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Anomaly Detection using Proximity Graph and
PageRank Algorithm

Zhe Yao, Philip Mark and Michael Rabbat

Abstract—Anomaly detection techniques are widely used in a
variety of applications, e.g., computer networks, security systems,
etc. This paper describes and analyzes an approach to anomaly
detection using proximity graphs and the PageRank algorithm.
We run a variant of the PageRank algorithm on top of a
proximity graph comprised of data points as vertices, which
produces a score quantifying the extent to which each data
point is anomalous. Previous work in this direction requires
first forming a density estimate using the training data, e.g.,
using kernel methods, and this step is very computationally
intensive for high-dimensional data sets. Under mild assumptions
and appropriately chosen parameters, we show that PageRank
produces point-wise consistent probability density estimates for
the data points in an asymptotic sense, and with much less
computational effort. As a result, big improvements in terms of
running time are witnessed while maintaining similar detection
performance. Experiments with synthetic and real-world data
sets illustrate that the proposed approach is computationally
tractable and scales well to large high-dimensional data sets.

Index Terms—Anomaly Detection, Proximity Graph, Person-
alized PageRank

I. INTRODUCTION

Anomaly detection, also known as outlier detection, refers
to the problem of discovering data points or patterns in a
given dataset that do not conform to some normal behaviour.
Anomaly detection techniques are applied in a variety of
domains, including credit card fraud prevention, financial
turbulence detection, virus or system intrusion discovery, and
network monitoring, to name a few. For a broad review of
different anomaly detection approaches and techniques, see
the comprehensive survey by Chandola et al. [1].

We can view anomaly detection as a binary classification
problem, with one class being anomalous and the other normal.
In the classic supervised learning literature, labeled training
data from both classes are required for the construction of
a classifier. However, anomaly detection is different from
traditional classification problems. While the latter usually deal
with the case where both classes are of relatively equal size,
this is not the case in anomaly detection. Since anomalies,
by definition, deviate from the normal pattern, they usually
represent situations where something goes wrong with the
system (e.g., a malfunction, misuse, or malevolent behavior),
and thus they are rarely observed. It is often impractical to
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collect sufficient observations to learn the anomalous pattern
accurately. Moreover, manual labelling each data point is time
consuming and error prone, and when the data is difficult to
visualize or interpret it may not even be possible for a human
to identify all anomalies. Therefore, although the supervised
approach is well defined and thoroughly investigated, it is not a
always appropriate for practical use. For this reason, we focus
on unsupervised approaches.

In this work, we propose an unsupervised anomaly detection
scheme using proximity graphs and the PageRank algorithm.
Our algorithm takes as input a set of unlabeled data points
and determines a ranking of which are most anomalous. We
construct a proximity graph from data measurements, with one
node for each data point and edges between nodes indicating
similar data points. We then examine the stationary distribution
of a random walk on this graph, following a variation of the
well-known PageRank [2] algorithm. The stationary distribu-
tion of the random walk is used as a surrogate for density
estimates at the locations of data points, allowing us to bypass
running more intensive kernel density estimation procedures
and leading to a faster and more scalable algorithm.

A. RELATED WORK

The standard approach in unsupervised statistical anomaly
detection has been to assume that the data are drawn from a
mixture of outlier and nominal distributions, and to estimate
level sets of the nominal density. Schölkopf et al. [3] propose
the one-class support vector machine (OCSVM) to learn the
classification boundary where only nominal training data are
available. Scott and Nowak [4] extend the Neyman-Pearson
hypothesis testing framework to general supervised learning
problems. Based on this extension, they derive a decision
region using minimum volume (MV) sets in [5], providing
false alarm control. Later, Scott and Kolaczyk [6] generalize
this hypothesis testing framework to the unsupervised case,
where measurements are no longer assumed to come from
the nominal distribution alone. Meanwhile, they incorporate
a multiple testing framework, where the false discovery rate
is controlled rather than false alarm errors. Hero [7] intro-
duces geometric entropy minimization to a extract minimal
set covering the training samples while also ensuring false
alarm guarantees. All of the methods mentioned above involve
intensive computation, which is undesirable especially for
large, high-dimensional data. We address this problem by
taking an alternative graph-based approach.

Another line of previous work is based on forming a graph
from the data using the distances between data points. For
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example, a k-nearest neighbor (kNN) graph is constructed
first, and then the distances from each data point to its
kth nearest neighbour are used to identify anomalies. These
distances are ranked in descending order, and either a threshold
is applied [8] or the top m candidates are declared anomalous
[9]. Breunig et al. [10], [11] define a related quantity called
local outlier factor, which is a degree depending on how
isolated one data point is with respect to the surrounding
neighborhood, to better accommodate heteroscedastic data
sources. Pokrajac et al. [12] extend the local outlier factor
approach in an incremental online fashion. Zhao and Saligrama
[13] propose a non-parametric anomaly detection algorithm
based on kNN graphs trained using only nominal data points,
which provides optimal false alarm control asymptotically.

Our work is motivated by both directions mentioned above.
We combine the graph approach together with random walk
models, providing false alarm controls in an asymptotic sense.
We note that we are not the first to use random walks or the
PageRank algorithm for anomaly detection. Janeja and Atluri
[14] apply random walk models to detect anomalous spatial
area regions in graphs where, in contrast to conventional
scan-statistic methods, a regular-shaped scan window (e.g.,
a rectangle) is no longer required. He et al. [15] propose a
graph-based anomaly detection algorithm in an active learning
setting, where the density information is used to reduce the
number of inquiries made to the oracle; their algorithm builds
on earlier work [16] which uses graph-based methods for
density estimation. Cheng et al. [17] exploit random walks
for finding anomalies in time sequences. Sun et al. [18] also
investigate anomalous patterns using a PageRank-like method.
However, they focus mainly on bipartite graphs, while we
are discussing much more general distributions and graphs.
Noble and Cook [19] develop methods to identify anomalous
substructures in graph, purely based on the graph structure,
and Chakrabarti [20] focuses on identifying anomalous edges
in graphs. In contrast, we aim to find anomalous nodes in a
graph induced by high dimensional measurements.

