

Connecting the Dots: Identifying Network Structure via Graph Signal Processing

Gonzalo Mateos

Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/

Collaborators: R. Shafipour, S. Segarra, A. G. Marques, and A. Ribeiro Acknowledgment: NSF Awards CCF-1750428 and ECCS-1809356

Holetown, Barbardos, February 10, 2019

Network Science analytics

- Network as graph $G = (\mathcal{V}, \mathcal{E})$: encode pairwise relationships
- ► Desiderata: Process, analyze and learn from network data [Kolaczyk'09] ⇒ Use G to study graph signals, data associated with nodes in V
- ► Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

Graph signal processing: Motivation and fundamentals

Network topology inference problems

Inference of association networks

Learning graphs from observations of smooth signals

Identifying the structure of network diffusion processes

Discussion

Graph signal processing (GSP)

• Graph G with adjacency matrix $\mathbf{A} \in \mathbb{R}^{N \times N}$

 $\Rightarrow A_{ij} =$ proximity between *i* and *j*

▶ Define a signal x on top of the graph ⇒ x_i = signal value at node i

- ► Graph Signal Processing → Exploit structure encoded in A to process x ⇒ Our view: GSP well suited to study (network) diffusion processes
- Q: Graph signals common and interesting as networks are?
- ▶ Q: Why do we expect the graph structure to be useful in processing x?

Network of economic sectors of the United States

- ▶ Bureau of Economic Analysis of the U.S. Department of Commerce
 - $A_{ij} =$ Output of sector *i* that becomes input to sector *j* (62 sectors)

- ▶ Oil extraction (OG), Petroleum and coal products (PC), Construction (CO)
- Administrative services (AS), Professional services (MP)
- Credit intermediation (FR), Securities (SC), Real state (RA), Insurance (IC)
- Only interactions stronger than a threshold are shown

Network of economic sectors of the United States

- ► Bureau of Economic Analysis of the U.S. Department of Commerce
 - $A_{ij} =$ Output of sector *i* that becomes input to sector *j* (62 sectors)
 - A few sectors have widespread strong influence (services, finance, energy)
 - Some sectors have strong indirect influences (oil)
 - The heavy last row is final consumption
- This is an interesting network \Rightarrow Signals on this graph are as well

- ▶ Signal **x** = output per sector = disaggregated GDP
 - \Rightarrow Network structure used to, e.g., reduce GDP estimation noise

► Signal is as interesting as the network itself. Arguably more

- Same is true for brain connectivity and fMRI brain signals, ...
- Gene regulatory networks and gene expression levels, ...
- Online social networks and information cascades, ...

► Signal and Information Processing is about exploiting signal structure

- Discrete time described by cyclic graph
 - \Rightarrow Time *n* follows time n-1
 - \Rightarrow Signal value x_n similar to x_{n-1}
- Formalized with the notion of frequency

- Cyclic structure \Rightarrow Fourier transform $\Rightarrow \tilde{\mathbf{x}} = \mathbf{F}^H \mathbf{x} \left(F_{kn} = \frac{e^{j2\pi kn/N}}{\sqrt{N}} \right)$
- ► Fourier transform ⇒ Projection on eigenvector space of cycle

Covariances and principal components

- ▶ Random signal with mean $\mathbb{E}[\mathbf{x}] = 0$ and covariance $\mathbf{C}_{x} = \mathbb{E}[\mathbf{x}\mathbf{x}^{H}]$
 - \Rightarrow Eigenvector decomposition $C_x = V\Lambda V^H$
- ► Covariance matrix A = C_x is a graph ⇒ Not a very good graph, but still
- ► Precision matrix C_x⁻¹ a common graph too ⇒ Conditional dependencies of Gaussian x

- ► Covariance matrix structure \Rightarrow Principal components (PCA) $\Rightarrow \tilde{\mathbf{x}} = \mathbf{V}^H \mathbf{x}$
- ► **PCA transform** ⇒ Projection on eigenvector space of (inverse) covariance
- Q: Can we extend these principles to general graphs and signals?

- ► Adjacency **A**, Laplacian **L**, or, generically graph shift $\mathbf{S} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^{-1}$ $\Rightarrow S_{ij} = 0$ for $i \neq j$ and $(i,j) \notin \mathcal{E}$ (captures local structure in *G*)
- ► The Graph Fourier Transform (GFT) of x is defined as

$$\tilde{\mathbf{x}} = \mathbf{V}^{-1}\mathbf{x}$$

• While the inverse GFT (iGFT) of \tilde{x} is defined as

$$\mathbf{x} = \mathbf{V}\tilde{\mathbf{x}}$$

 \Rightarrow Eigenvectors $\mathbf{V} = [\mathbf{v}_1, ..., \mathbf{v}_N]$ are the frequency basis (atoms)

Additional structure

$$\Rightarrow$$
 If **S** is normal, then $\mathbf{V}^{-1} = \mathbf{V}^H$ and $\tilde{\mathbf{x}}_k = \mathbf{v}_k^H \mathbf{x} = \langle \mathbf{v}_k, \mathbf{x} \rangle$

 \Rightarrow Parseval holds, $\|\mathbf{x}\|^2 = \|\mathbf{\tilde{x}}\|^2$

• GFT \Rightarrow Projection on eigenvector space of graph shift operator S

Is this a reasonable transform?

- \blacktriangleright Particularized to cyclic graphs $\ \Rightarrow$ GFT \equiv Fourier transform
- Also for covariance graphs \Rightarrow GFT \equiv PCA transform
- ► But really, this is an empirical question. GFT of disaggregated GDP

Spectral domain representation characterized by a few coefficients

- \Rightarrow Notion of bandlimitedness: $\mathbf{x} = \sum_{k=1}^{K} \tilde{x}_k \mathbf{v}_k$
- \Rightarrow Sampling, compression, filtering, pattern recognition

Frequency analysis of brain signals

- ▶ GFT of brain signals during a visual-motor learning task [Huang et al'16]
 - \Rightarrow Decomposed into low medium and high frequency components

- Brain: Complex system where regularity coexists with disorder [Sporns'11]
 - \Rightarrow Signal energy mostly in the low and high frequencies
 - \Rightarrow In brain regions akin to the visual and sensorimotor cortices

What is this tutorial about?

- Learning graphs from nodal observations
- Key in neuroscience
 - \Rightarrow Functional network from BOLD signal
- ► Most GSP works: how known graph **S** affects signals and filters
- ▶ Here, reverse path: how to use GSP to infer the graph topology?
 - Gaussian graphical models [Egilmez et al'16], [Rabbat'17], ...
 - Smooth signals [Dong et al'15], [Kalofolias'16], [Sardellitti et al'17], ...
 - Graph filtering models [Shafipour et al'17], [Thanou et al'17], ...
 - Stationary signals [Pasdeloup et al'15], [Segarra et al'16], ...
 - Directed graphs [Mei-Moura'15], [Shen et al'16], ...

