the content optimally to as few users as possible from base station and then

exploit the social interactions of social group members for content distribution among them-

selves by using point to point communications through WiFi or Bluetooth. Several studies

suggests that there exists strong community architecture within contact graph of Mobile

Social Networks i.e. the edges are not randomly distributed over nodes but in the form of

clusters. We study the problem of dissemination of a large file in community based mobile

social network where base station seeds the contents of the file initially to some users within

each community. Furthermore, we determine whether it is more efficient in terms of latency

and number of transmissions to transfer encoded or uncoded contents during opportunis-

tic meetings by comparing different coded (Network Coding, Erasure Coding) and uncoded

(Flooding, Epidemic Routing) data dissemination strategies in mobile social network.
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Chapter 1

Introduction

1.1 Motivation

Global mobile data usage has been rapidly increasing for the past few years. In 2010, global

mobile data traffic grew 2.6-fold [1] and is expected to continue to grow at a fast pace for

the next five years. A significant portion of this traffic includes video. Mobile video traffic

will exceed 50% of the total mobile data usage for the first time in 2011 [1] .

Every day, thousands of mobile devices (phones, tablets, cars, etc) use the wireless in-

frastructure to retrieve content from Internet-based sources. The content also has become

increasingly larger in size (video, software upgrades on smartphones). This has started to

put an immense burden on the limited spectrum of infrastructure networks. The exceed-

ingly expensive license fees placed on spectrum acquisition makes bandwidth expansion an

expensive route for the service providers. Efforts are being made to look for alternatives

which can be used to offload some of this traffic [2–5]. In some areas Wi-Fi base stations

and hotspots have been deployed, with some success, to shift some of the demands from

the mobile infrastructure. Interoperability issues with the cellular network and interference

concerns between adjacent Wi-Fi access points need to be addressed before it can be adopted

on a larger scale.

Recently, there has been a growing interest in opportunistic networking which is a cost-

effective way of offloading some of the traffic from the mobile infrastructure. The scheme

is based on peer-to-peer data sharing among mobile wireless devices and hence no infras-

tructure is required to support it. Communication is usually done using short-range Wi-Fi

or Bluetooth connectivity. It has been shown that short-range communication usually con-
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sumes much less energy than long-range [6]. The hand-to-hand distribution of content makes

it ideal to target applications which have high spatial significance such as local and general

news, sports, schedules. If subsets of users can be identified which subscribe to the same

service and have high spatial locality, some of these users can be seeded with information

to be spread to the entire population through opportunistic contacts. Our study involves

devising a practical scheme to disseminate such content to subscribers.

1.2 Background

Opportunistic networks have gained significant attention in the literature recently. Sev-

eral potential applications of opportunistic networks have attracted researchers to study the

problems of data routing and forwarding in these networks. There are various application

scenarios for opportunistic networks. These include providing connectivity to nomadic and

rural communities (DakNet [7], SNC [8]), interplanetary communication networks, wild life

monitoring (ZebraNet [9]), underwater species monitoring (SWIM [10]) and content distri-

bution in urban settings like the Cambridge Pocket Switched Network (PSN) [11]. We are

considering the last application in our study.

Mobile social networks are an evolving class of opportunistic network and a new com-

munication paradigm where mobile users communicate with each other through occasional

communication opportunities. Such opportunities can be either scheduled or completely

random. The widespread use of advanced small portable mobile devices like smartphones

and tablets, with abundant local resources including storage space, local connectivity (WiFi,

Bluetooth) and computing power enable their use for content sharing whenever the devices

come in contact with each other through inter-device contacts due to human mobility. The

communication opportunities arise where peoples belonging to different walks of life interact

with each other socially in offices, class rooms, conferences, community centres etc.

1.2.1 Contact Graph and Community Architecture

In mobile social networks contacts happen due to mobility of individuals carrying mobile

devices. Such contacts reflect the complex structure in the movement of people in the form

of chance meetings with strangers, intentional meetings with colleagues, friends, family or

familiar strangers due to similarity in mobility patterns. The structure of such mobility

scenarios can be represented by aggregating the entire sequence of contacts of a trace to a
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static, weighted contact graph G(N,W) with nodes N and weight matrix W = wij [12].

In this graph each device or a person carrying a device is represented as node and the link

weight wij represents the relationship strength between nodes i and j. The weights that

have been chosen in the literature are frequency of contacts [13], age of last contact [14],

aggregate contact duration [13] and the combination of contact frequency and duration

[12]. For experimental studies of mobile social networks, user mobility that governs pair-

wise meeting of users in social networks has been based on real mobility measurements or

synthetic mobility models. Real mobility datasets include Dartmouth (DART) [15], ETH

Campus (ETH) [16], Gowalla (GOW) [12], MIT Reality Mining (MIT) [17]. The synthetic

mobility models that use methodologies to map contacts to a conceptual social graph include

Time Variant Community Model(TVCM), Home-cell Community-based Mobility(HCMM)

and SLAW [18–20].

The mobility scenarios from the contact graphs reveal the presence of underlying commu-

nities, bridges, hubs and other social structures common in social networks. Communities

are modular structures or subsets of nodes with stronger connections between them than

other nodes. They generally represent social groups formed among friends, co-workers etc.

In [12] Hossmann et al. apply the Louvian algorithm [21] to identify communities in the

aforementioned real and synthetic mobility models as depicted in Table 2.1. Their results

provide evidence for the presence of communities in mobile social networks.

Identified Communities
Trace/Model No. of Nodes No. of Communities

DART 1044 24
ETH 285 30
GOW 473 29
MIT 92 6

TVCM 505 10
HCMM 100 10
SLAW 100 2

Table 1.1 Number of Communities identified in [12] using Louvian algorithm
[21] on different mobility traces and models.

To capture the structural and pair-wise statistics in people’s movements, we use the

LFR benchmark software [22, 23] to generate weighted contact graphs G(V;E;w), where

individuals are represented by vertices V , relationships between individuals by the edges E
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and the weights w represent the expected contact rates between pairs of users connected by

an edge. There are many tools for creating these social graphs; but the LFR benchmark

software is effective in providing a model which captures real-world characteristics present

in human-mobility traces (power-law degree distribution, community structure, power-law

based community size distribution, adjustable ratio between inter-community and intra-

community weights).

LFR benchmark is a special case of the planted l -partition model [24] in which commu-

nities are of different sizes and nodes have different degrees. With the LFR benchmark,

graphs having different communities and groups can be generated. A mixing parameter µt

expresses the ratio between the external degree (number of edges outside community) and

the total degree of the node. This ratio can be controlled to vary the connectivity between

communities. Each node shares a fraction 1−µt of its links with nodes in its community and

a fraction µt with nodes outside its community. Other parameters that can be customized

include the number of nodes N, the average degree of a node k, the minimum community

size minc and the maximum community size maxc. Each node is given a degree drawn from

a power law with exponent γ = 2. The community sizes also follow power law distribution

with exponent ranging from 1 to 2. The values of power law exponents are typical of those

found in real networks [22,25]. Assignment of weights on edges lying within the community

as well as outside the community is handled by two parameters µw and β. The parameter

β is used to assign a strength si to each node, si = kβi , where ki is the degree of node i.

Such a power law relationship between the strength and the degree of a node is frequently

observed in real weighted networks [26]. A high value for strength si means the user i

meets its neighbours more frequently. The parameter µw is used to assign strength s to

each node. There are two type of strengths associated with each node. An internal strength

s
(in)
i = (1 − µw)si indicates how strongly the node is connected to other nodes within its

community and the external strength s
(out)
i = µwsi shows the same relationship outside the

node’s community. The weights on individual edges can be assigned ensuring that the intra-

community edge weights sum to s
(in)
i while the inter-community weights aggregate to s

(out)
i .

This can be accomplished by minimizing the variance of squared error [23], which is given by:

V ar(wij) = Σi(si − ρi)2 + (s
(in)
i − ρ(in)i )2 + (s

(out)
i − ρ(out)i )2.

Here, ρi = Σjwij , ρ
(in)
i = Σjwij.k(i, j), ρ

(out)
i = Σjwij.(1 − k(i, j)) , where the function
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k(i, j) = 1 if nodes i and j lie in the same community, and k(i, j) = 0 otherwise. The mean

inter-contact interval (cij) between nodes i and j is (cij) = 1
wij

.

The output of the LFR benchmark is a weighted undirected graph. The membership of

each node is also provided. Membership in our context indicate the community with which

a node is associated. We consider the membership of nodes to be hard ; each node can only

be associated with a single community. The hard membership assumption is also considered

by the work done in [27,28] for epidemic dissemination in scale free and social networks.