B. PAPER ORGANIZATION

The paper is structured as follows. After defining formally
the problem in Section II, we present our approach at a
high level in Section III. The two conceptual phases of our
method are introduced and discussed separately. Then our
main algorithm is described in Section IV, together with its
properties. An upper bound on the computational complex-
ity and statistical performance guarantees are discussed in
Sections V and VI respectively. In Section VII, we evaluate
the performance of our framework on both synthetic datasets
and data from real world applications. Comparisons with
other algorithms are also presented. Conclusions and possible
extensions are included in Section VIII.

II. PROBLEM STATEMENT

In the anomaly detection literature, it is quite common
to assume that observations come from one of two distinct
classes: one represented by a nominal distribution p(x) and the

other by an anomalous distribution µ(x). We observe indepen-
dent and identically distributed (i.i.d. ) random measurements
xi ∈ Rd, i = 1, 2, . . . , n from the mixture of these two, i.e.,

xi ∼ Q(x) = (1− π)p(x) + πµ(x), (1)

where π is the prior probability of a particular observation
coming from the anomalous distribution. Our task is to assign
a label, either nominal or anomalous, to each measurement xi,
possibly along with some confidence levels or rankings.

In this work, we follow the assumption that all the ob-
servations are from the mixed distribution Q(x). The only
quantities available are the measurements xi ∈ Rd themselves.
No additional training data or label information are given, and
neither the nominal distribution p(x) nor the prior probability
π in Eq. (1) is provided. The anomalous distribution µ(x) is
assumed to be uniform, which is a natural choice when no
other information is available. Additionally, this assumption
leads to a nice reduction to the Neyman-Pearson test as we
see next.

In MV set approaches, an observation xi is declared to be
an anomaly if it falls outside of a particular level set [6], [21]
of Q(x), i.e.,

xi ∈ {x | Q(x) ≤ λ}, (2)

with λ being a prescribed threshold. It turns out that this
criterion is identical to the Neyman-Pearson test, under the
assumption that µ(x) is uniform over the measurement space.
To show this, combining Eq. (1) and Eq. (2), we have

(1− π)p(x) + πµ(x) ≤ λ (3)
p(x)

µ(x)
≤ λ− πµ(x)

(1− π)µ(x)
, (4)

which is the likelihood ratio between the two distributions.
Note that the right hand side of the last inequality remains
constant under the assumption that µ(x) is uniform over x.

If, somehow, p(x) can be estimated from the data, then we
have all the information needed to compute density levels, to
perform hypothesis testing, or to make other statistical argu-
ments. Consequently, some form of density estimation (e.g.,
kernel density estimation) seems to be a natural prerequisite
for our task. However, kernel density estimation is itself an
unnecessary intermediate step which estimates the continuous
density for the whole data domain from discrete points, after
which one level set parameter is calculated for each data point.
The quantities we are actually interested in are the properties
of the discrete observations, not the continuous space around
them. As a result, specifying the full distribution throughout
the whole space is inessential, introducing computational
burden while accumulating estimation errors. The approach
proposed in this paper circumvents density estimation through
the used of an alternative graph-based approach. Before intro-
ducing the proposed method, preliminary background material
is discussed in the next section.

III. PRELIMINARIES

We propose an alternative approach to anomaly detection,
using random walks on graphs, and more specifically, an
adaptation of the PageRank algorithm [2], to sidestep the
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tedious intermediate stage of kernel density estimation. The
basic idea is to first construct a graph induced by the data set,
and then to examine the stationary distribution of a random
walk on this graph.

The main challenge of this approach lies mainly in the
first step, constructing the graph from the data set. The graph
must be able to capture enough information about the density
of the data points. At the same time, graph construction
should require as little computational burden as possible. The
following subsections discuss the two phases respectively in
detail.

A. PROXIMITY GRAPHS

Proximity graphs [22] are widely used in machine learning,
e.g., for clustering [23], manifold learning [24] and semi-
supervised learning [25]. Given a cloud of points in a Eu-
clidean space, the proximity graph becomes an intermedi-
ate representation of the similarities between each pair of
points. More formally, given n points x1, x2, . . . , xn ∈ Rd,
a proximity graph is a weighted graph G = (V,E) with
vertices x1, . . . , xn. Here V denotes the vertex set, E denotes
the edge set. If there exists an edge between xi and xj ,
then the weight of this edge is denoted as wij ≥ 0, which
measures the similarity between the end nodes. Different
geometric requirements lead to a variety of proximity graphs.
The following definitions cover the three types of graphs we
will consider in this work. We denote by dist(i, j) a distance
metric between xi and xj . Throughout, we take dist(i, j) to
be Euclidean distance unless otherwise noted.

Definition 1 (kNN Graph). A k nearest neighbour (kNN)
graph is a graph G = (V,E) with vertices x1, . . . , xn ∈ Rd.
We define distk(i) to be the distance from xi to its kth nearest
neighbour. An edge (i, j) exists if and only if dist(i, j) ≤
distk(i).

Definition 2 (ϵ-Graph). An ϵ-graph is a graph G = (V,E)
with vertices x1, . . . , xn ∈ Rd. An edge (i, j) exists if and
only if dist(i, j) ≤ ϵ.