See also arXiv:1810.13066 [eess.SP]

Graph signal processing: Motivation and fundamentals

Network topology inference problems

Inference of association networks

Learning graphs from observations of smooth signals

Identifying the structure of network diffusion processes

Discussion

- Q: If G (or a portion thereof) is unobserved, can we infer it from data?
- ► Formulate as a statistical inference task, i.e. given
 - Signal measurements x_i at some or all vertices $i \in \mathcal{V}$
 - Indicators y_{ij} of edge status for some vertex pairs $\{i, j\} \in \mathcal{V}_{obs}^{(2)}$
 - A collection G of candidate graphs G

Goal: infer the topology of the network graph $G(\mathcal{V}, \mathcal{E})$

- Bring to bear existing statistical concepts and tools
 - \Rightarrow Study identifiability, consistency, robustness, complexity
- Three canonical network topology inference problems [Kolaczyk'09]
 - (i) Link prediction
 - (ii) Association network inference Focus of this tutorial
 - (iii) Tomographic network topology inference

Link prediction

- Suppose we observe the graph signal $\mathbf{x} = [x_1, \dots, x_N]^\top$; and
- Edge status is only observed for some subset of pairs $\mathcal{V}^{(2)}_{obs} \subset \mathcal{V}^{(2)}$
- ▶ Goal: predict edge status for all other pairs, i.e., $\mathcal{V}_{miss}^{(2)} = \mathcal{V}^{(2)} \setminus \mathcal{V}_{obs}^{(2)}$

Association network inference

- Suppose we only observe the graph signal $\mathbf{x} = [x_1, \dots, x_N]^\top$; and
- Assume (i, j) defined by nontrivial 'level of association' among x_i, x_j
- Goal: predict edge status for all vertex pairs $\mathcal{V}^{(2)}$

Tomographic network topology inference

Suppose we only observe x_i for vertices $i \subset V$ in the 'perimeter' of G

▶ Goal: predict edge and vertex status in the 'interior' of G

Graph signal processing: Motivation and fundamentals

Network topology inference problems

Inference of association networks

Learning graphs from observations of smooth signals

Identifying the structure of network diffusion processes

Discussion

Def: in association networks vertices are linked if there is a sufficient level of 'association' between attributes of vertex pairs

Experiments

Example

- Scientific citation networks
- Gene-regulatory networks
- Neuro-functional connectivity networks

- Given a collection of *N* elements represented as vertices $v \in \mathcal{V}$
 - Graph signal $\mathbf{x} = [x_1, \dots, x_N]^\top \in \mathbb{R}^N$ of observed vertex attributes
- ▶ User-defined similarity $sim(i,j) = f(x_i, x_j)$ specifies edges $(i,j) \in \mathcal{E}$
 - Q: What if sim values themselves (i.e., edge status) not observable?

Association network inference

Infer non-trivial sim values from i.i.d. observations $\mathcal{X} := \{\mathbf{x}_p\}_{p=1}^{P}$

- ► Various choices to be made, hence multiple possible approaches
 - Choice of sim: correlation, partial correlation, mutual information
 - Choice of inference: hypothesis testing, regression, ad hoc
 - Choice of parameters: testing thresholds, tuning regularization

Pearson product-moment correlation as sim between vertex pairs

$$extsf{sim}(i,j) :=
ho_{ij} = rac{ extsf{cov}[x_i, x_j]}{\sqrt{ extsf{var}[x_i] extsf{var}[x_j]}}, \ i, j \in \mathcal{V}$$

▶ **Def:** the correlation network graph $G(\mathcal{V}, \mathcal{E})$ has edge set

$$\mathcal{E} = \left\{ (i,j) \in \mathcal{V}^{(2)} : \rho_{ij} \neq 0 \right\}$$

- \blacktriangleright Association network inference \Leftrightarrow Inference of non-zero correlations
- \blacktriangleright Inference of ${\mathcal E}$ typically approached as a testing problem

$$H_0: \rho_{ij} = 0$$
 versus $H_1: \rho_{ij} \neq 0$

Common choice of test statistic are empirical correlations

$$\hat{\rho}_{ij} = rac{\hat{\sigma}_{ij}}{\sqrt{\hat{\sigma}_{ii}\hat{\sigma}_{jj}}}, \text{ where } \hat{\mathbf{\Sigma}} = [\hat{\sigma}_{ij}] = rac{1}{P-1} \sum_{
ho=1}^{P} \mathbf{x}_{
ho} \mathbf{x}_{
ho}^{T}$$

Convenient alternative statistic is Fisher's transformation

$$\hat{z}_{ij} = rac{1}{2} \log \left(rac{1 + \hat{
ho}_{ij}}{1 - \hat{
ho}_{ij}}
ight), \;\; i,j \in \mathcal{V}$$

 \Rightarrow Under H_0 , $\hat{z}_{ij} \sim \mathcal{N}(0, \frac{1}{P-3}) \Rightarrow$ Simple to assess significance

▶ Reject H_0 at significance level α , i.e., assign edge (i,j) if $|\hat{z}_{ij}| > \frac{z_{\alpha/2}}{\sqrt{P-3}}$

Error rate control:
$$\mathsf{P}_{H_0}$$
 (false edge) = $\mathsf{P}_{H_0}\left(|\hat{z}_{ij}| > \frac{z_{\alpha/2}}{\sqrt{P-3}}\right) = \alpha$

- ► Interesting testing challenges emerge with large-scale networks ⇒ Suppose we test all $\binom{N}{2}$ vertex pairs, each at level α
- ► Even if the true G is the empty graph, i.e., E = Ø
 ⇒ We expect to declare ^N₂ α spurious edges just by chance!
 ⇒ For a large graph, this number can be considerable
- ► Ex: For G of order N = 100 and individual tests at level $\alpha = 0.05$ ⇒ Expected number of spurious edges is $4950 \times 0.05 \approx 250$
- ► This predicament known as the multiple testing problem in statistics

- ▶ Idea: Control errors at the level of collection of tests, not individually
- False discovery rate (FDR) control, i.e., for given level γ ensure

$$\mathsf{FDR} = \mathbb{E}\left[rac{R_{\mathsf{false}}}{R} \mid R > 0
ight] \mathsf{P}\left[R > 0
ight] \leq \gamma$$

- R is the total number of edges detected; and
- ► *R*_{false} is the total number of false edges detected
- Method of FDR control at level γ [Benjamini-Hochberg'94]

Step 1: Sort *p*-values for all $\overline{N} := {N \choose 2}$ tests, yields $p_{(1)} \leq \ldots \leq p_{(\overline{N})}$ Step 2: Reject H_0 , i.e., declare all those edges for which

$$p_{(k)} \leq \left(\frac{k}{\bar{N}}\right)\gamma$$

Partial correlations

- Use correlations carefully: 'correlation does not imply causation'
 - ▶ Vertices $i, j \in \mathcal{V}$ may have high ρ_{ij} because they influence each other
- ▶ But ρ_{ij} could be high if both i, j influenced by a third vertex k ∈ V ⇒ Correlation networks may declare edges due to confounders
- Partial correlations better capture direct influence among vertices
 - For $i, j \in \mathcal{V}$ consider latent vertices $S_m = \{k_1, \ldots, k_m\} \subset \mathcal{V} \setminus \{i, j\}$
- ▶ Partial correlation of x_i and x_j , adjusting for $\mathbf{x}_{S_m} = [x_{k_1}, \dots, x_{k_m}]^T$ is

$$\rho_{ij|S_m} = \frac{\operatorname{cov}[x_i, x_j \mid \mathbf{x}_{S_m}]}{\sqrt{\operatorname{var}\left[x_i \mid \mathbf{x}_{S_m}\right] \operatorname{var}\left[x_j \mid \mathbf{x}_{S_m}\right]}}, \ i, j \in \mathcal{V}$$

Q: How do we obtain these partial correlations?