1.2.2 Content Distribution in Opportunistic Networks

Content distribution on the Internet refers to the delivery of digital multimedia for example

multimedia files, streaming audio and video and software to a large number of users over

internet. P2P networks like BitTorrent, KaZaA etc. are the famous content distribution

systems over the Internet. Today a large percentage of Internet traffic is related to content

distribution. The collaboration of devices in opportunistic networks can increase the chances

of content dissemination but it is not an easy task to carry out. The inherent properties of

opportunistic networks make it more difficult and challenging. The pairwise contact times

and contact durations are important parameters in opportunistic networks. The contact du-

rations are usually short so the type and the amount of content to share should be simple and

compact in formats. This pairwise content exchange paradigm has motivated researchers to

study the development of algorithms that can fully exploit the contacts to opportunistically

disseminate data among all devices in the network.

Papadopouli et al. proposed 7DS [29] a peer-to-peer dissemination and sharing system

for mobile devices having intermittent connectivity. In 7DS nodes which are experiencing

intermittent connectivity can query the peers in their proximity, to determine if they either

have data cached or have Internet access and thus can forward or relay the data. In [30]

Lindemann et al. proposed a variant of 7DS using epidemic routing for information dis-

semination in MANETS. In [31] mobility-assisted wireless podcasting is proposed to offload

traffic from the cellular operator’s network. The approach reduces spectrum usage in cel-

lular networks by distributing content to some percentage of users that have the strongest

propagation channels.

Pocket Switched Networks (PSNs) strive to convey messages in networks where users are
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mobile by exploiting the local and global connectivity [11, 32]. They are based on a set of

assumptions such as a user carry mobile device with significant storage space, the users are

willing to carry messages for other users in network, the devices have local connectivity in

them along with global connectivity. Haggle [33] is a real implementation of a PSN to explore

the contact and inter-contact time values in order to design appropriate forwarding policies

for opportunistic exchange of information between devices. Haggle keeps track of mobility

traces for human movements in real experiments by extracting the mobility information from

mobile device carried by individuals.

In [34] Leguay et al. have done an experimental study for a period of two months in an

urban setting by collecting device contacts with each other and have analysed their properties

for data forwarding. This connectivity information was then utilized to study the feasibility

of city-wide content distribution networking. By classifying users with different behavioural

patterns they analysed the effectiveness of this user population in distributing contents.

In [35] LeBrun et al. explored the feasibility of spreading content of interest using transit

buses in the University of California, Davis campus. Each bus has a Bluetooth Content Dis-

tribution cache called BlueSpot installed, which holds the content of interest, and any device

that has a bluetooth connectivity switched on can connect to these caches and download the

content of interest during the idle time while the bus is en route. The authors predict the

provision of services like on demand paid iTunes music file as a future potential application.

Karlsson et al. propose a receiver-driven broadcasting system in [36]. The system en-

hances the infrastructure based broadcast system that exploit the pair-wise contacts of mo-

bile nodes to spread the content. The content distribution problem has been studied through

simulation and a practical test bed. The test bed based system uses Bluetooth as a wire-

less communication mechanism to spread out the content among mobile nodes when they

interact each other through their pair-wise meetings. Instead of flooding to everyone who

is met, the system smartly allows nodes to decide on what to download and from whom to

download during encounters.

In [37, 38], optimal and scalable content distribution policies are presented in publish

subscribe mobile social networks where users subscribed a news-feed, a blog, or a service

that monitors stock prices or traffic congestion, assist each other in retrieval of common

subscribed services. Such transmission policies strive to increase the freshness of the content

such that at any point in time a large percentage of users within network have the most

up-to-date information.
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1.2.3 Routing In Opportunistic Networks

Routing in opportunistic networks is a challenging task. The inherent properties of the

networks make it difficult because the network topology evolves frequently and this infor-

mation in most cases is not communicated to nodes. In [39] a detailed hierarchy of the

routing protocols for opportunistic networks is presented. For the applications of content

distribution, dissemination based routing has been considered in various studies. Dissemina-

tion based routing performs delivery of message by simply diffusing it all over the network.

The dissemination routing protocols for opportunistic networks can broadly be classified

as replication based and coding based [40]. In replication based routing multiple identical

copies of data are injected into the network and distribution of data to all nodes of network

relies on node movement. In coding based routing the data is initially transformed into

coded blocks. These coded blocks are then disseminated within network and upon reception

of sufficient encoded data, the original data is recovered through decoding. To clarify the

difference, replication based schemes require the successful delivery of each individual data

block whereas for coded schemes the data is recovered from subset of any sufficiently large

encoded blocks. We are considering flooding and epidemic routings for replication based

routing and network coding and erasure coding based routing for coding based routing.

1.2.3.1 Uncoded Content Dissemination

Flooding

In flooding, every node forwards non-duplicated packets (those which it has not forwarded

to the same node earlier) to the nodes it meet. In [41], flooding has been considered in

opportunistic networks. A node does not relay back a packet to the node from which it

has received this packet. In this approach, the sending node does not have any information

regarding the packets that the receiving node has already downloaded. Let the two meeting

nodes be A and B. During a specific meeting node A selects a packet randomly which it

has not yet forwarded to node B. If node A does not find such a packet, the transmission

opportunity is missed during that meeting. Node B follows the same procedure during the

meeting. In this case there could be redundant transmissions because the receiving node

may already have received the packet being sent from some other node.
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Epidemic Routing

With Epidemic Routing [42] content diffuses in the network similar to a disease or virus [39].

We are implementing epidemic routing as described in [43]. When two nodes A and B meet,

through the exchange of packet identifiers we assume that both the nodes know the packets

in each others’ buffers. Let SA and SB represent the set of packets stored by node A and

B respectively. Node A chooses a packet from the set SA − SB to transmit to node B such

that the packet transmitted is always new to node B. If the set is empty, node A misses the

transmission opportunity. Node B repeats the same procedure.

In [43,44] three policies were discussed as to which packet to exchange from set SA−SB.

First in the random policy node A may choose any packet from the set SA − SB with

equal probability. Second, in the local rarest policy, a node downloads the packet which

is rarest in its neighbourhood. The rarity of the packet is determined by the number of

copies of a packet present in its neighbourhood. BitTorrent also utilizes a local rarest policy

for peer to peer content dissemination. Third, in the global rarest policy, the packet is

downloaded based on the rarity of packet within the complete network which is very hard

to track, hence global rarest is unrealistic and is not considered in our implementation. We

implement random and local rarest policy based epidemic routing for comparison among

different content dissemination schemes.

1.2.3.2 Encoded Content Dissemination

Network Coding

The concept of network coding was introduced in the pioneering work of Ahlswede et al. that

established the value of coding in routers and provided theoretical bounds on the capacity

of networks that employ coding [45]. As proved in [46–48] for multicast traffic, linear codes

achieve the maximum capacity bounds and coding and decoding can be done in polynomial

time, Ho et al. proved that it is still true in case even if the routers choose random coefficients

[49].

Network coding was initially proposed for throughput improvements but it has also been

applied for content distribution. In [44] Gkantsidis et al. developed a content distribution

system (Avalanche) based on network coding. In [50] Ma et al. developed a content dis-

semination system based on sparse network coding using the Chord protocol that generates

independent network encoded packets with high probability. In [51] network coding based
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on probabilistic routing is presented for efficient communication on extreme networks. The

study of [43] revealed through simulations and analysis that incorporating network coding

in epidemic routing is beneficial than replication based epidemic routing in Delay Tolerant

Networks (DTNs).

With network coding, the file that has to be distributed is divided into k packets of the

same size. The network coded packets that are distributed among the users are the linear

combination of all such packets. The network coded packet also contains the vector of linear

coefficients used to create it. For content distribution, the base station provides such network

coded packets to the nodes. Upon meeting, the two nodes share with each other the linear

combination of the network coded packets present in their respective buffers by generating

a coefficient vector within the finite field. The generated coefficient vector is then updated

within the resulting packet by multiplying with the already existed coefficient vector within

the network coded packets used to generate this new packet. Once the receiver accumulates

k independent packets it can recover the complete file by inverting the coefficient matrix.

P = C−1P′

where P is the vector of k packets belonging to original file that have to be recovered, C is

the k × k matrix of coefficient vectors and P′ is the vector of k independent network coded

packets. 
p1
...

pk

 =


c11 . . . c1k
...

. . .
...

ck1 . . . ckk


−1 

p′1
...

p′k



Erasure Coding

Erasure coding is also a scheme used for data dissemination. Spoto et al. presented a

BitTorrent system based on LT fountain codes [52]. In [53] ToroVerde – a push based P2P

content distribution system employing fountain codes is presented. In [41] Wang et al. study

erasure coding based routing in an opportunistic network formed by the real mobility dataset

of ZebraNet [9]. Their result showed that erasure coding can achieve the best worst case

delay performance from source to destination routing with fixed overhead. In [54] erasure

coding has been employed to exploit redundancy to cope with failures in Delay Tolerant

Networks (DTNs).
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Unlike network coding where each node encodes packets before forwarding, in erasure

coding only the source or server encodes the file. The idea of erasure coding is to incorporate

redundancy so that in case of a lost packet a new encoded packet can be used to recover the

lost one. In this way sequential transmission is not required. In the case of opportunistic

networks, erasure coding provides the means to have successful meeting (in which packet

transfer occurs). Because nodes can download the missing packets with more probability

than no encoding. The reason is erasure coded packet represents the exclusive-OR (XOR-

ed) version of original packets instead of single packet and hence the chances of receiving

the missing packets increase.