Definition 3 (Euclidean Minimum Spanning Tree). A Eu-
clidean minimum spanning tree (EMST) is a graph G = (V,E)
with vertices x1, . . . , xn ∈ Rd. The edges in G form a
connected tree, while

∑
(i,j)∈E dist(i, j) is minimized.

Though the PageRank algorithm itself is originally designed
for directed web hyperlinks, we assume undirected graph
in this work due to more elegant results. The ϵ-graph and
EMST are undirected in nature. However, for kNN graphs,
some modifications are needed, since they are directional by
definition. Two possible ways to convert a (directed) kNN
graph into a symmetric (undirected) graph:

• Mutual kNN. (i, j) ∈ E if and only if dist(i, j) ≤
distk(i) and dist(i, j) ≤ distk(j).

• Symmetric kNN. (i, j) ∈ E if and only if dist(i, j) ≤
distk(i) or dist(i, j) ≤ distk(j).

The edge weights wij are defined by a weight function
f (dist(i, j)). We consider here two such functions: the iden-
tity weight f(u) ≡ 1, and the Gaussian weight f(u) =

exp
(
− u2

2σ2

)
, with σ being the bandwidth parameter. It is

worth noting that as σ → ∞, the Gaussian weight collapses to
the identity weight. This reflects the fact that an unweighted
graph is a special case of a weighted one, which ensures all the
results for weighted graphs apply to unweighted ones exactly.

It is widely recognized that specifying the number of
neighbours in a kNN graph or the radius for an ϵ-graph
is not a trivial task. These parameters give us freedom on
how we construct the underlying graph. The bottom line is
that we would like to choose these values large enough so
that most of the vertices are connected together, generating a
meaningful graph. Meanwhile, they need to be small enough
so that faraway vertices will not be connected to destroy the
local density information.

A similar trade-off appears in traditional kernel density
estimation, in the form of bandwidth selection for kernel
functions. A typical recipe relies on cross validation or similar
techniques from supervised learning. These methods make
full use of training data to select a “suitable” bandwidth
value, which yields minimum validation error. However, cross
validation is computationally demanding, and thus unsuitable
for time-constrained applications. In addition, since we do not
have training data at hand, other methods have to be applied
instead.

Several rules of thumb for selecting k exist in kNN ap-
proaches. For example, one might try k =

√
n [26], due to

good results on the basis of some empirical work, where n
is the number of vertices in the graph. This could serve as
a starting point, in the sense that k increases much slower
than n does. In [27] it is suggested that k should be in the
order of Θ(log n), so that if vertices are distributed according
to a homogeneous Poisson process, the resulting graph is
connected with high probability.

In the rest of this work, we will focus mainly on ϵ-
graphs for theoretical discussion, while similar results can be
adapted to the kNN case. We propose two criteria for the
radius selection. One is motivated by random geometric graph
sampled from uniform distribution in the unit hypercube, the
other is determined by the growing trend of edge lengths in
the EMST. Detailed discussion can be found in Section IV-B.

B. PAGERANK
The PageRank algorithm is first introduced by Page and

Brin [2], [28], and employed by Google to rank web pages.
PageRank is closely related to random walks. In a classic
discrete time finite state random walk model, we denote by
P the n×n transition matrix where n is the number of states,
with Pij being the transition probability from state i to state
j. Then the stationary distribution s is defined as

sT = sTP (5)

s.t. si ≥ 0 and
n∑

i=1

si = 1. (6)

From Eq. (5), we observe that sT is the left eigenvector of P
corresponding to the eigenvalue 1.

PageRank is a modified version of the random walk model,

sT = αsTP + (1− α)tT , (7)
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where t is another column vector called the teleport vector,
satisfying

∑n
i=1 ti = 1, and α is a scalar called the damping

factor. It is well known that a unique stationary distribution
s exists if P corresponds to an aperiodic and irreducible
Markov chain. This is not the case if the graph itself is
not connected. The teleport vector t and the damping factor
α are introduced to treat this particular flaw. Effectively,
the PageRank equation (7) corresponds to a mixture of two
random walks, one with transition matrix P and the other
there is a transition to state i from every other state with
probability ti, and with mixing parameter α. Consequently,
since it is possible to go from any state to any other state (via
the teleport vector), the corresponding graph is connected and
thus the chain is aperiodic and irreducible.

The original PageRank algorithm [2] treats each web page
equally, setting ti = 1/n, and recommends using damping
parameter α = 0.85. This choice bounds the convergence
rate and empirically mimics user behaviours — on average,
after following 5 hyperlinks on web pages, the random surfer
jumps once — showing scalable results in real applications
[29]. Subsequetnly, several variants have been proposed, e.g.,
topic sensitive PageRank [30], modular PageRank [31], and
block PageRank [32]. These approaches belong to a more
general class called personalized PageRank. They all consider
a nonuniform teleport vector t, although defining and inter-
preting t differently. The basic idea is that, when the surfer
decides to jump, he will probably jump to his homepage or
search engines, much more frequently than an arbitrary page,
reflecting his personalized preference.

This modification motivates our proposal. In Section IV-C,
we show that if t is chosen properly, the PageRank algorithm
can produce pointwise consistent density estimates in the
asymptotic sense, without worrying about the damping factor
α.

IV. ALGORITHM AND PROPERTIES

A. ALGORITHM

We call our framework Anomaly Detection using Proximity
Graph and PageRank (ADPP). The steps of this framework are
outlined in Algorithm 1.