• Given $\mathbf{x}_{S_m} = [x_{k_1}, \dots, x_{k_m}]^T$, the partial correlation of x_i and x_j is

$$\rho_{ij|S_m} = \frac{\operatorname{cov}[x_i, x_j \mid \mathbf{x}_{S_m}]}{\sqrt{\operatorname{var}\left[x_i \mid \mathbf{x}_{S_m}\right] \operatorname{var}\left[x_j \mid \mathbf{x}_{S_m}\right]}} = \frac{\sigma_{ij|S_m}}{\sqrt{\sigma_{ii|S_m}\sigma_{jj|S_m}}}$$

▶ Here $\sigma_{ii|S_m}, \sigma_{jj|S_m}$ and $\sigma_{ij|S_m}$ are diagonal and off-diagonal elements of

$$\boldsymbol{\Sigma}_{11|2} := \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} \in \mathbb{R}^{2 \times 2}$$

• Matrices Σ_{11} , Σ_{22} and $\Sigma_{21} = \Sigma_{12}^{\top}$ are blocks of the covariance matrix

$$\mathsf{cov} \begin{bmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \end{bmatrix} = \begin{pmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{pmatrix}, \text{ where } \mathbf{w}_1 := [x_i, x_j]^T \text{ and } \mathbf{w}_2 := \mathbf{x}_{S_m}$$

Various ways to use partial correlations to define edges in G
 Ex: x_i, x_j correlated regardless of what m vertices we condition upon

$$\mathcal{E} = \left\{ (i,j) \in \mathcal{V}^{(2)} : \rho_{ij|S_m} \neq 0, \text{ for all } S_m \in \mathcal{V}^{(m)}_{\setminus \{i,j\}} \right\}$$

• Inference of potential edge (i, j) as a testing problem

$$\begin{aligned} H_0: \rho_{ij|S_m} &= 0 \text{ for some } S_m \in \mathcal{V}^{(m)}_{\backslash \{i,j\}} \\ H_1: \rho_{ij|S_m} &\neq 0 \text{ for all } S_m \in \mathcal{V}^{(m)}_{\backslash \{i,j\}} \end{aligned}$$

• Again, given measurements $\mathcal{X} := {\mathbf{x}_{\rho}}_{\rho=1}^{P}$ need to:

- Select a test statistic
- Construct an appropriate null distribution
- Adjust for multiple testing

- ► Genes are segments of DNA encoding information about cell functions
- Such information used in the expression of genes
 - \Rightarrow Creation of biochemical products, i.e., RNA or proteins
- Regulation of a gene refers to the control of its expression
 Ex: regulation exerted during transcription, copy of DNA to RNA
 - \Rightarrow Controlling genes are transcription factors (TFs)
 - \Rightarrow Controlled genes are termed targets
 - \Rightarrow Regulation type: activation or repression
- ▶ Regulatory interactions among genes basic to the workings of organisms ⇒ Inference of interactions → Finding TF/target gene pairs
- ► Such relational information summarized in gene-regulatory networks

- Relative levels of gene expression in the cell can be measured
 - \Rightarrow Genome-wide scale data obtained using microarray technologies

Experiments

- ▶ For each gene $i \in \mathcal{V}$, measure an expression profile $\mathbf{x}_i \in \mathbb{R}^P$
 - Vector x_i has gene expression levels under P different conditions
 - Ex: change in pH, heat level, oxygen concentrations
- Microarray data commonly used to infer gene regulatory interactions

\blacktriangleright Use microarray data and correlation methods to infer TF/target pairs

Experiments

- ► Dataset: relative log expression RNA levels, for genes in E. coli
 - 4,345 genes measured under 445 different experimental conditions
- ► Ground truth: 153 TFs, and TF/target pairs from database RegulonDB

- ► Three correlation based methods to infer TF/target gene pairs
 - \Rightarrow Interactions declared if suitable *p*-values fall below a threshold

Method 1: Pearson correlation between TF and potential target gene **Method 2:** Partial correlation, controlling for shared effects of one (m = 1) other TF, across all 152 other TFs **Method 3:** Full partial correlation, simultaneously controlling for shared effects of all (m = 152) other TFs

- ► In all cases applied Fisher transformation to obtain z-scores ⇒ Asymptotic Gaussian distributions for p-values, with P = 445
- Compared inferred graphs to ground-truth network from RegulonDB

Performance comparisons

- ▶ ROC and Precision/Recall curves for Methods 1, 2, and 3
 - \Rightarrow Precision: fraction of predicted links that are true
 - \Rightarrow Recall: fraction of true links that are correctly predicted

Method 1 performs worst, but none is stellar
 ⇒ Correlation not strong indicator of regulation in this data

► All methods share a region of high precision, but a very small recall ⇒ Limitations in number/diversity of profiles [Faith et al'07]

Predicting new TF/target gene pairs

In biology, often interest is in predicting new interactions

- ▶ 11 interactions found for TF *lrp*, 10 experimentally confirmed (dotted)
 ⇒ 5 interacting target genes were new (magenta, red, cyan)
 - \Rightarrow 4 present in RegulonDB (magenta, cyan), but not as *lrp* targets

Suppose variables $\{x_i\}_{i \in \mathcal{V}}$ have multivariate Gaussian distribution

 \Rightarrow Consider $\rho_{ij|\mathcal{V}\setminus\{i,j\}}$ conditioning on all other vertices (m = N - 2)

Theorem Under the Gaussian assumption, vertices $i, j \in V$ have partial correlation

$$\rho_{ij|\mathcal{V}\setminus\{i,j\}}=0$$

if and only if x_i and x_j are conditionally independent given $\{x_k\}_{k \in \mathcal{V} \setminus \{i,j\}}$

▶ **Def:** the conditional independence graph $G(\mathcal{V}, \mathcal{E})$ has edge set

$$\mathcal{E} = \left\{ (i,j) \in \mathcal{V}^{(2)} : \rho_{ij|\mathcal{V} \setminus \{i,j\}} \neq \mathbf{0} \right\}$$

 \Rightarrow A special and popular case of partial correlation networks

► Also known as Gaussian Markov random field (GMRF)

- Let Σ be the covariance matrix of x = [x₁,...,x_N]^T
 Def: the precision matrix is Θ := Σ⁻¹ with entries θ_{ij}
- ► Key result: For GMRFs, the partial correlations can be expressed as

$$\rho_{ij|V\setminus\{i,j\}} = -\frac{\theta_{ij}}{\sqrt{\theta_{ii}\theta_{jj}}}$$

 \Rightarrow Non-zero entries in Θ \Leftrightarrow Edges in the graph G

► Inferring G from X known as covariance selection [Dempster'74]
 ⇒ Classical methods are 'network-agnostic,' and effectively test

$$H_0: \rho_{ij|\mathcal{V}\setminus\{i,j\}} = 0$$
 versus $H_1: \rho_{ij|\mathcal{V}\setminus\{i,j\}} \neq 0$

▶ Often not scalable, and $P \ll N$ so estimation of $\hat{\Sigma}$ challenging

▶ Sparsity-regularized maximum-likelihood estimator of Θ [Yuan-Lin'07]

$$\hat{\boldsymbol{\Theta}} \in \arg\max_{\boldsymbol{\Theta} \succeq \boldsymbol{0}} \left\{ \log \det \boldsymbol{\Theta} - \mathsf{trace}(\hat{\boldsymbol{\Sigma}} \boldsymbol{\Theta}) - \lambda \| \boldsymbol{\Theta} \|_1 \right\}$$

 \Rightarrow Effective when $P \ll N$, encourages interpretable models

 \Rightarrow Scalable solvers using coordinate-descent [Friedman et al'08]

• Performance guarantee: Graphical lasso with $\lambda = 2\sqrt{\frac{\log N}{P}}$ satisfies

$$\|\hat{\mathbf{\Theta}} - \mathbf{\Theta}_0\|_2 \leq \sqrt{rac{d_{\mathsf{max}}^2 \log N}{P}} \quad ext{ w.h.p}$$

 \Rightarrow Ground-truth Θ_0 , maximum nodal degree d_{\max}

• Support consistency for $P = \Omega(d_{\max}^2 \log N)$ [Ravikumar et al'11]

GMRFs with Laplacian constraints

- ▶ Graphical model selection with Laplacian constraints $\Theta = L$
 - ▶ Off-diagonal entries $\theta_{ij} = L_{ij} = -A_{ij} \leq 0 \Rightarrow$ Attractive GMRF
 - Laplacian is singular $(L1 = 0) \Rightarrow$ Improper GMRF