Depending on the count of a number of packets erasure coding is classified as k/n rate

(where n encoded packets are generated by the source from k original file packets) or as

rateless coding. The idea of rateless coding is associated with codes also termed as fountain

codes [55] where a theoretically infinite number of encoded packets can be generated by the

source. With ideal source coding only k encoded packets are needed to recover or decode a

file; practically, slightly more than k packets are needed. Based on the encoding/decoding

complexity and time, different types of erasure codes have been proposed. They are classified

as Rate based which includes Reed Solomon , Tornado Codes and Rateless which includes

Luby Transform (LT) and Raptor Codes. We implement LT codes based erasure coding for

content dissemination because of their simple encoding and decoding process. Below is the

brief description of LT codes.

LT (Luby Transform) Codes

LT codes [56] are the first practical realization of the rateless or fountain codes i.e., the

number of encoding symbols that can be generated from the data is potentially limitless.

The process of encoding is very simple.

1. Randomly choose the degree d of the encoding symbol from the degree distribution.

The degree distribution is very important for successful operation of LT Codes and we

will discuss it later.

2. Randomly choose d input symbols as neighbours of the encoding symbol from the

uniform distribution.

3. The value of the encoding symbol is the exclusive-or (XOR) of the d neighbours.
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The decoder can decode the encoded symbols to recover the input data if it knows the de-

gree and set of neighbours of each encoding symbol. The decoding process works as follows.

“If there is at least one encoding symbol that has exactly one neighbour then the neighbour can

be recovered immediately since it is a copy of the encoding symbol. The value of the recovered

input symbol is exclusive-ored (XORed) into any remaining encoding symbols that also have

that input symbol as a neighbour, the recovered input symbol is removed as a neighbour from

each of these encoding symbols and the degree of each such encoded symbol is decreased by

one to reflect this removal” [56].

Luby discussed that the design criteria for degree distribution is based on two goals.

1. The number of encoding symbols required to ensure decoding success should be as few

as possible.

2. The average degree of the encoding symbols should be as low as possible.

He identified a degree distribution called the Robust Soliton distribution. If δ is the de-

coding failure probability of the decoder to recover the data from a given number K encoding

symbols then k input symbols can be recovered from a set of K = k + O(ln2(k/δ)
√
k) fully

randomly generated encoding symbols. For all d, µ(d) is the probability that an encoding

symbol has degree d. The degree distribution is given by,

µ(i) = (ρ(i) + τ(i))/β For all i = 1, ...., k

τ(i) =


R/ik for i = 1, ..., k/R− 1

R ln(R/δ)/k for i = k/R

0 for i = k/R + 1, ..., k

where R = c ln(k/δ)
√
k for some suitable constant c > 0, which as per [57] is bounded by

1

k − 1

√
k

ln(k/δ)
≤ c ≤ 1

2

√
k

ln(k/δ)
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ρ(i) =

{
1/k for i = 1

1/i(i− 1) for i = 2, ..., k

β = Σk
i=1ρ(i) + τ(i)

In order to decode, a receiver needs to receive slightly more packets than the number of

packets in the original file. These excess packets constitute the overhead of erasure coding

and determine its efficiency.

1.3 Problem Statement

We are interested in determining the importance of detecting communities in opportunistic

networks with mobile carriers. We analyze the deviation in performance, in terms of the rate

at which mobile users obtain a file, between seeding each community independently with the

complete file versus randomly seeding file packets to the network for different degrees of

community structure in the network. Network coding has been shown to be efficient in large

scale file distribution [58]. In our analysis, we compare dominant encoded and unencoded

strategies for file dissemination.
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Chapter 2

Content Dissemination in

Community-based Networks

In this chapter, we investigate the performance of encoded and unencoded file dissemination

techniques discussed in Section 1.2.3 for networks exhibiting varying degrees of community

structure. For every dissemination scheme whether coded or uncoded, the base station

initially seeds some of the nodes within each community or network using some predefined

seeding strategy. For every dissemination scheme whether coded or uncoded, the base station

initially seeds some of the nodes within each community or network using some predefined

seeding strategy. The different seeding strategies are discussed in Section 2.1. After this

initial seeding, all the nodes gather missing packets via the employed dissemination strategy

upon meetings with other nodes opportunistically. The complete dissemination process is

shown in Figure 2.1.

Our analysis is based on networks generated using the LFR benchmark graph generation

software. The software allows us to customize the depth of community structure in the

synthetically generated network. The following sections discuss experimental details for the

comparison like the file (content) and packet size, the seeding strategies that the base station

employs for initial seeding and the underlying graph that governs the social interactions

among users.
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Cellular Delivery

Mobile-to-Mobile Delivery

Fig. 2.1 Content Dissemination Process showing initial seeding from Base

Station and Opportunistic content sharing among nodes themselves after initial

seeding.

2.1 Experimental Details

2.1.1 File and Packet Size

We assume the content size i.e. the file size to be 10 MBytes which is equal to 10240 KBytes.

We divide this file into 128 KBytes equally sized packets or blocks. Total number of packets

is now n = 10240/128 = 80. Each of such packet will comprises of 131072 symbols of 1 byte

thus forming a packet of size 128 KBytes similar to the block size definition of [50] where

the block size of 256 KBytes was considered.

We assume that during a contact; flooding, epidemic routing, network coding and erasure

coding can exchange one packet of size 128 Kbytes which is realistic if we assume 802.11n

MAC layer. Assuming the communication takes place over 802.11n enabled devices, a close

range point-to-point communication can support a data-rate of up to 150 Mbit/s or 19200

Kbytes/s on a bi-directional link. For such a setup, transmitting a couple of packets of

length 128 Kbyte each would take (2× 128)/19200 = 0.01secs or 10ms. If we consider data

transmission in 802.11n without frame aggregation, the maximum data payload that can be

sent in one 802.11n frame is 2304 bytes. So during a single contact between two users, each
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user sends 128/2.25 = 57 frames to the other to complete the transfer of a single packet

(coded or uncoded) of size 128Kbytes each way.

2.1.2 Seeding Strategies

Next to compare the performance of coded and uncoded dissemination schemes in differ-

ent scenarios of base station’s available bandwidth, we will consider the following seeding

strategies;

1. Seeding 50% more packets than the minimum number of packets required to download

the complete file in each community (150% Seeding).

2. Seeding the minimum number of packets required to download the complete file in each

community (100% Seeding).

3. Seeding 10% less than the number of packets required to download the complete file

in each community (90% Seeding).

4. Seeding 20% less than the number of packets required to download the complete file

in each community (80% Seeding).

5. Randomly seeding the minimum number of packets i.e. seeding the same number of

packets as injected in 100% seeding strategy without consideration of community and

randomly choosing the nodes within the whole network.

For all cases of seeding within communities i.e. 80%, 90%, 100% and 150%, the base

station selects the nodes within each cluster uniformly at random and seed them with packets

until the given percentage of packets is seeded. After such seeding it may be possible that

there will be some nodes which do not posses any packet however it is possible that some

nodes may have more than one packet. For the random seeding case the total number

of packets seeded is the same as of 100% seeding however nodes are selected uniformly at

random from the whole network rather than within each cluster.

After the initial seeding from the server, nodes collect the missing packets during meetings

with other nodes of the same or different clusters. The packets seeded during Network coding

are linear combinations of all file packets. For erasure coding each seeded packet represents

the XOR of a subset of the original file’s packets and for flooding and epidemic routing
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the packets are the same as the file’s original packets. For the network coding case, each

node further encodes the received packets before forwarding to another node during an

opportunistic contact. For erasure coding (coding only at server), epidemic routing and

flooding (no coding) nodes do not alter the packets and share the packets in the original

form as provided to them by the base station. For every seeding case we perform 50 trials

and calculate the average performance metrics.