Algorithm 1 Outline of ADPP Algorithm
Input: the observations {xi}, the weight function f and the

teleport vector t
Output: the PageRank vector s

1: compute pairwise distances among measurements
2: determine vicinity criteria to form a proximity graph
3: apply the weight function f to obtain similarity matrix W

4: normalize W to get transition matrix P
5: solve s for sT = αsTP + (1− α)tT

6: sort s in ascending order and output the top few points as
anomalies

The algorithm takes three input arguments,

• The observations {x1, . . . , xn}. Each measurement xi is
itself a d-dimensional point.

• The weight function f . We consider the identity weight
and the Gaussian weight, both of which are non-
increasing functions with respect to distances between
nodes.

• The teleport vector t which specifies the jumping proba-
bility.

The distance metric used in Line 1 does not have to be
Euclidean distance. For instance, geodesic distance approxi-
mated by a kNN graph, which is the pre-step for ISOMAP
[33], can be used instead to follow the underlying manifold.
Other domain specific distance measures also apply. In Line 2,
determining the vicinity means choosing k in a kNN graph or
the radius ϵ in an ϵ-graph. In Line 6, the number of anomalies
announced depends largely on engineering needs. However,
it can further be controlled using more formal statistical
procedures, see Section VI.

The key idea of this framework is to assign large weights to
close-by points. Since the random walk transition probabilities
are proportional to the edge weights, the nodes with close
neighbours get higher chances to be visited. As sufficiently
long time passes, the stationary distribution converges, giving
us information about the density of the data points. The points
with lowest chances to be visited are announced as anomalies.

B. CHOOSING PROPER RADIUS FOR ϵ-GRAPH

Next, we propose two criteria for radius selection in an ϵ-
graph, one borrowed from a sharp bound for random geometric
graphs, the other motivated by the growing trend of edge
lengths in Euclidean minimum spanning trees (EMST).

1) SHARP BOUND FOR RANDOM GEOMETRIC
GRAPHS: The first criterion for radius selection in the
ϵ-graph is motivated by a well-known sharp bound in the
random geometric graph literature, see e.g., [34].

A random geometric graph consists of nodes sampled uni-
formly from the unit hypercube of any dimension. When the
distance between two nodes is shorter than some predefined
radius, the end nodes will be connected by an edge, which
is quite similar to our definition of ϵ-graphs. We denote by
G(n, r) a random geometric graph with the radius r and the
number of vertices n. It has been proven that in R2 [35],
when vertex locations are drawn from a Poisson process in
the unit square, a critical radius exists for rc =

√
logn−log µ

πn ,
where µ is the Poisson rate. If µ → 0, then G(n, r) is
connected asymptotically almost surely (a.a.s.). If µ = Θ(1),
then G(n, r) has a giant component of size Θ(n). If µ → ∞,
then G(n, r) is disconnected a.a.s. Goel et al. [36] later prove
that every monotone graph property has a sharp threshold at

r = Θ

(
d

√
logn
n

)
, where d is the number of dimensions.

Hence we choose ϵ = Θ

(
d

√
logn
n

)
. The only caveat is

that the original results are for uniformly distributed vertices
in the unit hypercube, while we are dealing with arbitrary
distributions in Rd. We observe that the uniform distribution
is the most “scattered” distribution, while others display more
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or less clustered structures. So if using the same radius value
as in the uniform case, we tend to get a graph with well
connected components. Although these components might not
be connected to each other, the situation can be handled in
the downstream PageRank algorithm. Also, we can always
preprocess our data and renormalize it into the unit hypercube,
and the results shall hold.

2) GROWING TREND OF EMST LENGTHS: To motivate
the second criterion, we provide some examples of dramati-
cally different graphs and their corresponding EMST lengths
in Fig. 1. The top row are the original graphs, the middle row
are the corresponding EMSTs, and the bottom row are the edge
lengths sorted in ascending order. We notice that, although the
original graphs look quite different, the lengths of the EMST
edges share the same growing trend. Most of the edges are
relatively short, while there is big jumps towards the right in
the plots.

The idea of utilizing EMSTs to help with outlier detection
dates back to 1970s. Rohlf [37] uses the length of the longest
edge Mn as a test in multivariate data, which is an extension
of the “gap test” [38] in univariate case. It is worth noting that
we do not use EMST lengths directly for anomaly detection
purpose, but as a guideline for choosing radius.

If here we choose Mn as the radius, then our graph is surely
connected, which is desirable. However, an extreme outlier
would enlarge this quantity too much. The nice local property
of the ϵ-graph totally gets lost. To avoid this degradation,
the influence of extreme outliers ought to be reduced. We
propose to find the “knee” point of this trend, and set the
radius accordingly. The influence of the remaining edges in
the slow growing phase are still distinguishable from each
other using our weight function f .

A natural choice of picking out the “knee”, is to find
the point where the curvature is maximized. If we connect
n successive points with coordinates {(a1, b1), . . . , (an, bn)}
using straight lines, then the discrete curvature [39] Ki at point
(ai, bi) can be computed

Ki = arctan
bi+1 − bi
ai+1 − ai

− arctan
bi − bi−1

ai − ai−1
. (8)

In this criterion, we set the radius of the ϵ-graph to be

ϵ = length(j) (9)
s.t. j = argmax

i∈{2,...,n−1}
Ki, (10)

where length(j) is the length of the jth longest edge in the
EMST.

C. CHOOSING PERSONALIZED TELEPORT VECTOR

It is well known that, if a finite state Markov chain is
both irreducible and aperiodic, then not only does the limiting
distribution exist, but also it is unique [40]. As mentioned
above, the use of a teleport vector is to ensure that the
corresponding chain is irreducible and aperiodic so that the
PageRank distribution is well-defined.

Before introducing how we set our teleport vector, let us
first make the notation explicit. For an edge between node i
and j, let wij be the associated weight. If there is no edge

between vertices i and j, then wij = 0. The weighted degree
of a vertex i is defined as di =

∑
j∈V \{i} wij for i = 1, . . . , n.