Estimate a proper GMRF via diagonal loading [Lake-Tenembaum'07]

$$\begin{split} \max_{\substack{\boldsymbol{\Theta} \succeq \mathbf{0}, \gamma \ge 0}} & \left\{ \log \det \boldsymbol{\Theta} - \operatorname{trace}(\hat{\boldsymbol{\Sigma}} \boldsymbol{\Theta}) - \lambda \| \boldsymbol{\Theta} \|_1 \right\} \\ \text{s. to } \boldsymbol{\Theta} &= \mathbf{L} + \gamma \mathbf{I} \\ & \mathbf{L} \mathbf{1} = \mathbf{0}, \ L_{ij} \le 0, \ i \neq j \end{split}$$

 \Rightarrow Interpret γ^{-1} as variance of Gaussian isotropic fluctuations

► Favors graphs over which the signals are smooth (more later)

$$\mathsf{trace}(\hat{\boldsymbol{\Sigma}} \mathsf{L}) \propto \sum_{p=1}^{P} \mathsf{x}_p^T \mathsf{L} \mathsf{x}_p = \sum_{p=1}^{P} \mathsf{TV}(\mathsf{x}_p)$$

Covariance selection meets linear regression

- ▶ Idea: separately estimate neighborhoods $\mathcal{N}_i := \{j : (i, j) \in \mathcal{E}\}, i \in \mathcal{V}$
- Conditional mean of x_i given $\mathbf{x}_{\setminus i} := [x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_N]^T$ is

$$\mathbb{E}\left[x_{i} \mid \mathbf{x}_{\setminus i}\right] = \mathbf{x}_{\setminus i}^{\mathsf{T}} \boldsymbol{\beta}^{(i)}$$

• Entries of $\beta^{(i)}$ expressible in terms of those in $\Theta = \Sigma^{-1}$, namely

$$\beta_j^{(i)} = -\frac{\theta_{ij}}{\theta_{ii}}$$

 $\Rightarrow \text{Non-zero } \beta_j^{(i)} \Leftrightarrow \text{Non-zero } \theta_{ij} \text{ in } \Theta \Leftrightarrow \text{Edge } (i,j) \text{ in } G$ $\Rightarrow \text{ In other words, } \text{supp}(\beta^{(i)}) := \{j : \beta_j^{(i)} \neq 0\} \equiv \mathcal{N}_i$

► Suggests inference of G via least-squares (LS) regression, since

$$oldsymbol{eta}^{(i)} = rg\min_{oldsymbol{eta}} \mathbb{E}\left[(x_i - \mathbf{x}_{\setminus i}^T oldsymbol{eta})^2
ight], \quad i \in \mathcal{V}$$

• Cycle over vertices $i \in \mathcal{V}$ and estimate $\hat{\mathcal{N}}_i = \text{supp}(\hat{\boldsymbol{\beta}}^{(i)})$, where

$$\hat{\boldsymbol{\beta}}^{(i)} \in \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^{N-1}} \left\{ \sum_{p=1}^{P} (x_{pi} - \mathbf{x}_{p, \setminus i}^{T} \boldsymbol{\beta})^{2} + \lambda \|\boldsymbol{\beta}\|_{1} \right\}$$

 \Rightarrow Separable lasso problems per vertex

- No guarantee that β̂_j⁽ⁱ⁾ ≠ 0 implies β̂_i^(j) ≠ 0 and vice versa
 ⇒ Combine information in N̂_i and N̂_j to enforce symmetry
 ⇒ OR rule: (i,j) ∈ 𝔅 if β̂_j⁽ⁱ⁾ ≠ 0 or β̂_i^(j) ≠ 0. Likewise, AND rule
- Support consistency for either rule [Meinshausen-Bühlmann'06]
 - Suitable choice of λ , sparsity of Θ_0 , and sample complexity $P \ll N$

Testing partial correlations

- Parallelizable neighborhood-based regression (NBR)
 - \Rightarrow Conditional likelihood per vertex $i \in \mathcal{V}$, disregards $\boldsymbol{\Theta} \succeq \mathbf{0}$
 - \Rightarrow Tends to be computationally faster
- Graphical Lasso minimizes a (regularized) global likelihood

$$\mathcal{L}(\mathbf{\Theta};\mathcal{X}) = \log \det \mathbf{\Theta} - \mathrm{trace}(\hat{\mathbf{\Sigma}}\mathbf{\Theta})$$

 \Rightarrow Tends to be (statistically) more efficient

▶ NBR method tractable even for discrete or mixed graphical models ⇒ Ising-model selection for $\mathbf{x} \in \{-1, +1\}^N$ [Ravikumar'10]

Graph signal processing: Motivation and fundamentals

Network topology inference problems

Inference of association networks

Learning graphs from observations of smooth signals

Identifying the structure of network diffusion processes

Discussion

Problem formulation

Rationale

- Seek graphs on which data admit certain regularities
 - Nearest-neighbor prediction (a.k.a. graph smoothing)
 - Semi-supervised learning
 - Efficient information-processing transforms
- Many real-world graph signals are smooth
 - Graphs based on similarities among vertex attributes
 - Network formation driven by homophily, proximity in latent space

Problem statement

Given observations $\mathcal{X} := {\mathbf{x}_p}_{p=1}^p$, identify a graph G such that signals in \mathcal{X} are smooth on G.

 \blacktriangleright Criterion: Dirichlet energy on the graph ${\cal G}$ with Laplacian L

$$\mathsf{TV}(\mathsf{x}) = \mathsf{x}^{\mathsf{T}}\mathsf{L}\mathsf{x}$$

► Baker's yeast data, formally known as *Saccharomyces cerevisiae*

▶ Graph: 134 vertices (proteins) and 241 edges (protein interactions)

► Signal: functional annotation intracellular signaling cascade (ICSC)

- Signal transduction, how cells react to the environment
- $x_i = 1$ if protein *i* annotated ICSC (yellow), $x_i = 0$ otherwise (blue)

Example: Predicting law practice

- Working relationships among lawyers [Lazega'01]
 - ► Graph: 36 partners, edges indicate partners worked together

- ▶ Signal: various node-level attributes x = {x_i}_{i∈V} including
 ⇒ Type of practice, i.e., litigation (red) and corporate (cyan)
- Suspect lawyers collaborate more with peers in same legal practice

 Knowledge of collaboration useful in predicting type of practice

- ► Consider an unknown graph G with Laplacian L = VAV^T ⇒ Adopt GFT basis V as signal representation matrix
- ► Factor-analysis model for the observed graph signal [Dong et al'16]

$$\mathsf{x} = \mathsf{V}\chi + \epsilon$$

- \Rightarrow Latent variables $\chi \sim \mathcal{N}(\mathbf{0}, \mathbf{\Lambda}^{\dagger}) \ (\approx \text{GFT coefficients})$
- \Rightarrow Isotropic error term $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$
- Smoothness: prior encourages low-pass bandlimited x
 - \Rightarrow Small eigenvalues of L (low freq.) \rightarrow High-power factor loadings

 \blacktriangleright Maximum a posteriori (MAP) estimator of the latent variables χ

$$\hat{\boldsymbol{\chi}}_{\mathsf{MAP}} = \arg\min_{\boldsymbol{\chi}} \left\{ \| \boldsymbol{\mathsf{x}} - \boldsymbol{\mathsf{V}} \boldsymbol{\chi} \|^2 + \alpha \boldsymbol{\chi}^T \boldsymbol{\mathsf{\Lambda}} \boldsymbol{\chi} \right\}$$