2.1.3 Social Graph Generation

Social networks are often modelled as graphs where individuals are represented as nodes and

the edge between two nodes shows the existence of a relationship between them. There are

many ways of creating these social graphs, some mainstream approaches are listed in Section

1.2.1. We use the LFR benchmark [22, 23] to generate social graphs for our experiments.

The LFR benchmark as discussed in the literature review is a special case of the planted

partition model (with different partition sizes) and gives more control over the parameters

that can be tuned to generate graphs having different properties. We are considering a social

network of 200 nodes where each node is assigned a degree taken from a power law. The

community sizes also obey a power law distribution. For LFR graphs we discussed that the

parameter µt controls the fraction of links within and outside community. We have selected

this parameter equal to 0.1 which means 10% of the count of total links of nodes within

community are inter-community. Recall that for LFR benchmarks µw is used to control

the frequencies of the meetings of nodes within the same community and between nodes of

different communities. For our experiment we have chosen this parameter to be µw = 0.001,

which means nodes meet other nodes from their own communities more frequently than

with nodes outside their respective communities. More precisely this means that the average

inter-meeting interval for nodes belonging to different communities is 10 times higher than

average inter-meeting interval for nodes belonging to same communities. In real networks we

expect average inter-contact time between pairs of users in different communities to be closer

to 10-15 times larger than the meetings between users in the same community [12]. Figure

2.2 shows the generated graph using the discussed parameters for a graph of 200 nodes that

comprised of 14 communities.

The pairwise meeting time is considered to be exponential in much of the analytical

work done for opportunistic networks [59–61]. In other words a Markov mobility model and
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the measured meeting rates from simulations are used to set parameters in the mobility

model [62,63]. In [59] Groenvelt et al. show that the inter meeting time for any pair of node

is exponentially distributed if (i) nodes move according to common mobility models like

random direction or random way point; (ii) the node transmission range is small compared

to its area of movement (iii) and each node’s speed is sufficiently high. In our simulation

we model the intervals between the meetings of node pairs as independent, exponentially

distributed random variables. The graph weights determine the mean meeting period for

the exponentially distributed inter meeting time per node pair. In other words, we are

modelling the pair wise meetings among nodes as a Poisson process.

Fig. 2.2 Graph for µw = 0.001, µt = 0.1, γ = 2, β = 1 with users belonging

to same community represented by the same color. A user can only meet other

users with which it is connected. 14 communities are identified in this 200 node

social graph.

2.2 Performance Metrics

The considered forwarding strategies namely Flooding, Epidemic routing, Erasure Coding

and Network Coding are compared using the following performance parameters for the above
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experimental settings.

1. Latency: Latency represents the time required by the users to completely receive the

file. The plot for this performance parameter depicts the percentage of nodes within

the network that have received the complete file at any time t. It is important to note

that we have assumed that the time needed for the base station for initial seeding is

negligible and initial seeding is done at t=0.

2. Users Finish Time: This represents the median finish time over all the experiment

runs that each user takes to completely receive the file in the network. The users are

sorted cluster wise to check if there exists correlation among completion times for the

users belonging to the same cluster for different seeding strategies. Within each cluster

the users are sorted by their degrees to have a better understanding of the impact of

how connected a node is on the content retrieval rate.

3. Transmissions and Innovativeness: This performance metric comprises three sub

metrics.

(a) Packets Transmitted: This metric represents the total number of data packets

transmitted for the complete content reception at all nodes of the network. This is

an important parameter as it inversely affects the life time of the mobile devices.

(b) Total Contacts: This parameter represents the total number of meetings that

have taken place until all the nodes receive the complete content.

(c) Non Innovative Transmissions: In case of network coding not all the trans-

mitted packets are useful. These are the transmissions that do not increase the

rank of the linear coefficient matrix C, which is required to have rank at least

equivalent to the number of packets in the file for decoding.

2.3 Results

This chapter discusses the results derived for flooding, epidemic routing, erasure coding

and network coding for different seeding strategies and experimental settings described in

the previous chapter. All the techniques are compared using the performance parameters

detailed in section 3.2. Matlab is used as the simulation platform for the implementation of

all the techniques.
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2.3.1 Dissemination Strategies Comparison

In this section we compare the performance of different dissemination schemes for different

seeding strategies in terms of latency, i.e., the percentage of users that have received the file

at any time t.

It is evident from Figure 2.3(a),(b) that for 80% and 90% seeding strategies network

coding (NC) outperformed other strategies. The reason for this is that the graph we are

considering is tightly knotted i.e. the meetings within communities are much more frequent

as compared to inter community meetings. In network coding, intermediate nodes can also

encode packets and the importance of each encoded packet is the same because it represents

the linear combination of all the file packets. Hence the meetings within a cluster could lead

to the generation of enough packets to yield the rank of coefficient (C ) matrix necessary for

file decoding. In other words the useful packets which we referred to as innovative packets

can be generated within the communities themselves. For the rest of the strategies the

missing packets within the communities must be extracted from neighbouring communities

which causes their degraded performance in comparison to network coding. In the case

of Epidemic Routing using Random (EP-R) and Local Rarest (EP-LR) packet selection,

both the strategies are observed to perform almost the same. This effect is again due to

the presence of the strong community architecture because by the time inter community

meetings take place almost all nodes within the community have acquired all of the packets

already possessed by the community. Any new packet from neighbouring community will be

rare in the node’s neighbourhood and within the whole community even if it is just selected

randomly form the set SA − SB. This makes local rarest and random packet selection

behave almost the same. With Erasure Coding (ER), the source encoded packets are shared

based on the local rarest policy. The reason for the performance degradation in comparison

to epidemic routing is that there is some overhead associated with erasure coding. Unlike

network coding in erasure coding not all of the packets are of the same importance, so some of

the packets shared during precious inter-community meetings represent the encoded version

of packets already decoded by the node. Secondly, it may be possible that the encoded

packet is the combination of more than one missing packets so other packets are needed

for decoding which again introduces delay. With flooding (FD) packets being transmitted

during inter-community meetings may already be available in community so the precious

transmission is wasted causing further delays.
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For 100% and 150% seeding strategies Figure 2.3(c),(d) the performance of network

coding and epidemic routing are almost the same. A sufficient number of packets whether

coded in case of network coding or uncoded in case of epidemic routing or flooding, to recover

a complete file are seeded to each community so the content dissemination is achieved based

on local meetings. Flooding still performs poorly compared to epidemic routing and network

coding because of wasted transmissions of already existing packets. For erasure coding with

100% seeding the file can not be decoded using packets available within each community

because some additional packets (overhead) are needed so the decoding process has to rely

on packets extraction from neighbouring community which causes delay. With 150% seeding

some additional packets are already seeded hence the performance of erasure coding in 150%

is better in comparison to 100% seeding.

In the Random seeding strategy (see Figure 2.3(e)) the latency is worst for all dissemina-

tion schemes however the relative performance of dissemination schemes is same i.e. Network

coding performs the best, followed by epidemic routing, erasure coding and the worst is flood-

ing. Erasure coding performs similar to network coding and better than epidemic routing

during the start of dissemination process. Packets are seeded by selecting nodes from the

whole network uniformly at random, so the large communities are assigned more packets and

hence these communities are provided initially with sufficient packets for erasure decoding.

The small communities must rely more on their neighbouring communities and hence with

time erasure coding starts performing poorly as compared to epidemic dissemination. It still

performs better than flooding as local rarest encoded packets are being exchanged resulting

in more useful transmission than blind flooding.
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Fig. 2.3 Comparison of the expected percentage of users that obtain the file
over time for different Dissemination strategies. The comparison is shown for
the following Seeding: (a) 80% (b) 90% (c) 100% (d) 150% and (e) Random.
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2.3.2 Seeding Strategies Comparison

In this section we compare the performance of different seeding schemes for each dissem-

ination approach in terms of percentage of users that have received the file at any time

t.

In all the dissemination approaches, seeding 100% packets needed to recover the file

has less delay as compared to other schemes as shown in Figure 2.6. As the percentage

of seeding reduced to 80% and 90% the performance degrades proportionally in terms of

latency. Except for Erasure Coding, seeding more packets than required (> 100%) for file

retrieval has no improvement on latency and the results are identical to the 100% seeding

strategy. With erasure coding as shown in Figure 2.6(d), this difference in behaviour is

because seeding more packets is helpful as the extra packets allow decoding to be performed

within the community itself; the decoding process does not rely on inter-community packet

transfer. For each dissemination approach, random seeding has by far the worst latency

characteristics.
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Fig. 2.6 Comparison of the expected percentage of users that obtain the file

over time for different community seeding strategies. The comparison is shown

for the following Dissemination Strategies: (a) Network Coding (b) Epidemic-

Local rarest (c) Epidemic-Random (d) Erasure Coding and (e) Flooding.

2.3.3 Median and Standard Deviation of Finish Times

Table 2.1 summarizes the median finish time for different dissemination schemes with men-

tioned seeding strategies along with standard deviation.