For succinctness, let W be the matrix with wij on its ith row
and jth column. We do not allow self loops in our graph,
hence wii = 0 for i = 1, . . . , n. Let D denote the diagonal
matrix with Di,i = di on its principal diagonal. Then our row
stochastic transition matrix is P = D−1W . We define d and
1 in Rn to be the column vectors with elements di and all 1
respectively. Furthermore, the volume of the graph is defined
as V ol(G) =

∑
i∈V di, i.e., V ol(G) = tr(D).

After fixing the radius ϵ for the graph, we connect all the
node pairs which have their Euclidean distance less or equal
to ϵ. The weight function f is applied for each edge to get
wij . At this point, W , D and d are all determined.

Theorem 1. For the PageRank algorithm on undirected
graphs, if the teleport vector is set to be t = d

V ol(G) , then
different choices of the damping factor α lead to the same
unique stationary distribution s = d

V ol(G) .

Proof: We start from two basic observations

D1 = d and W1 = d. (11)

For now, only invertible D is considered here. The singular
case is discussed in the remarks later. Based on the definitions
of d, D and W above, we have

1 = D−1d and WD−1d = d. (12)

This means WD−1 has an eigenvector d with respect to the
eigenvalue 1, which implies 1− α and d are an eigenpair of
the matrix I − αWD−1, i.e.,

(I − αWD−1)d = (1− α)d (13)

(I − αWD−1)
d

V ol(G)
= (1− α)

d

V ol(G)
. (14)

On the other hand, we derive from the definition of PageRank
equation in Eq. (7),

s = αPT s+ (1− α)t (15)

(I − αPT )s = (1− α)t (16)(
I − α(D−1W )T

)
s = (1− α)t (17)(

I − αWD−1
)
s = (1− α)t. (18)

The last equation holds due to the fact that both W and
D, for undirected graphs, are symmetric matrices. Comparing
Eq. (14) with Eq. (18), if we set t = d

V ol(G) , then s = t =
d

V ol(G) regardless of the choice for α. Furthermore, since
there is no self loop in the graph, the diagonal elements
of W are all 0, which means that the matrix I − αWD−1

is diagonally dominant, and thus invertible. Therefore the
solution s = d

V ol(G) is unique.
We now present without proof the lemma of degrees in the

ϵ-graph.

Lemma 1 (Proposition 30, [41]). Suppose in an ϵ-graph, n
nodes are sampled from a bounded support density p(x) of
Rd, where 0 < pmin ≤ p(x) ≤ pmax < ∞. Let η denote the
volume of a hyperball with unit radius in Rd. Then for all
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 1. Different graphs and their corresponding EMSTs. (a) “U”-shape. The points are uniformly sampled from 3 straight lines, perturbed by a Gaussian
noise model. The points along the middle line are artificially injected. (b) 2-dimensional “swiss roll”. The point in the heart area is artificially injected. (c)
Mixture of Gaussian. The points are sampled from a mixture of two Gaussian distributions. (d) Gaussian. The points are sampled from a Gaussian distribution.
The points at the top and the bottom are artificially injected. (e), (f), (g) and (h) are their corresponding EMSTs respectively. (i), (j), (k) and (l) are normalized
edge length plots in ascending order, with the longest length being 1.

δ ∈ [0, 1], the minimal and maximal degrees dmin and dmax

in the ϵ-graph satisfy

Pr
(
dmax ≥ (1 + δ)nηϵdpmax

)
≤ n exp

(
−δ2nηϵdpmax

3

)
(19)

Pr
(
dmin ≤ (1− δ)nηϵdβpmin

)
≤ n exp

(
−δ2nηϵdβpmin

3

)
,

(20)

where β takes the support boundary effect into account.

In general, Lemma 1 says the degrees of an ϵ-graph are
concentrated within a range with high probability.

Theorem 2. For an unweighted ϵ-graph, given an asymptotic
radius sequence {ϵn}n∈N, if ϵn → 0 as n → ∞, the quantity

d
V ol(G) is a pointwise consistent density estimate for a given
dataset. More formally, suppose {xi ∈ Rd, i = 1, 2, . . . , n}
are i.i.d. samples from an underlying distribution Q(x) with
bounded values and finite derivatives. We construct a ϵ-graph
on top of xi. Let di be the number of neighbours for xi, then
the following statement is true

lim
n→∞

∣∣∣∣ di∑n
k=1 dk

− Q(xi)∑n
k=1 Q(xk)

∣∣∣∣ = 0, ∀i = 1, 2, . . . , n.

(21)

Proof: We denote by B(x, r) the hyperball centered at
x with radius r, and η the volume of the hyperball with unit
radius in Rd. Then the volume of B(x, r) is equal to ηrd, i.e.,∫

B(x,r)

dx = ηrd. (22)

Let Pi be the probability measure captured inside B(xi, ϵn),

Pi = lim
n→∞

∑n
k=1 1{xk∈B(xi,ϵn)}

n
= lim

n→∞

1 + di
n

, (23)

where 1 is the indicator function. The condition 0 < m ≤
1
n

∑n
k=1 dk ≤ M < ∞ is straightforward, otherwise Pi cannot

be estimated properly, if the number of points inside each
hyperball B(x, ϵn) is either too small or it explodes with n →
∞.

On the other hand, as n → ∞, ϵn → 0, we have

Pi =

∫
B(xi,ϵn)

Q(x)dx (24)

=

∫
B(xi,ϵn)

(Q(xi) +O (Q′(xi)(x− xi))) dx (25)

= Q(xi)

∫
B(xi,ϵn)

dx+

∫
B(xi,ϵn)

O (Q′(xi)(x− xi)) dx

(26)

= Q(xi)ηϵ
d
n, (27)

where Eq. (25) holds for the Taylor expansion of Q(x) at xi,
and Eq. (27) holds since as ϵn → 0, x → xi, the second term
in Eq. (26) vanishes.