 \Rightarrow Parameterized by the unknown ${\bm V}$ and ${\bm \Lambda}$

• Define predictor $\mathbf{y} := \mathbf{V} \boldsymbol{\chi}$, regularizer expressible as

$$\boldsymbol{\chi}^{\mathsf{T}} \boldsymbol{\Lambda} \boldsymbol{\chi} = \boldsymbol{\mathsf{y}}^{\mathsf{T}} \boldsymbol{\mathsf{V}} \boldsymbol{\Lambda} \boldsymbol{\mathsf{V}}^{\mathsf{T}} \boldsymbol{\mathsf{y}} = \boldsymbol{\mathsf{y}}^{\mathsf{T}} \boldsymbol{\mathsf{L}} \boldsymbol{\mathsf{y}} = \mathsf{TV}(\boldsymbol{\mathsf{y}})$$

 $\Rightarrow \mbox{Laplacian-based TV denoiser of } \textbf{x}, \mbox{ smoothness prior on } \textbf{y} \\ \Rightarrow \mbox{ Kernel-ridge regression with unknown } \textbf{K} := \textbf{L}^{\dagger} \mbox{ (graph filter)}$

Idea: jointly search for **L** and denoised representation $\mathbf{y} = \mathbf{V} \boldsymbol{\chi}$

$$\min_{\mathbf{L},\mathbf{y}} \left\{ \|\mathbf{x} - \mathbf{y}\|^2 + \alpha \mathbf{y}^T \mathbf{L} \mathbf{y} \right\}$$

▶ Given signals
$$\mathcal{X} := \{\mathbf{x}_{\rho}\}_{\rho=1}^{P}$$
 in $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_P] \in \mathbb{R}^{N \times P}$, solve

$$\min_{\mathbf{L},\mathbf{Y}} \left\{ \|\mathbf{X} - \mathbf{Y}\|_{F}^{2} + \alpha \operatorname{trace}\left(\mathbf{Y}^{T}\mathbf{L}\mathbf{Y}\right) + \frac{\beta}{2}\|\mathbf{L}\|_{F}^{2} \right\}$$

s. to trace(**L**) = N, **L1** = **0**, $L_{ii} = L_{ii} \le 0$, $i \ne j$

 \Rightarrow Objective function: Fidelity + smoothness + edge sparsity \Rightarrow Not jointly convex in L and Y, but bi-convex

• Algorithmic approach: alternating minimization (AM), $O(N^3)$ cost (S1) Fixed **Y**: solve for **L** via interior-point method, ADMM (more soon) (S2) Fixed L: low-pass, graph filter-based smoother of the signals in X

$$\mathbf{Y} = (\mathbf{I} + \alpha \mathbf{L})^{-1} \mathbf{X}$$

- ► Recall $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_P] \in \mathbb{R}^{N \times P}$, let $\bar{\mathbf{x}}_i^T \in \mathbb{R}^{1 \times P}$ denote its *i*-th row ⇒ Euclidean distance matrix $\mathbf{Z} \in \mathbb{R}_+^{N \times N}$, where $Z_{ij} := \|\bar{\mathbf{x}}_i - \bar{\mathbf{x}}_j\|^2$
- ▶ Neat trick: link between smoothness and sparsity [Kalofolias'16]

$$\sum_{p=1}^{P} \mathsf{TV}(\mathbf{x}_p) = \mathsf{trace}(\mathbf{X}^T \mathbf{L} \mathbf{X}) = \frac{1}{2} \|\mathbf{A} \circ \mathbf{Z}\|_1$$

⇒ Sparse \mathcal{E} when data come from a smooth manifold ⇒ Favor candidate edges (i, j) associated with small Z_{ii}

- Shows that edge sparsity on top of smoothness is redundant
- Parameterize graph learning problems in terms of A (instead of L)
 Advantageous since constraints on A are decoupled

▶ General purpose model for learning graphs [Kalofolias'16]

$$\begin{split} \min_{\mathbf{A}} & \left\{ \|\mathbf{A} \circ \mathbf{Z}\|_{1} - \alpha \mathbf{1}^{T} \log(\mathbf{A}\mathbf{1}) + \frac{\beta}{2} \|\mathbf{A}\|_{F}^{2} \right\}\\ \text{s. to} & \operatorname{diag}(\mathbf{A}) = \mathbf{0}, \ A_{ij} = A_{ji} \geq 0, \ i \neq j \end{split}$$

\Rightarrow Logarithmic barrier forces positive degrees \Rightarrow Denalize large edge weights to control sparsit

\Rightarrow Penalize large edge-weights to control sparsity

- Primal-dual solver amenable to parallelization, $O(N^2)$ cost
- Laplacian-based factor analysis encore. Tackle (S1) as

$$\min_{\mathbf{A}} \left\{ \|\mathbf{A} \circ \mathbf{Z}\|_1 - \log(\mathbb{I}\{\|\mathbf{A}\|_1 = N\}) + \frac{\beta}{2} \left(\|\mathbf{A}\mathbf{1}\|^2 + \|\mathbf{A}\|_F^2\right) \right\}$$

s. to diag(\mathbf{A}) = $\mathbf{0}$, $A_{ij} = A_{ji} \ge 0$, $i \ne j$

- Idea: parameterize the unknown topology via an edge indicator vector
- ▶ Complete graph on N nodes, having M := (^N₂) edges
 ⇒ Incidence matrix B := [b₁,..., b_M] ∈ ℝ^{N×M}
- ▶ Laplacian of a candidate graph *G*(*V*, *E*) [Chepuri et al'17]

$$\mathbf{L}(\boldsymbol{\omega}) = \sum_{m=1}^{M} \omega_m \mathbf{b}_m \mathbf{b}_m^T$$

⇒ Binary edge indicator vector $\boldsymbol{\omega} := [\omega_1, \dots, \omega_M]^T \in \{0, 1\}^M$ ⇒ Offers an explicit handle on the number of edges $\|\boldsymbol{\omega}\|_0 = |\mathcal{E}|$

Problem: Given observations $\mathcal{X} := \{\mathbf{x}_p\}_{p=1}^{P}$, learn an unweighted graph $G(\mathcal{V}, \mathcal{E})$ such that signals in \mathcal{X} are smooth on G and $|\mathcal{E}| = K$.

Natural formulation is to solve the non-convex problem

$$\min_{oldsymbol{\omega}\in\{0,1\}^M} ext{trace}(oldsymbol{X}^T oldsymbol{\mathsf{L}}(oldsymbol{\omega})oldsymbol{\mathsf{X}}), \hspace{1em} ext{s. to} \hspace{1em} \|oldsymbol{\omega}\|_0 = K$$

- Solution obtained through a simple rank-ordering procedure
 - Compute edge scores $c_m := trace(\mathbf{X}^T(\mathbf{b}_m \mathbf{b}_m^T)\mathbf{X})$
 - Set $\omega_m = 1$ for those K edges having the smallest scores
- More pragmatic AWGN setting where $\mathbf{x}_p = \mathbf{y}_p + \boldsymbol{\epsilon}_p$, $p = 1, \dots, P$

$$\min_{\mathbf{Y},\boldsymbol{\omega}\in\{0,1\}^{M}}\left\{\|\mathbf{X}-\mathbf{Y}\|_{F}^{2}+\alpha \operatorname{trace}(\mathbf{Y}^{T}\mathbf{L}(\boldsymbol{\omega})\mathbf{Y})\right\}, \quad \text{s. to } \|\boldsymbol{\omega}\|_{0}=K$$

 \Rightarrow Tackle via AM or semidefinite relaxation (SDR)

Comparative summary

- Noteworthy features of the edge subset selection approach
 - $\checkmark\,$ Direct control on edge sparsity
 - $\checkmark\,$ Simple algorithm in the noise-free case
 - ✓ Devoid of Laplacian feasibility constraints
 - \checkmark Does not guarantee connectivity of G
 - X No room for optimizing edge weights