Finish Times

Seeding Network Epidemic Epidemic Erasure Flooding

% Coding (Local Rarest) (Random) Coding

150% 5.84(0.44) 6.00(0.4326) 6.07(0.41) 149.28(65.75) 12.85(0.89)

100% 6.19(0.39) 6.05(0.38) 6.18(0.37) 494.13(118.00) 12.83(0.85)

90% 26.92(20.98) 76.55(28.55) 83.50(21.77) 463.33(130.82) 988.03(164.68)

80% 42(31.02) 149.5(30.24) 161.9(20.12) 508.4(90.85) 1001.30(115.74)

Random 84(36.03) 502.6(70.50) 483.4(85.73) 782.7(173.61) 1061.1(86.45)

Table 2.1 Table shows the comparison of median finish times (time for all

users in the network to obtain the complete file) for all seeding across networks

with different routing strategies . The standard deviation is shown in brackets.
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2.3.4 Average Total Meetings and Transmissions

This section compares the performance of the discussed content dissemination schemes with

respect to the average total meetings and average total transmissions needed to disseminate

the complete file in whole network. Table 2.2 presents the comparison for meetings in case of

different seeding strategies averaged out over different runs of experiment for each dissemina-

tion scheme. The total meetings count is directly linked to the delay in the complete reception

of file at all nodes. It is evident that as the seeding percentage within the community is re-

duced, the number of meetings increase because the nodes have to rely on inter-community

meetings for missing content and the meetings within communities are wasted. However this

effect is not as prominent in network coding where more intra community meetings are still

useful as already discussed.

Average Total Meetings

Seeding Network Epidemic Epidemic Erasure Flooding

% Coding (Local Rarest) (Random) Coding

150% 32759 33347 33623 915330 72864

100% 34802 34169 34622 2752100 71771

90% 180650 482940 504180 2619600 5458100

80% 247650 847400 888290 2955200 5631100

Random 449620 2713250 2860839 4693000 6066800

Table 2.2 Comparison Table for Average Total Meetings in Different For-

warding Schemes with Different Seeding Strategies.

Table 2.3 shows the comparison of schemes in terms of the average number of transmis-

sions for complete retrieval of file at all nodes. This is the important performance indicator

as the more transmissions the less is the lifetime of nodes and hence the life time of the

opportunistic network. It is desirable to have a dissemination scheme that requires fewer

transmissions for content distribution. It is important to note that in case of Epidemic rout-

ing with both local rarest or random selection there are no wasted transmissions. Content

is only shared if the set SA − SB is not empty otherwise the transmission opportunity is

missed. As discussed previously for Erasure Coding (ER) the source encoded packets are

shared based on the local rarest policy too. But since the unique encoded packets from server

are more (different encoded packets can be generated by selecting different file packets) than
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the original file packets so with erasure coding the number of transmissions are more com-

pared to epidemic dissemination because the probability for SA−SB being empty is lesser in

comparison to epidemic routing. With network coding every meeting yields unique packet

because it represents the linear combination of already acquired packets so transmission is

involved until the node retrieve the complete file as a result as depicted in Table 4.3 for 80%

and 90% seeding strategies network coding has much more transmissions as compared to

epidemic routing and erasure coding. In fact it it due to these increased transmissions that

network coding performs better in terms of latency as discussed in Section 4.1. For each

transmission there is a chance of innovative packet generation.

Average Total Transmissions

Seeding Network Epidemic Epidemic Erasure Flooding

% Coding (Local Rarest) (Random) Coding

150% 14333 14320 14320 24861 40102

100% 15098 14880 14880 23842 40701

90% 35263 14992 14992 24342 60680

80% 63592 15104 15104 24573 60883

Random 46605 14880 14880 23947 61051

Table 2.3 Comparison Table for Average Total Transmissions in Different

Forwarding Schemes with Different Seeding Strategies.

2.3.4.1 Innovative and Non-Innovative Transmissions for Network Coding

Table 2.4 indicates the number of non-innovative transmissions involved during data dis-

semination using network coding. Clearly non-innovative transmissions increase as seeding

percentage reduces because with fewer seeded server encoded packets the probability of non-

innovative packet generation increases.
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Network Coding

Seeding Innovative Transmissions Non-Innovative Transmissions

150% 14320 13

100% 14880 218

90% 14992 20271

80% 15104 48488

Random 14880 31725

Table 2.4 Table shows Innovative and Non-Innovative Transmissions in Net-

work Coding.
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2.3.5 Effect of strength of connections between communities

In the previous section we compared different content dissemination schemes in a mobile

social network with strongly bounded communities i.e. the nodes within the same com-

munities meet more frequently (stronger connections) than with nodes outside communities

(weak connections). As discussed in section 2.1.3 the parameter µw controls the assignment

of link weights within and outside communities for each node. Previously the comparison

was performed by choosing a very small value of µw = 0.001, in this section we are increasing

strength of inter community links by choosing µw = 0.01. As we discussed in section 2.1.3,

µw = 0.001 corresponds to the case where average inter-meeting interval between nodes of

different communities is 10 times higher than average inter-meeting interval between nodes

of same community. For µw = 0.01 the average inter-meeting interval between nodes belong-

ing to same and different communities are same. For brevity we will compare the schemes

for 80%, 100% and random seeding scenarios as the conclusion for 90% and 150% seeding is

similar to that of 80% and 100% respectively. Figure 2.7 shows the latency plots for different

seeding strategies.

Comparing Figure 2.3 and 2.7 for respective seeding schemes, it is evident that as the

interaction among communities increases all the dissemination schemes start performing

better because the time required to disseminate the file within the network decreases. This

effect is more prominent for dissemination schemes and seeding strategies in which complete

file retrieval is dependent on neighbouring communities. As the nodes meet with other

nodes outside their communities more frequently the chances of retrieving missing packets

from neighbouring communities increase. Network coding and erasure coding with 100%

seeding are insensitive to this parameter change as the latency is the same because of equal

innovative packet generation opportunities irrespective of µw. Table 2.5 shows that for

network coding with 80%, 90% and random seeding cases the number of non-innovative

transmissions decrease with µw = 0.01 as compared to µw = 0.001.
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Fig. 2.7 Comparison of the expected percentage of users that obtain the file

over time for different dissemination strategies with µw = 0.01. The comparison

is shown for the following Seeding: (a) 80% (b) 100% (c) Random.
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It is however important to note that changing µw does not change the relative performance

of dissemination schemes i.e. network coding still performs best in all seeding strategies, fol-

lowed by epidemic routing - local rarest then random, erasure coding and flooding. Different

seeding schemes also yield the same result i.e. seeding 100% packets within each community

is better than seeding 80% packet or random seeding without considering communities.

Network Coding

µw Seeding Innovative Transmissions Non-Innovative Transmissions

150% 14320 13

100% 14880 218

0.001 90% 14992 20271

80% 15104 48488

Random 14880 31725

150% 14320 12

100% 14880 105

0.01 90% 14992 692

80% 15104 1970

Random 14880 2352

Table 2.5 Table compares Innovative and Non-Innovative Transmissions in

Network Coding for different µw.

2.3.6 Effect of varying the size of the network

In this section we will compare the performance of content dissemination schemes by varying

the size of the network. So far we have considered a network of 200 nodes. Now we check

different content dissemination schemes on a network of 400 nodes. The graph of this network

has the same parameters as the graph with 200 nodes generated in Section 2.3. The two

graphs are shown in figure 4.10. The number of communities are 14 in both graphs and

the network with 400 nodes comprises of communities with more variable sizes as compared

to 200 nodes. For comparison we will consider 80%, 100% and random seeding strategies.

Figure 2.9 contains the latency plots.
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(a)

(b)

Fig. 2.8 Graph for (a) 200 users (default parameters) and (b) 400 users.

Communities are distinguished by different colors and users meet if they have

an edge between them.
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Fig. 2.9 Comparison of the expected percentage of users that obtain the file

over time for different Dissemination strategies in 400 nodes Network. The

comparison is shown for the following Seeding: (a) 80% (b) 100% (c) Random.

Comparing Figure 2.3 and 2.9, it is evident that as the number of nodes increase to

400 in the network, all the schemes take more time to disseminate the complete file as

compared to 200 nodes network. The community size increases with 400 nodes, and the
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nodes in the larger communities take more time to receive the necessary packets to retrieve

the complete file due to an increase in the hop distance for users at the periphery of their

communities. Increasing the number of nodes also increases the number of transmissions

as expected. The performance comparison of dissemination schemes and seeding strategies

remains the same. Network Coding still performs best, followed by epidemic routing, erasure

coding and flooding. For 100% seeding flooding performs better than erasure coding because

unlike erasure coding it does not depend on packet retrieval from neighbouring communities.

Seeding the complete file to each community is beneficial as compared to seeding fewer

than the required file packet count within each community or seeding randomly without

considering communities. Table 2.6 summarizes median finish times along with standard

deviation for 200 and 400 nodes networks.