Combine Eq. (27) with Eq. (23), as n → ∞,

Q(xi)ηϵ
d
n =

1 + di
n

⇔ Q(xi) =
1 + di
nηϵdn

. (28)
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Now we place Eq. (28) back into Eq. (21),

lim
n→∞

∣∣∣∣ di∑n
k=1 dk

− 1 + di
n+

∑n
k=1 dk

∣∣∣∣ (29)

= lim
n→∞

∣∣∣∣ndi + di
∑n

k=1 dk −
∑n

k=1 dk − di
∑n

k=1 dk
(n+

∑n
k=1 dk)

∑n
k=1 dk

∣∣∣∣ (30)

= lim
n→∞

1

n

∣∣∣∣∣ di − 1
n

∑n
k=1 dk(

1 + 1
n

∑n
k=1 dk

)
1
n

∑n
k=1 dk

∣∣∣∣∣. (31)

Since by Lemma 1 and n → ∞, the probability of di falling
out of some finite interval goes to 0, 1

n

∑n
k=1 dk is bounded

away from both 0 and ∞. Therefore, Eq. (31) → 0, completing
the proof.

Theorem 3. Given two asymptotic sequences {σn}n∈N and
{ϵn}n∈N, if σn → 0, ϵn → 0 and σn

ϵn
→ ∞, as n → ∞, using

the weight functions fn(u) = exp
(
− u2

2σ2
n

)
, the PageRank

algorithm produces a point-wise consistent probability density
estimate regardless of the choice for the damping factor
α ∈ [0, 1].

Proof: Since we only apply the weight functions fn to
the connected edges, more precisely,

fn(u) =

{
exp

(
− u2

2σ2
n

)
|un| ≤ |ϵn|

0 otherwise,
(32)

This means that in each infinitesimal hyperball with radius ϵn,
the edge weights become approximately constant. Therefore,
the proximity graph turns out to be unweighted effectively.
According to Theorem 1 and Theorem 2, Theorem 3 holds.

Remarks:
1) Why do we choose personalized PageRank over the

vanilla version? The vanilla version of the PageRank
algorithm uses the uniform distribution in the transition
matrix P and the teleport vector t. However, we make
adaptations in both places. We assign edge weights using
f , a monotonic non-increasing function of Euclidean
distances between vertices, so that even within the same
radius, nearby points get more chances to be visited.
For the teleport vector, we set t = d

V ol(G) , i.e., ti is
proportional to weighted degree for each vertex. This
Matthew effect of “points in the dense area get more
chances to be visited” is a positive feedback from a
control system point of view, which helps the outliers to
stand out.

2) Why do we care about σn

ϵn
? As mentioned earlier,

in traditional kernel density estimation, the bandwidth
parameter controls what is considered to be the vicinity,
or how nearby nodes contribute to the position in query.
In our case, both the radius and the bandwidth interact
with each other, serving the same role. The net effect
of selecting radius and applying the Gaussian weight
function results in a truncated version of the Gaussian
curve. We consider the case where σn

ϵn
→ ∞ as n → ∞,

meaning that within each infinitesimal hyperball, the
contributions to the ball center from other vertices are
not too different from each other. This is the key

approximation to the pointwise probability density in the
asymptotic sense, since intuitively if we randomly throw
points onto a space, empirically the probability mass
within an arbitrary shape is proportional to the number
points contained in that shape, assuming the mass is a
constant across the shape approximately. If otherwise
σn

ϵn
↛ ∞ as n → ∞, the constant approximation con-

dition is violated, hence the probability density cannot
be estimated accurately.

3) What are the caveats? Although our framework can
handle both undirected and directed graphs, the state-
ment of Theorem 1 is only valid for the undirected
case. For directed graphs, the similarity matrix W is
not necessarily symmetric, i.e., W ̸= WT , hence, we
cannot obtain Eq. (18). And the final solution depends
on the value of α.
The other possible catch is the existence of isolated
vertices in the graph, whose weighted degrees are
exactly 0, e.g., if vertex i is an isolated node, then
the corresponding row of transition matrix Pi: and the
elements of teleport vector ti are all 0. In this case,
both the irreducibility and aperiodicity conditions are
violated, and the degree matrix D becomes singular.
However, the computation can still apply, since the
corresponding elements of the stationary distribution
si = 0. It is equivalent to the Markov chain without
those isolated states. The values of the remaining nodes
in the set V \ {isolated nodes} still form a unique
stationary distribution of their own. When we announce
the lowest PageRank values of the stationary distribution
s, the isolated nodes will be picked out automatically.

Finally, we note that the consistency results shown above
(Theorem 2, in particular) apply even if the EMST edge length
trend is used in place of the sharp bound for determining
ϵ. Penrose [42] shows that for n i.i.d. samples from any
distribution in Rd with connected compact support, Mn is in

the order of Θ
(

d

√
θ logn

n

)
, where θ is a distribution dependent

constant. Hence our chosen radius ϵ ≤ Mn → 0 asymptoti-
cally, which is a prerequisite for the density convergence in
Theorem 2.

V. TIME COMPLEXITY ANALYSIS

To look at the time complexity of our framework, let us
discuss each step respectively.

• Pairwise distance computation. There are
(
n
2

)
pairs of

nodes in total, so O
(
n2

)
operations are needed.