Scalable framework in [Kalofolias'16] also quite flexible

$$\min_{\mathbf{A}} \{ \|\mathbf{A} \circ \mathbf{Z}\|_1 + g(\mathbf{A}) \}$$

s. to diag(\mathbf{A}) = $\mathbf{0}$, $A_{ij} = A_{ji} \ge 0$, $i \neq j$

 \Rightarrow Subsumes the factor-analysis model [Dong et al'16]

 \Rightarrow Recovers Gaussian kernel weights $A_{ij} := \exp\left(-\frac{\|ar{\mathbf{x}}_i - ar{\mathbf{x}}_j\|^2}{\sigma^2}
ight)$ for

$$g(\mathbf{A}) = \sigma^2 \sum_{i,j} A_{ij} (\log(A_{ij}) - 1)$$

Graph signal processing: Motivation and fundamentals

Network topology inference problems

Inference of association networks

Learning graphs from observations of smooth signals

Identifying the structure of network diffusion processes

Discussion

See also arXiv:1608.03008 [cs.SI] and arXiv:1801.03862 [eess.SP]

Problem formulation

Setup

- Undirected network G with unknown graph shift S
- Observe signals $\{\mathbf{y}_i\}_{i=1}^{P}$ defined on the unknown graph

Problem statement

Given observations $\{\mathbf{y}_i\}_{i=1}^{P}$, determine the network **S** knowing that $\{\mathbf{y}_i\}_{i=1}^{P}$ are outputs of a diffusion process on **S**.

Generating structure of a diffusion process

► Signal **y**_i is the response of a linear diffusion process to input **x**_i

$$\mathbf{y}_i = \alpha_0 \prod_{l=1}^{\infty} (\mathbf{I} - \alpha_l \mathbf{S}) \mathbf{x}_i = \sum_{l=0}^{\infty} \beta_l \mathbf{S}^l \mathbf{x}_i, \quad i = 1, \dots, P$$

 \Rightarrow Common generative model, e.g., heat diffusion, consensus

▶ Cayley-Hamilton asserts we can write diffusion as $(L \le N)$

$$\mathbf{y}_i = \left(\sum_{l=0}^{L-1} h_l \mathbf{S}^l\right) \mathbf{x}_i := \mathbf{H} \mathbf{x}_i, \quad i = 1, \dots, P$$

⇒ Graph filter H is shift invariant [Sandryhaila-Moura'13]
 ⇒ H diagonalized by the eigenvectors V of the shift operator

Goal: estimate undirected network S from signal realizations {y_i}^P_{i=1}
 ⇒ Unknowns: filter order L, coefficients {h_i}^{L-1}_{i=1}, inputs {x_i}^P_{i=1}

◆□> ◆□> ◆三> ◆三> ・三 のへで

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

- ► Suppose first that the input is white, i.e., $\mathbf{C}_{x} = \mathbb{E}\left[\mathbf{x}\mathbf{x}^{T}\right] = \mathbf{I}$
- The covariance matrix of the graph signal $\mathbf{y} = \mathbf{H}\mathbf{x}$ is

$$\mathbf{C}_{y} = \mathbb{E}\left[\mathbf{H}\mathbf{x}(\mathbf{H}\mathbf{x})^{T}\right] = \mathbf{H}\mathbf{C}_{x}\mathbf{H} = \mathbf{H}^{2}$$

• Key: since **H** is diagonalized by **V**, so is the covariance C_y

$$\mathbf{C}_{y} = \mathbf{V} \left(\sum_{l=0}^{L-1} h_{l} \mathbf{\Lambda}^{l} \right)^{2} \mathbf{V}^{T}$$

 $\Rightarrow G \text{ and its eigenvalues } \Lambda \text{ have been obscured by diffusion}$ $\Rightarrow \text{Eigenvectors } V \text{ preserved in } C_y \text{ as spectral templates of } S$

► Form sample covariance $\hat{\mathbf{C}}_y$ using $\{\mathbf{y}_i\}_{i=1}^P \Rightarrow \text{Diagonalize} \Rightarrow \text{Obtain } \hat{\mathbf{V}}$

- Q: What if the signal x is colored?
 - \Rightarrow Matrices S and C_y no longer simultaneously diagonalizable since

$$C_y = HC_x H$$

► Key: still $\mathbf{H} = \sum_{l=0}^{L-1} h_l \mathbf{S}^l$ diagonalized by the eigenvectors **V** of **S** \Rightarrow Infer **V** by estimating the unknown diffusion (graph) filter **H**

 \Rightarrow Step 1 boils down to system identification + eigendecomposition

$$\{\mathbf{y}_i\}_{i=1}^P \longrightarrow \overbrace{\text{Identification}}^{\text{System}} \stackrel{\hat{\mathbf{H}}}{\longrightarrow} \overbrace{\text{Eigendecomposition}}^{\text{Eigendecomposition}} \rightarrow \hat{\mathbf{V}}$$

Henceforth assume C_x is non-singluar and known

• Q: What are the solutions of the quadratic equation $C_y = HC_x H$?

Proposition: Define $\mathbf{C}_{xyx} := \mathbf{C}_x^{1/2} \mathbf{C}_y \mathbf{C}_x^{1/2}$, with eigenvectors \mathbf{V}_{xyx} . Then all admissible symmetric graph filters \mathbf{H} are of the form

$$\mathbf{H} = \mathbf{C}_{x}^{-1/2} \mathbf{C}_{xyx}^{1/2} \mathbf{V}_{xyx} \text{diag}(\mathbf{b}) \mathbf{V}_{xyx}^{T} \mathbf{C}_{x}^{-1/2},$$

where $\mathbf{b} \in \{-1, 1\}^N$ is a binary (signed) vector.

- ► Even if we know C_y perfectly, **H** is not identifiable \Rightarrow Not surprising since we only have second-moment information \Rightarrow Unique solution $\mathbf{H} = \mathbf{C}_x^{-1/2} \mathbf{C}_{xyx}^{1/2} \mathbf{C}_x^{-1/2}$ for positive semidefinite **H**
- Consider having access to multiple input distributions $\{\mathbf{C}_{x,m}\}_{m=1}^{M}$

Boolean quadratic program

► Define
$$\mathbf{A}_m := (\mathbf{C}_{x,m}^{-1/2} \mathbf{V}_{xyx,m}) \odot (\mathbf{C}_{x,m}^{-1/2} \mathbf{C}_{xyx,m}^{1/2} \mathbf{V}_{xyx,m})$$
 and form

- ▶ With $\mathbf{b}_m \in \{-1,1\}^N$ and $\mathbf{b} = [\mathbf{b}_1^T, \mathbf{b}_2^T, \dots, \mathbf{b}_M^T]^T$, then $\Psi \mathbf{b}^* = \mathbf{0}$
- ▶ In practice only $\{\hat{\mathbf{C}}_{y,m}\}_{m=1}^{M}$ are available \Rightarrow Estimate \mathbf{b}^* as

$$\hat{\mathbf{b}}^* = \operatorname*{argmin}_{\mathbf{b} \in \{-1,1\}^{NM}} \mathbf{b}^T \hat{\mathbf{\Psi}}^T \hat{\mathbf{\Psi}} \mathbf{b}$$

▶ Solution $\hat{\mathbf{b}}^*$ of binary quadratic program (BQP) \Rightarrow Filter estimate

$$\hat{\mathbf{H}} = \frac{1}{M} \sum_{m=1}^{M} \mathbf{C}_{x,m}^{-1/2} \hat{\mathbf{C}}_{xyx,m}^{1/2} \hat{\mathbf{V}}_{xyx,m} \text{diag}(\hat{\mathbf{b}}_{m}^{*}) \hat{\mathbf{V}}_{xyx,m}^{T} \mathbf{C}_{x,m}^{-1/2}$$