Finish Times

Nodes Seeding Network Epidemic Epidemic Erasure Flooding

% Coding (LR) (Rnd) Coding

150% 5.8(0.4) 6.00(0.43) 6.1(0.4) 149.2(65.7) 12.85(0.8)

100% 6.1(0.3) 6.1(0.3) 6.2(0.3) 494.1(118) 12.83(0.8)

200 90% 26.9(20.9) 76.5(28.5) 83.5(21.7) 463.3(130.8) 988(164.6)

80% 42(31.1) 149.5(30.2) 161.9(20.1) 508.4(90.8) 1001.3(115.7)

Random 84(36) 502.6(70.5) 483.4(85.7) 782.7(173.6) 1061.1(86.4)

150% 9.9(0.5) 9.8(0.3) 9.9(0.3) 480.89(620.9) 17.22(0.91)

100% 9.7(0.4) 10(0.4) 10.1(0.4) 3604(1403) 17.3(1)

400 90% 140(85) 511(176.7) 445(185.5) 3394.2(2237) 3608.7(657.1)

80% 308(284.8) 946.1(301.8) 981.3(275.1) 3995.1(1344.2) 4196.4(751.4)

Random 1331(198.2) 4224.2(489) 4348.4(456.4) 6707(1079.7) 4809(624.2)

Table 2.6 Table shows the comparison of median finish times (time for all

users in the network to obtain the complete file) for all seeding across networks

with different routing strategies and network size. The standard deviation is

shown in brackets.
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2.3.7 Effect of number of clusters in network

In this section we compare the performance of dissemination schemes by varying the number

of communities in the network. So far we have considered 14 communities, now we will

vary the number of communities to 8 and 20 for the 200 node network and compare the

dissemination schemes for these three community counts. The rest of the graph parameters

remain the same. The graph with 14 communities is already presented in Figure 2.2 while

Figure 2.10 represents the graphs with 8 and 20 communities.

Comparing Figures 2.3, 2.11 and 2.12 it is evident that for 100% seeding the performance

of network coding, epidemic routing - Local Rarest and Random is almost same for 14 and

20 clusters, however with 8 clusters all the mentioned schemes took more time. The reason is

that for a fixed sized network as the number of communities is reduced the number of users

within each community increases and as a result it takes more time to distribute the content

due to an increase in the hop distance for users at the periphery of their communities. Also

with 8 communities the copies of the content within the network are less because we are

distributing content per community in all seeding strategies. The same behaviour is also

observed with 150% seeding strategy.

For the other dissemination schemes and seeding strategies, it is observed that the per-

formance of dissemination schemes with 14 clusters is better than that of 8 and 20 clusters.

The reason can be understood by visually inspecting the respective graphs of 8, 14 and 20

clusters. In the graph of 20 clusters it is evident that most of the small size communities are

linked to only one community by single link which is causing longer delay because the missing

packets must be brought into the community through this link alone. With 8 communities

there are more inter-community links but the communities are larger and fewer copies of the

content are seeded to the network.
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(a)

(b)

Fig. 2.10 Graph with (a) 8 communities (b) 20 communities in 200 nodes

network.
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With 14 clusters the effects of large community sizes and fewer inter community links

are balanced i.e the communities are of reasonable size and there exist sufficient links to

neighbouring communities.

Again it is evident that seeding a single copy of content within each community is enough

regardless of the number of communities. Even the performance of 80% seeding is better than

randomly seeding within the network which further motivates community based seeding.

Table 4.7 summarizes the mean finish time for 8, 14 and 20 communities in network of

200 nodes along with standard deviation in brackets.

Finish Times

Comm Seeding Network Epidemic Epidemic Erasure Flooding

% Coding (LR) (Rnd) Coding

150% 9.38(0.35) 9.42(0.43) 9.56(0.41) 242.6(201.3) 17.26(0.94)

100% 9.59(0.34) 9.51(0.37) 9.51(0.36) 600.3(158) 17.26(0.87)

8 90% 41(12.73) 96.9(20.28) 85.9(23.43) 476.7(112.1) 1216.1(155)

80% 79.8(27.84) 170.2(38.52) 178.5(20.89) 731.7(186.6) 1234.4(183.09)

Random 172.7(32.9) 526.5(54.1) 547.3(65.4) 970(208.1) 1416.2(112.18)

150% 5.84(0.44) 6.00(0.43) 6.07(0.41) 149.2(65.7) 12.85(0.89)

100% 6.19(0.39) 6.05(0.38) 6.18(0.37) 494.1(118.0) 12.83(0.85)

14 90% 26.92(20.98) 76.55(28.55) 83.50(21.77) 463.3(130.8) 988.03(164.68)

80% 42(31.02) 149.5(30.24) 161.9(20.12) 508.4(90.8) 1001.30(115.74)

Random 84(36.03) 502.6(70.50) 483.4(85.73) 782.7(173.6) 1061.1(86.45)

150% 6.2(0.58) 6.15(0.61) 6.2(0.62) 689.4(428.2) 13.7(0.87)

100% 6.5(0.6) 6.7(0.6) 6.7(0.7) 2502.8(1065.3) 14.2(1.3)

20 90% 85.7(51.56) 350(205.88) 455(154.25) 2632.6(874.6) 2944.3(455.64)

80% 151.3(86) 682.2(277.4) 689.4(247.9) 3012.8(1074.2) 2801.8(449)

Random 231.9(126.9) 2192.8(478.1) 2134.4(409.7) 3979.3(1034.9) 2897.4(537.8)

Table 2.7 Table shows the comparison of median finish times (time for all

users in the network to obtain the complete file) for all seeding across net-

works with different dissemination strategies and number of communities. The

standard deviation is shown in brackets.
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Fig. 2.11 Comparison of the expected percentage of users that obtain the

file over time for different Dissemination strategies in 8 Clusters 200 nodes

Network. The comparison is shown for the following Seeding: (a) 80% (b)

100% (c) Random.
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Fig. 2.12 Comparison of the expected percentage of users that obtain the

file over time for different Dissemination strategies in 20 Clusters 200 nodes

Network. The comparison is shown for the following Seeding: (a) 80% (b)

100% (c) Random.
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Chapter 3

Efficient seeding inside communities

In the previous section, we observed that seeding each community with the complete file is

the best strategy to ensure small delays in file retrieval while reducing the server bandwidth

consumption. We further observed that network coding provides the best results in terms

of latency in retrieving the file for users. In this section we will investigate effective intra-

community seeding strategies to improve file dissemination using network coding inside a

community. An effective intra-community seeding strategy should reduce the expected delay

faced by members of the community in obtaining the file while also minimizing the number

of non-innovative transmissions that occur during opportunistic contacts between users.

3.1 Node Centrality

Mobility of users is expected to play an important role in the way packets are propagated

in a network. A user who frequently encounters other users or meets with a larger subset

of users is expected to play an important role in spreading network-coded packets within a

community. Evaluating the importance of a node in a network has been widely studied in

graph theory and network analysis [71–73]. Centrality of a node is a metric used to measure

the relative importance of a node in a graph. In the context of a social network with users

represented as vertices and edge weights corresponding to the frequency of contacts between

pairs of users, we can utilize different centrality measures to identify important users in

the network. These centrality values can then be used to select users for initial seeding of

network-coded packets from the service provider. We consider the following centrality mea-

sures for our analysis: (i) degree; (ii) betweenness; and (iii) closeness.
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Degree centrality measures the number of direct neighbours of a node. We consider our

graph to be static. This implies that a user can only meet another user if they share an

edge between them in the graph. A higher centrality value is assigned to a node with more

neighbors or edges connected to it. For a graph G := (V,E) with n vertices, the degree

centrality Cd(v) for vertex v is given by:

Cd(v) =
degree(v)

n− 1

Betweenness centrality assigns a higher value to nodes through which a larger number of

shortest path connections are formed between nonadjacent nodes. Such nodes are expected

to govern the rate at which information flows between nonadjacent nodes in the network.

For a graph G := (V,E) with n vertices, the betweenness Cb(v) for vertex v is determined

as follows:

1. Compute the shortest paths between each pair of vertices in the graph.

2. For each vertex v, determine the fraction of all shortest paths between a specific pair

of vertices (i,j) that pass through v, where i 6= v 6= j.

3. Sum this over all pairs of vertices (i,j).

In mathematical terms, this can be written as:

Cb(v) =
∑

i 6=v 6=j∈V

σij(v)

σij

where σij is the number of shortest paths from i to j and σij(v) is the number of shortest

paths from i to j which pass through the vertex v.

Closeness centrality ranks nodes in terms of their average shortest paths to all other users

in the network. A higher centrality value establishes the importance of a node as being well

connected to all other nodes in the network. It gives a measure of how long it would take

data to spread from a user to all other users in the network. Therefore, we anticipate that

it could be significant in our context. For a connected graph, the closeness centrality for a

vertex v is written as:
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Cc(v) =
1∑

j∈V dG(v, j)

where dG(v, j) is the shortest path distance from node v to j.