• Radius selection for ϵ-graphs.
1) Sharp bound criterion. Closed-form calculation

takes O (1).
2) EMST trend criterion. Suppose in a graph G =

(V,E) with |V | = n. To construct an EMST for
a given graph, Prim’s algorithm runs in O

(
n2

)
,

while both Prim’s and Kruskal’s algorithm run in
O (|E| log n) for sparse graphs. Karger et al. [43]
propose a randomized algorithm running in linear
time O (|E|). However, in our case, we want to
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find the EMST for the whole dataset, which im-
plies the algorithms are input a dense graph, with
|E| = Θ

(
n2

)
. Hence the best running time for

constructing the EMST will be at least O
(
n2

)
,

using Prim’s algorithm and array representation of
edge lengths. Then sorting the lengths of the EMST
takes O (n log n), and maximizing the curvature
needs O (n) operations. Therefore, the complexity
for this criterion is O

(
n2

)
.

• Weight assignment. It takes O
(
n2

)
operations to obtain

the similarity matrix W , by applying the weight function
f to each element in the n× n adjacency matrix.

• PageRank iteration. From Eq. (18), we can compute the
stationary distribution directly with

s = (1− α)
(
I − αWD−1

)−1
t. (33)

In general, the matrix inversion operator takes O
(
n3

)
and

an n×n matrix multiplying an n×1 vector takes O
(
n2

)
.

This appears to be the bottleneck of the whole frame-
work. To speed up the computation, the power method
[44] is often used. The power method is an iterative
procedure to find the dominant eigenvector ν of a matrix
A with a unique dominant eigenvalue. Each iteration
involves one matrix-vector multiplication and one norm
computation (O(n2) and O(n) operations respectively.
The convergence rate is related to the ratio |λ2/λ1| of
the first two eigenvalues of A = αPT + (1 − α)t1T .
Based on the structure of A, it follows that its largest
eigenvalue is λ1 = 1, and its second largest eigenvalue
satisfies |λ2| ≤ α, where α is the damping parameter.
Consequently, to achieve desired error tolerance ε we
must run O(logα ε) iterations of the power method, and
thus the computational complexity is O(n2 logα ε). If
the teleport vector is set to t = d

V ol(G) as suggested,
then the PageRank iteration boils down to counting the
weighted degree for each vertex, which has computational
complexity Θ(n2).

• Final sort. If the lowest m PageRank values are an-
nounced as anomalies, the time complexity will be
O (m log n).

As a result, the total time complexity of the ADPP frame-
work is O

(
n2

)
. It is worth noting that although not discussed

in this work, if the constructed graph has linear correlations
and block-wise structures, then further approximation can be
used to speed up the computation, e.g., [45], [46].

VI. CONTROLLING FALSE ALARMS
The PageRank algorithm returns an ordering rank of anoma-

lous scores on all observations. Given the PageRank vector,
choosing the right number of lowest values to be anomalies
depends largely on domain knowledge or engineering needs.
The simplest way is to specify the number of anomalies
m beforehand, and to announce the lowest m score points
as anomalies, which alleviates the complicated process of
parameter setting, while providing a good interaction facility
between the algorithm and domain experts. Analogous ap-
proaches have been applied in top-m kNN [9] and top-m LOF
(Local Outlier Factor) [47] detectors.

Note that in many applications, the ultimate goal of anomaly
detection is not only identifying anomalies, but also taking
actions to treat the cause. For instance, in network monitoring,
anomalies often imply network congestion or system error,
hence engineers are expected to fix these issues. Missed
detections of course may introduce cost due to potential harm
to the system or degraded service quality. However, even a
small portion of false alarms can also bring huge cost, as
argued in [48]. We would like to formulate the problem as a
cost sensitive hypothesis testing scheme, where different costs
are assigned to missed detections and false alarms.

We denote by Cmd and Cfa the costs associated with
missed detections and false alarms respectively. Then the ratio
γ = Cmd

Cfa
gives an explanation of how the end-user weighs

the relative importance of these two errors. Given a user
determined ratio γ, our task is to minimize the total cost

Ctotal = Cmd Pr{missed detection}+ Cfa Pr{false alarm}.
(34)

Theorem 4. Given a PageRank vector s, the cost ratio γ =
Cmd

Cfa
, and measurements {xi ∈ Rd, i = 1, 2, . . . , n} sampled

from distribution Q(x) = (1−π)P (x)+πµ(x) within [0, 1]d,
where µ(x) is assumed to be uniform, in order to minimize
total cost, the anomaly detection criterion should be set to the
indicator 1[si≤(1+γ)π].

Proof: We view this problem as a hypothesis testing
scheme where H0 : xi ∼ P and H1 : xi ∼ µ, and denote
by G the rejection region. We would like to minimize the total
cost Ctotal,

Ctotal = CmdπPr{nominal | H1}
+ Cfa(1− π) Pr{anomalous | H0} (35)

= Cmdπ

∫
Gc

µ(x)dx+ Cfa(1− π)

∫
G
P (x)dx (36)

= Cmdπ +

∫
G
(Cfa(1− π)P (x)− Cmdπµ(x)) dx.

(37)

To minimize Ctotal, the integrand should be kept negative.
Thus, we want to announce an anomaly if

Cfa(1− π)P (x) ≤ Cmdπµ(x). (38)

Plugging in Q(x) = (1− π)P (x) + πµ(x), we have

Cfa (Q(x)− πµ(x)) ≤ Cmdπµ(x) (39)
CfaQ(x) ≤ (Cfa + Cmd)πµ(x) (40)

Q(x) ≤ (1 + γ)πµ(x). (41)

For uniform µ(x), we have µ(x) ≡ 1, for all x ∈ [0, 1]d,
therefore

Q(x) ≤ (1 + γ)π. (42)

According to Theorem 3, since the PageRank vector s is a
pointwise consistent density estimate for Q(x), the optimal
threshold should be 1[si≤(1+γ)π].