System identification reduces to solving the NP-hard BQP

$$\hat{\mathbf{b}}^* = \operatorname*{argmin}_{\mathbf{b} \in \{-1,1\}^{NM}} \mathbf{b}^T \hat{\mathbf{\Psi}}^T \hat{\mathbf{\Psi}} \mathbf{b}$$

• Define $\hat{\mathbf{W}} = \hat{\mathbf{\Psi}}^T \hat{\mathbf{\Psi}}$ and $\mathbf{B} = \mathbf{b}\mathbf{b}^T$, BQP equivalent to

$$\min_{\mathbf{B} \succeq \mathbf{0}} \mathsf{tr}(\hat{\mathbf{W}}\mathbf{B}) \quad \mathsf{s. to rank}(\mathbf{B}) = 1, \ B_{ii} = 1, \ i = 1, \dots, NM$$

► Drop source of non-convexity ⇒ Semidefinite relaxation (SDR)

$$\mathbf{B}^* = \operatorname*{argmin}_{\mathbf{B} \succeq \mathbf{0}} \operatorname{tr}(\hat{\mathbf{W}}\mathbf{B}) \quad \text{s. to } \quad B_{ii} = 1, \ i = 1, \dots, NM$$

► For
$$l = 1, ..., L$$
, draw $\mathbf{z}_l \sim \mathcal{N}(\mathbf{0}, \mathbf{B}^*)$, round $\tilde{\mathbf{b}}_l = \operatorname{sign}(\mathbf{z}_l)$, to obtain

$$l^* = \operatorname*{argmin}_{l=1,...,L} \tilde{\mathbf{b}}_l^T \hat{\mathbf{W}} \tilde{\mathbf{b}}_l$$

Theorem: Let \hat{b}^* be the BQP solution and \tilde{b}_{l^*} the SDR output. Then,

$$(\hat{\mathbf{b}}^*)^T \hat{\mathbf{W}} \hat{\mathbf{b}}^* \leq \mathbb{E}\left[(\tilde{\mathbf{b}}_{I^*})^T \hat{\mathbf{W}} \tilde{\mathbf{b}}_{I^*} \right] \leq \frac{2}{\pi} (\hat{\mathbf{b}}^*)^T \hat{\mathbf{W}} \hat{\mathbf{b}}^* + \gamma,$$

where $\gamma = \left(1 - \frac{2}{\pi}\right) \lambda_{\max}(\hat{\mathbf{W}}) NM$.

ヘロト ヘヨト ヘヨト ヘヨト

æ

ヘロト ヘヨト ヘヨト ヘヨト

æ

・ロト ・四ト ・ヨト ・ヨト

3

・ロト ・回ト ・ヨト ・ヨト

э

・ロト ・回ト ・ヨト ・ヨト

э

► We can use extra knowledge/assumptions to choose one graph ⇒ Of all graphs, select one that is optimal in some sense

$$\mathbf{S}^* := \operatorname*{argmin}_{\mathbf{S}, \boldsymbol{\lambda}} f(\mathbf{S}, \boldsymbol{\lambda})$$
 s. to $\mathbf{S} = \sum_{k=1}^N \lambda_k \mathbf{v}_k \mathbf{v}_k^T$, $\mathbf{S} \in S$

► Set *S* contains all admissible scaled adjacency matrices

$$S := \{ S \mid S_{ij} \ge 0, S \in \mathcal{M}^N, S_{ii} = 0, \sum_j S_{1j} = 1 \}$$

 \Rightarrow Can accommodate Laplacian matrices as well

Problem is convex if we select a convex objective f(S, λ)
 Ex: Sparsity (f(S) = ||S||₁), min. energy (f(S) = ||S||_F), mixing (f(λ) = −λ₂)

- Whenever the problem's feasibility set is non-trivial ⇒ f(S, λ) determines the features of the recovered graph
 - Ex: Identify sparsest shift S_0^* that explains observed signal structure \Rightarrow Set the objective $f(\mathbf{S}, \lambda) = ||\mathbf{S}||_0 = |\operatorname{supp}(\mathbf{S})|$
- ▶ Non-convex problem, relax to ℓ₁-norm minimization, e.g., [Tropp'06]

$$\mathbf{S}_1^* := \underset{\mathbf{S}, \boldsymbol{\lambda}}{\operatorname{argmin}} \|\mathbf{S}\|_1 \quad \text{ s. to } \quad \mathbf{S} = \sum_{k=1}^N \lambda_k \mathbf{v}_k \mathbf{v}_k^{\mathsf{T}}, \ \mathbf{S} \in \mathcal{S}$$

• Q: Does the solution S_1^* coincide with the ℓ_0 solution S_0^* ?
Recovery guarantee for ℓ_1 relaxation

- ▶ D is the index set such that $vec(S)_D = diag(S)$
- \mathcal{K} indexes the support of $s_0^* = \operatorname{vec}(S_0^*)$

► Define $M := V \odot V$, where \odot is the Khatri-Rao product ⇒ Form $R := [(I - MM^{\dagger})_{\mathcal{D}^c}, e_1 \otimes \mathbf{1}_{N-1}]$

Theorem: $\mathbf{S}_1^* = \mathbf{S}_0^*$ if the two following conditions are satisfied 1) rank($\mathbf{R}_{\mathcal{K}}$) = $|\mathcal{K}|$; and 2) There exists a constant $\delta > 0$ such that $\psi_{\mathbf{R}} := \|\mathbf{I}_{\mathcal{K}^c} (\delta^{-2} \mathbf{R} \mathbf{R}^T + \mathbf{I}_{\mathcal{K}^c}^T \mathbf{I}_{\mathcal{K}^c})^{-1} \mathbf{I}_{\mathcal{K}}^T \|_{\infty} < 1$

- ▶ Cond. 1) ensures uniqueness of solution **S**^{*}₁
- ▶ Cond. 2) guarantees existence of a dual certificate for ℓ_0 optimality

▶ Erdős-Rényi (ER) graphs of varying size $N \in \{10, 20, ..., 50\}$

 \Rightarrow Edge probabilities $p \in \{0.1, 0.2, \dots, 0.9\}$

Recovery rates for adjacency (left) and normalized Laplacian (right)

► Successful recovery over most of the (N, p) plane
⇒ Recovery is easier for intermediate values of p

- Generate 1000 ER random graphs (N = 20, p = 0.1) such that
 - \Rightarrow Feasible set is not a singleton
 - \Rightarrow Cond. 1) in sparse recovery theorem is satisfied
- ▶ Noiseless case: ℓ_1 norm guarantees recovery as long as $\psi_{\mathbf{R}} < 1$

- Condition is sufficient but not necessary
 - \Rightarrow Tightest possible bound on this matrix norm

Step 1 actually yields V, a noisy version of the spectral templates ⇒ With d(·, ·) denoting a (convex) distance between matrices

$$\min_{\{\mathbf{S},\boldsymbol{\lambda},\hat{\mathbf{S}}\}} \|\mathbf{S}\|_1 \quad \text{s. to} \quad \hat{\mathbf{S}} = \sum_{k=1}^N \lambda_k \hat{\mathbf{v}}_k \hat{\mathbf{v}}_k^{\mathcal{T}}, \quad \mathbf{S} \in \mathcal{S}, \ d(\mathbf{S}, \hat{\mathbf{S}}) \le \epsilon$$

- Q: How does the noise in $\hat{\mathbf{V}}$ affect the recovery?
- ► Stable recovery can be established \Rightarrow depends on noise level \Rightarrow Reformulate problem as min_t $||\mathbf{t}||_1$ s. to $||\hat{\mathbf{R}}^T \mathbf{t} - \mathbf{b}||_2 \le \epsilon$
- Conditions 1) and 2) but based on R̂, guaranteed d(S*, S₀*) ≤ Ce
 ⇒ e large enough to guarantee feasibility of S₀*
 ⇒ Constant C depends on V̂ and the support K