3.2 Experimental Setup

In this section the performances of different centrality-based seeding strategies are compared

in terms of the expected percentage of users in the network who obtain the file at any given

time and the number of transmissions required. The analysis is performed on the graph

with the default parameters mentioned in Section 2.3.1. The complete file is seeded in each

community in the network. This seeding strategy was shown to provide the best tradeoff

in terms of server bandwidth consumption and the latency users face in obtaining the file

in Chapter 2. The current chapter focuses on extracting additional performance benefits by

optimizing the distribution of file packets within each community.

Betweenness, degree and closeness centrality values are used to identify important users

in each community. A practical way of evaluating the centralities could be by asking the

users to keep track of their meetings and relaying them back to a central server. The

meetings log can be used to estimate the average rate of meetings between pairs of users in

each community. The central server could then be used to evaluate the centrality measures

based on the average rate of meetings between users in a community. After determining the

centrality value for each user, file dissemination process is simulated for all centrality-based

seeding strategies. The default case of Random seeding is also included from Chapter 2.

Experiments are performed for two seeding schemes based on the centrality values of the

users in their respective communities. In the first scheme, the number of network coded

packets seeded to each user is proportional to the centrality value of a user within its com-

munity. We call this scheme S1. In the second scheme S2, only one user is seeded with the

complete file in each community. The user selected for seeding is the most central user in

its community. The normalized degree, betweenness and closeness centrality values of each

user are summed and the user which has the highest aggregate value is selected as the most

central user. The normalized centrality values for each user within respective communities

is obtained using the networkx tool for python. The process of allocating network coded

packets to users under seeding scheme S1 is performed using the following operation:
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P S1
k (i) =

Ck(i)∑n
i=1Ck(i)

·N (3.1)

Here, k is the centrality measure (degree(d), betweenness(b) or closeness(c)), P S1
k (i) is the

number of packets assigned to user i in scheme S1, Ck(i) is the centrality value of user i and

N is the file length. The value of P S1
k (i) is rounded-off to the nearest integer value.

3.3 Simulation and Results

Experiments are run individually for each centrality-based seeding strategy mentioned in

Table 3.1. After the initial seeding is completed, users are allowed to obtain packets from

each other opportunistically until all users obtain the complete file. Nodes in the community

announce completion once they are able to decode the file. This allows us to keep track

of the file completion time of individual users in the community. Users that obtain the file

remain in the network and aid other users in obtaining the file. The dissemination process is

performed for 50 Monte Carlo simulations for each seeding strategy and the results presented

are the averages of these runs. The expected percentage of users in the network having the

file at different times is shown in Table 3.1.

Seeding Seeding strategy Expected percentage of users having the file
scheme 1 min 2 min 4 min 6 min 8 min 9min
S1 Degree centrality 1(0.9) 29(1.8) 50(3.6) 71(3.1) 85(3.5) 95(1.6)
S1 Betweenness centrality 3(1.8) 33(1.5) 50(2.7) 70(1.6) 86(3.3) 96(1.9)
S1 Closeness Centrality 2(1.3) 31(1.7) 53(2.2) 72(3.4) 85(3.5) 93(2.1)
S1 Random 2(1.6) 29(2.0) 53(2.7) 68(2.9) 84(4.2) 95(1.7)
S2 Most central user 1(1.5) 28(1.4) 52(1.8) 69(1.5) 82(3.3) 94(2.9)

Table 3.1 Expected percentage of users in the network with default param-
eters which have the file at different times. The results are the averages for
50 Monte Carlo simulation. The values in the brackets represent the standard
deviation.

From Table 3.1, it is hard to identify any one particular seeding strategy as optimal since

all values are closely matched. This suggests that the initial distribution of packets seeded

in each community has little influence on the rate at which users acquire the network-coded

packets of the file. The presence of hubs in the communities [74, 75] enables the movement

of packets from one user to another within the community with few hop counts. The rate at
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which a user acquires packets of the file then depends only on the frequency with which the

user meets other users.

The number of non-innovative transmissions is listed in Table 3.2. The seeding scheme

S2 which involves seeding the most central user with the complete file performs the best in

terms of the number of non-innovative packets transmitted during the file collection process.

The second ranked seeding strategy is based on Degree centrality but leads to 3 times more

non-innovative packets.

MCU(S2) DC(S1) BC(S1) CC(S1) Random
210(10) 700(18) 980(15) 672(13) 812(55)

Table 3.2 Median number of non-innovative transmissions for each intra-
community seeding strategy. S2 represents Seeding Scheme 2 and S1 is Seeding
Scheme 1. The values in brackets are the standard deviations. MCU: Most Cen-
tral User, DC: Degree Centrality, BC: Betweenness Centrality, CC: Closeness
Centrality.

Users which act as hubs in social networks meet many other users and their encounters

are more frequent. This allows them to obtain packets from many different users. Therefore,

any user which encounters these hubs can obtain an innovative packet with high probability.

On the other hand, if these hubs are in search of innovative packets themselves, the task is

more challenging especially if there is no book-keeping of which packets were obtained from

which users. Figures 3.1 and 3.2 show the average number of non-innovative packets received

by users in two different communities of our network. In both figures, the users are arranged

in increasing order of centrality values (user 10 will always have a higher centrality than

user 9). It is seen from the figures that the users which have higher centrality values also

obtain the most number of non-innovative transmissions. In Figure 3.2, the most central user

receives the most number of non-innovative transmission for all seeding strategies except the

MCU-based seeding strategy.

3.4 Robustness

In this section we evaluate the robustness of our community-based seeding strategies — 100%

and most central user — in the presence of node failure or node departure. Robustness

against node failure is measured by determining the reduction in performance of the seeding

strategies when some nodes are randomly removed from the network. Three scenarios are
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Fig. 3.1 Distribution of average number of non-innovative packets received
by each user in the community for seeding strategy (a) degree centrality, (b) be-
tweenness centrality, (c) closeness centrality, (d) Random and (e) Most central
user. Users are arranged in increasing order of centrality. The total number of
users in the community are 28 and the 28th user is also the most central user
in the community.
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Fig. 3.2 Distribution of average number of non-innovative packets received
by each user in the community for seeding strategy (a) degree centrality, (b) be-
tweenness centrality, (c) closeness centrality, (d) Random and (e) Most central
user. Users are arranged in increasing order of centrality. The total number of
users in the community are 40 and the 39th user is the most central user in the
community.
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considered for simulation: no user fails, some randomly selected user fails every minute and

a randomly selected user fails after every 30 seconds. The failing user is chosen randomly

from the network and could belong to any community. The results are derived from 100

Monte Carlo simulations for each scenario.

The results for 100% and most central user based community seeding in the presence of

node failure is shown in Figure 3.3 and Figure 3.4. Figure 3.3 shows the expected percentage

of users which obtain the complete file at any given time. The curves obtained, by varying

the frequency of node failure, are less separated in Figure 3.3(b) compared to Figure 3.3(a).

These results imply that seeding based on most central user is more robust to node failures

compared to 100% community seeding. During the initial phase of the 100% seeding strategy,

the server randomly selects users from each community and provides them with file packets.

The total number of packets seeded to users lying in the same community equals the number

of packets in the original file. This allows users to obtain the required file packets through

frequent meetings with other users in their community. Meetings between users in different

communities are less frequent. If a node fails, prior to transferring all of its packets obtained

from the server onto its neighbouring nodes, some packets are lost. The users belonging to

the community can only reconstruct the file when these lost packets are acquired through

interactions with users lying in adjacent communities. The inter-community meetings are

less frequent and cause a longer delay for the users residing in the former community to

obtain the necessary packets to reconstruct the file.

During each Monte Carlo simulation all active users, in both seeding strategies, are able

to obtain the complete file. The distribution of finish times of the experiments is shown

in Figure 3.4. From Figure 3.4(a), it is observed that the variance in finish times and the

median finish times increase in the presence of node failures for the 100% seeding strategy.

There are two important factors that effect this change. Firstly, the departing user can cause

loss of some initially seeded, and non-replicated packets, which has been discussed in the

previous paragraph. The departing user could also be a well-connected user and hence its

departure will directly affect the rate at which its neighbouring users obtain innovative file

packets. The same trend is not observed for most central user based seeding. The variance

in the finish times is considerably less compared to 100% seeding strategy and is similar to

the case of no failure. Centralizing all information from the server to a single node removes

the possibility of suffering loss of necessary packets within each community except for the

case when the most central user fails. The median finish times, however, increase with an
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Fig. 3.3 The plots shows the percentage of users which obtain the complete
file with time for (a)100% and (b)most central user based seeding strategy in
the presence of node failure. Three scenarios are considered. Two scenarios
involve nodes failing randomly after every 1 minute and 30 seconds. In the
third scenario there is no failure. The results calculated are based on 100
Monte Carlo simulations for each scenario.
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Fig. 3.4 The plots shows the distribution of finish times for (a)100% and
(b)most central user based seeding strategy in the presence of node failure.
Three scenarios are considered. Two scenarios involve nodes failing randomly
after every 1 minute and 30 seconds. In the third scenario there is no fail-
ure. The results calculated are based on 100 Monte Carlo simulations for each
scenario.

increase in the frequency of node failure. This increase is because any departing user reduces

the rate at which its neighbouring users obtain file packets.