▶ Partial access to $\mathbf{V} \Rightarrow$ Only K known eigenvectors $\mathbf{V}_{K} = [\mathbf{v}_{1}, \dots, \mathbf{v}_{K}]$

 $\min_{\{\mathbf{S},\mathbf{S}_{\bar{K}},\boldsymbol{\lambda}\}} \|\mathbf{S}\|_1 \text{ s. to } \mathbf{S} = \mathbf{S}_{\bar{K}} + \sum_{k=1}^{K} \lambda_k \mathbf{v}_k \mathbf{v}_k^T, \ \mathbf{S} \in \mathcal{S}, \ \mathbf{S}_{\bar{K}} \mathbf{V}_K = \mathbf{0}$

- Q: How does the (partial) knowledge of V_K affect the recovery?
- ► Define $\mathbf{P} := [\mathbf{P}_1, \mathbf{P}_2]$ in terms of \mathbf{V}_K , and $\mathbf{\Upsilon} := [\mathbf{I}_{N^2}, \mathbf{0}_{N^2 \times N^2}]$ ⇒ Reformulate problem as $\min_{\mathbf{t}} \|\mathbf{\Upsilon}\mathbf{t}\|_1$ s.to $\mathbf{P}^T \mathbf{t} = \mathbf{b}$

Theorem: $\mathbf{S}^* = \mathbf{S}_0^*$ if the two following conditions are satisfied 1) rank($[\mathbf{P}_{1\mathcal{K}}^T, \mathbf{P}_2^T]$) = $|\mathcal{K}| + N^2$; and 2) There exists a constant $\delta > 0$ such that $\eta_{\mathbf{P}} := \|\mathbf{\Upsilon}_{\mathcal{K}^c} (\delta^{-2} \mathbf{P} \mathbf{P}^T + \mathbf{\Upsilon}_{\mathcal{K}^c}^T \mathbf{\Upsilon}_{\mathcal{K}^c})^{-1} \mathbf{\Upsilon}_{\mathcal{K}}^T\|_{\infty} < 1$

Social graphs from imperfect templates

- Identification of multiple social networks with N = 32
 - \Rightarrow Defined on the same node set of students from Ljubljana
 - \Rightarrow Synthetic signals from diffusion processes in the graphs
- ▶ Recovery for incomplete (left) and noisy (right) spectral templates

- Error (left) decreases with increasing nr. of spectral templates
- Error (right) decreases with increasing number of observed signals

Performance comparisons

- Comparison with graphical lasso and sparse correlation methods
 - Evaluated on 100 realizations of ER graphs with N = 20 and p = 0.2

- ▶ Graphical lasso implicitly assumes a filter H₁ = (ρI + S)^{-1/2}
 ⇒ For this filter spectral templates work, but not as well
- ▶ For general diffusion filters H₂ spectral templates still work fine

Network deconvolution

- Our method can be used to sparsify a given network
 - \Rightarrow Keep direct and important edges or relations
 - \Rightarrow Discard indirect relations that can be explained by direct ones
- Use eigenvectors $\hat{\mathbf{V}}$ of given network as noisy templates
- Ex: Infer contact between amino-acid residues in BPT1 BOVIN \Rightarrow Use mutual information of amino-acid covariation as input

► Existing approach assumes a specific filter model [Feizi et al'13] ⇒ We achieve better performance by being agnostic to this

Unveiling urban mobility patterns

- Detect mobility patterns in New York City from Uber pickup data
 - Times and locations (N = 30) from January 1st to June 29th 2015
 - Pickups within 6-11am as input signal x and 3-8pm as output y
 - M = 2 graph processes: weekday (m = 1) and weekend (m = 2) pickups

- Most edges between Manhattan and the other boroughs
- Few edges within Manhattan
 ⇒ Uber mostly for commute
- Hubs at JFK, Newark and LaGuardia airports

- ► GSP approach to network inference in the graph spectral domain ⇒ Two step approach: i) Obtain V; ii) Estimate S given V
- How to obtain the spectral templates V
 - \Rightarrow Based on covariance of diffused signals
 - \Rightarrow Other sources: network operators, network deconvolution
- ► Infer S via convex optimization
 - \Rightarrow Objectives promote desirable physical properties
 - \Rightarrow Constraints encode a priori information on structure
 - \Rightarrow Robust formulations for noisy and incomplete templates

▶ Superimposed heat diffusion processes on G [Thanou et al'17]

- Dictionary consisting of heat diffusion filters with different rates
 - \Rightarrow Signals modeled as a linear combination of few (sparse) atoms
- Graph learning task as a regularized inverse problem
 - \Rightarrow The graph (hence, the filters) is unknown
 - \Rightarrow The sparse combination coefficients are unknown

Learning heat diffusion graphs: Formulation

• Heat rates
$$\boldsymbol{\tau} = [\tau_1, \dots, \tau_S]^T$$
 of the *S* filters $\mathbf{H}_s = e^{\tau_s \mathbf{L}} = \sum_{l=0}^{\infty} \frac{(\tau_s \mathbf{L})^l}{l!}$

▶ Given signals $\mathcal{X} := \{\mathbf{x}_{\rho}\}_{\rho=1}^{P}$ in $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_P] \in \mathbb{R}^{N \times P}$, solve

$$\min_{\mathbf{L},\mathbf{R},\tau} \left\{ \left\| \mathbf{X} - \left[e^{\tau_1 \mathbf{L}}, e^{\tau_2 \mathbf{L}}, \dots, e^{\tau_s \mathbf{L}} \right] \mathbf{R} \right\|_F^2 + \alpha \sum_{p=1}^P \|\mathbf{r}_p\|_1 + \beta \|\mathbf{L}\|_F^2 \right\}$$

- s. to $\operatorname{trace}(\mathbf{L}) = N$, $\mathbf{L}\mathbf{1} = \mathbf{0}$, $L_{ij} = L_{ji} \leq 0$, $i \neq j$, $\tau_i \geq 0$
- $\Rightarrow \textbf{R} \in \mathbb{R}^{\textit{NS} \times \textit{P}}$ are sparse combination coefficients
- \Rightarrow Objective function: Fidelity + sparsity + regularizer
- Non-convex optimization, challenged by matrix exponentials
 - Proximal alternating linearized minimization (PALM)
 - Savings via low-degree polynomial approximation of H_s

- Main distinctive points of this model
 - \Rightarrow Assumes a specific filter type: heat diffusion
 - \Rightarrow Parametrized by a single scalar: the diffusion rate
 - \Rightarrow Inputs to these filters are required to be sparse
- In comparison, for the spectral templates method
 - \Rightarrow Filters are arbitrary, not just diffusion
 - \Rightarrow Information about inputs is statistical instead of structural
- Inherent trade-off between model and data driven approaches

Graph signal processing: Motivation and fundamentals

Network topology inference problems

Inference of association networks

Learning graphs from observations of smooth signals

Identifying the structure of network diffusion processes

Discussion

Concluding remarks

- How to use the information in \mathcal{X} to identify $G(\mathcal{V}, \mathcal{E})$
 - \Rightarrow Focus on static and undirected graphs
 - \Rightarrow GSP offers some novel insights and tools
- Emerging topic areas we did not cover
 - \Rightarrow Directed graphs and causal structure identification
 - \Rightarrow Dynamic networks and multi-layer graphs
 - \Rightarrow Nonlinear models of interaction
- Open research directions
 - \Rightarrow Performance guarantees such as those for graphical lasso
 - \Rightarrow Does smoothness alone suffice? Can sparsity be forgone?
 - \Rightarrow Bi-level network inference: graphs for higher-level tasks
 - \Rightarrow Discrete signals, non-linear graph filter based models
 - \Rightarrow Scalability via online and/or parallel algorithms