The outliers in Figure 3.4(b) occur if the most central user/s fails. The community which

suffers the failure of its most central user causes an increase in the finish time because the

respective community has to rely entirely on inter-community meetings to obtain the neces-

sary packets to reconstruct the file. Three additional experiments are performed to evaluate

the effect of failure of the most central user. The most central user in each community fails

after spreading 25%, 50% and 75% of its initially seeded packets. Figure 3.5 shows that

the percentage of users which obtain the file at any given time reduces significantly with

the failure of the most central user. This necessitates extra precaution to prevent the most

central user from failing or a re-assignment of the most central user from the server in case

of failure.

3.5 Per node cost of opportunistic distribution

Network coding is effective in opportunistic file distribution schemes as it eases the packets

scheduling issue, discussed in Section ??. The downside, however, is the possibility of occur-
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Fig. 3.5 The plots shows the effect of failure of the most central user’s in
the network at different instances. The lines represent the percentage of users
that obtain the file at any given time when there is no failure(red), most cen-
tral user fails after distributing 75% of its packets(blue), 50% packets(purple)
and 25% packets(black). The results calculated are based on 100 Monte Carlo
simulations for each scenario.

rence of non-innovative transmissions. A transmission is non-innovative if contents of the

packet received by a user during a meeting provides no new information which can be used to

decode the file. An effective seeding strategy would minimize the number of non-innovative

packet transmissions.

The number of innovative and non-innovative packet transmissions that occur during

opportunistic file distribution for seeding schemes 100% and most central user is shown in

Figure 3.6. The number of non-innovative transmissions per node is observed to be less for

most central user seeding strategy compared to 100% seeding strategy. It is also observed

that the distribution of total number of transmissions occurring at the nodes is skewed and

some users are required to make a larger number of transmissions compared to other users.

The users which are more mobile interact with more users and are, therefore, required to

make a larger number of transmissions. Incentives, such as lower subscription costs for users

exhibiting higher mobility, could be used to attract users to participate in opportunistic

distribution.
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Fig. 3.6 The plot above represents the per node cost of opportunistic distri-
bution for seeding strategies (a)100% and (b)most central user. The bar plot
shows the average number of transmissions that occur at each user during file
distribution. The total number of transmissions include innovative and non-
innovative transmissions.
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3.6 Impact of community detection on file distribution

Our previous results assumed perfect knowledge of communities in the network, but in real

networks this information is not always available. In this chapter we will use the GANC

(Greedy Agglomerative Normalized Cut) algorithm proposed by Tabatabaei et al. in [76] to

extract community information from networks generated using the LFR graph generation

tool. File dissemination is then performed on the communities detected by GANC and

the results are compared to the ones obtained on the LFR provided communities. The

comparison is important to obtain some insight on the performance of our centrality-based

community seeding scheme for real-world traces where community information is often not

known a priori.

The cut associated with some cluster U is the sum of the weights of the edges between

nodes in cluster U and nodes in other clusters. Therefore, minimizing the maximum cut can

be used to identify communities which have the weakest ties between them. The downfall

is that such a technique results in the formation of several small clusters which do not com-

pletely capture the characteristics of the underlying structure of the graph. The normalized

cut criteria was first put forward by Shi and Malik in [87] and prevents this shortcoming by

normalizing each cut by the total weight of the associated cluster. This helps to penalize the

development of small clusters due to their low aggregate weight. Normalized cut minimiza-

tion is an NP-complete problem [86]. Although spectral methods exist which approximately

solve the problem by determining the eigenvectors of the Laplacian graph, these methods

have high computational complexity that generally grow rapidly with the number of nodes

in the graph.

The advantage of using the GANC clustering algorithm by Tabatabaei et al. [76] is two-

fold. The algorithm is fast, scaling almost linearly with the number of nodes in the graph,

and contains a model order selection method to determine the number of communities in

the network.

3.6.1 Performance evaluation on communities detected using GANC [76]

In this section, we will estimate the performance of our centrality-based community seeding

algorithm in situations where community information is not available. Community infor-

mation is often not available in real-world networks and the results in this section will

give an insight into the performance of our scheme for real-world networks. We utilize the
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GANC community detection algorithm by Tabatabaei et al. [76] to identify communities

in networks generated by the LFR graph generation tool. The file dissemination process is

simulated for the communities detected by GANC and the results are compared to the ones

obtained for communities provided by the LFR tool. The performance is compared over

three different graph mentioned in Table 3.3. LFR graph generation parameters, µw and

µt are varied to obtain the different graphs. Parameter µw controls the ratio between the

average intra-community contact interval and the average inter-community contact interval.

Increasing its value moves the ratio more towards unity which makes it harder to distinguish

communities. Similarly, the parameter µt controls the ratio between the number of edges

lying within communities and the number of edges between communities. Increasing the

parameter value results in an increase in inter-community connections and consequentially

community detection becomes more difficult.

Graph µw µt RT RE LFR communities

A 0.001 0.1 10 8.36 14

B 0.001 0.3 38 2.35 14

C 0.01 0.1 1 8.32 14

Table 3.3 Properties of graphs used for evaluating performance of centrality-
based community seeding scheme on communities detected by GANC. RT is
the ratio between the average inter-community inter-contact time and average
intra-community inter-contact time. RE denotes the ratio between the aver-
age number of intra-community edges and average number of inter-community
edges. The actual number of communities in all graphs is 14 as provided by the
LFR graph generation tool.

For Graph A and B, GANC is able to identify all communities correctly. The results of

the performance of file dissemination on both sets of communities would not be interesting

as the performance would be the same for both. For Graph C, the value of parameter µw is

increased from 0.001, in Graphs A and B, to 0.01. An increase in the value of parameter µw

increases the rate at which users in neighbouring communities interact with each other. It

is seen from Table 3.3 that the ratio between the average contact interval between a pair of

users lying in adjacent communities to the contact interval for pairs of users lying in the same

community is 1, which means that pairs of users lying in neighbouring communities meet at

the same expected rate as neighbours having the same membership. This makes detection

of communities more difficult. GANC is not able to correctly identify all communities in

Graph C. The number of communities identified by GANC are 13 compared to 14 provided
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by the LFR tool. On a closer analysis it is observed that GANC identifies 12 out of the 14

communities correctly. The 13th and 14th communities are, however, merged to form one

larger community by GANC.

To determine the loss in performance resulting from the mislabelling of some users by

GANC, the file dissemination process is simulated for the communities detected by GANC

and the results are compared to the ones obtained for LFR provided communities. The

most central user based seeding strategies is employed for both simulations. It is already

shown in Section 3.2 that the most central user based seeding strategy provides the best

results in terms of the delay experienced by users in obtaining the file and the number of

non-innovative transmissions.

Figure 3.7 shows the expected percentage of users that obtain the file at any given time.

MCU-GANC denotes the performance on the communities detected via the GANC algorithm

while MCU-LFR represents the results for LFR provided communities. The figure shows

that the percentage of users that acquire the file at any time is lower for MCU-GANC based

seeding. In Figure 3.8, the median finish times for MCU-LFR based seeding strategy is 10min

compared to 30min for MCU-GANC. It must be pointed out here that the comparison is not

fair because the number of packets initially seeded in MCU-GANC is less than the number of

initially seeded packets in MCU-LFR. This is because the number of communities detected

by GANC is 13 and since the number of packets initially seeded in the network depends on

the number of communities in the network (each community is seeded with the file), it is

seeded with lesser packets compared to the MCU-LFR which provides 14 communities. If

the correct number of communities is provided to the GANC algorithm a priori, it detects

the correct membership for all users in the network and the performance is similar to the

one observed for MCU-LFR.
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Fig. 3.7 Performance comparison of MCU-LFR and MCU-GANC for Graph
C. The curves show the expected percentage of users in the network that obtain
the file with time.
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seeding strategies on Graph C. The bar represents the median value while the
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The presence of hubs causes swift movement of packets between users within a community.

If each community is seeded with the minimum number of packets required to decode the

file, the performance in terms of the expected percentage of users that obtain the file at any

time is similar for all centrality-based seeding strategies and the Random seeding strategy.

The delay a user faces in acquiring the file is then dependent on the frequency of encounters

with other users. The most central user based seeding strategy performs the best in terms of

the number of non-innovative transmissions that occur during the file dissemination process.

An important result is that all other seeding strategies penalize the most central users in

terms of the number of non-innovative packets it receives. The MCU-based seeding strategy

on the other hand ensures that these users do not receive any non-innovative packets by

providing the file directly to them. This also guarantees the most central users of obtaining

the file earlier than other users. Such incentives are important to ensure the participation

of important users which form hubs in their respective communities.
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