Since in this work, π is assumed unknown in general, the
remaining problem is how to estimate π from data. If the
null and alternative hypotheses are reversed in our setting,
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this problem is identical to estimating the prior probability
of the null hypothesis, which has been well studied in the
statistics literature. The key idea is that the p-values form a
uniform distribution when H0 is true. For further readings, a
survey on this topic is also available in [49]. In the experiments
presented in the next section, rather than fixing a threshold
(which requires knowing or estimating the value of π), we fix
the number of anomalies which will be reported.

VII. EXPERIMENTS

A. SYNTHETIC DATA

First, let us see how the ADPP framework performs on
the synthetic datasets displayed in Fig. 1. Since our problem
setting is similar to Scott and Kolaczyk’s work in [6], we
compare their framework (MN-SCAnn) with ours. The radius
of the ϵ-graph is set using the EMST growing trend criterion
and the teleport vector is set to t = d

V ol(G) as suggested.
We use the MatlabBGL [50] package for computing the
EMST of each dataset throughout our experiments. For a fair
comparison, we choose the bandwidth of our Gaussian weight
function to be the same as the bandwidth parameter in their
kernel density estimator, which is determined by minimum
integrated volume (MIV) criterion [51].

The most probable 15 anomalies from both approaches are
shown in Fig. 2. The three rows show the anomalies identified
by MN-SCAnn, ADPP with Gaussian weights, and ADPP with
identity weights respectively. The runtime for each algorithm
instance is also shown. Our objective in this first comparison
is to illustrate that, under the right parameter settings, ADPP
identifies a similar set of anomalous points as MN-SCAnn,
but ADPP is considerably faster. To measure similarity of the
two approaches, we first determine the set of 15 anomalies
identified by each approach; call these XM and XA for MN-
SCAnn and ADPP respectively. Then we compute the Jaccard
index, |XM∩XA|

|XM∪XA| , the ratio of the size of the intersection and
union of the two sets. The Jaccard coefficient is a number
between 0 and 1, and the closer to 1 the more similar are the
two sets. The Jaccard indices for the four particular datasets
shown in Fig. 2 are 1, 0.875, 0.875 and 0.7647, respectively.
We also calculate the Jaccard indices to be 0.9003 over another
200 randomly generated datasets each with 1000 data points.
From these results we conclude that, with the same bandwidth
parameter, ADPP can produce almost identical results to MN-
SCAnn, although no kernel density estimation is required.
In terms of running time, we see significant improvements
for ADPP, about 100 times faster. Even if we want to save
computational cost further and simply use the unweighted
version instead, the detection performance is still reasonable,
with another 3-8 fold speedup.

Next, we see the results of using the sharp bound criterion.
We show in Fig. 3 the influence of the constant hidden behind

O

(
d

√
logn
n

)
. We take the “U”-shape dataset for illustration.

To eliminate possible impact from edge weights, the identity
weight function is used instead of Gaussian weights. We see
from Fig. 3 that as the constant varies, the algorithm behaves
differently. This is due to the fact that, when the constant is

small, the graph concentrates on local areas, hence lots of
nodes are disconnected from the main component, producing
unsatisfactory results. On the other hand, a big constant intro-
duces shortcuts into the graph, ruining the density information.
For instance, the points in the middle line are well connected to
the rest of the graph, which is clearly undesirable. Comparing
to the EMST growing trend criterion, the sharp bound criterion
does not need any complicated computation. It gives us a
guideline when the number of measurements goes to infinity.
For finite cases, the constant still needs to be chosen carefully.
In the coming experiments, we will avoid tuning this subtle
parameter and stick with the EMST growing tread criterion.

Finally, we see how ADPP scales as the number of data
instances increases. We generate mixtures of Gaussian like
in Fig. 1c, with different number of data points n. For each
choice of n, we average over 100 runs and time successive
phases of ADPP as in Table I. The running time listed in
the table validates our complexity analysis in Section V. We
also notice that the bottleneck of ADPP lies on the pairwise
distance and EMST construction. It is worth noting that, any
popular linear model, e.g., PCA [52], although fast, will not
provide reliable accuracy in these nonlinear datasets, since no
meaningful principal components will be identified.

B. REAL WORLD APPLICATION

1) KDDCUP 99: We first examine the KDDCUP99 dataset
[53], which is a subset from the DARPA 1998 intrusion
detection survey, developed by MIT Lincoln Labs. The dataset
features 41 attributes to describe a connection record, as well
as symbolic labels to distinguish normal traffic from attacks.
All the categorical features are converted beforehand into
unique numerical representations.

We compare 4 algorithms on a 4000 observations subset of
the original data, which are PCA [52], Kernel PCA (KPCA)
[54], Kernel recursive least square Online Anomaly Detecion
(KOAD) [55] and ADPP. For PCA and KPCA, we project
our data to a lower dimensional feature space so that 98%
of the energy preserved. This gives us 4 dimensions for
PCA and 20 dimensions for KPCA. The residual energy is
used to indicate whether or not some observation deviates
from the main pattern. KOAD uses former observations as
a dictionary to predict new coming data. If the new data can
be approximated by the dictionary reasonably well, then it
is considered as nominal. Otherwise, an anomaly is declared.
We use the default parameters recommended in [55] since no
other automatic approach is available. For ADPP, we adopt
the EMST growing trend criterion and the identity weight
function for graph construction. Note that we do not compare
with the MN-SCAnn algorithm since it cannot scale to handle
data with more than 10 dimensions due to the curse of
dimensionality [6].

Fig. 4 illustrates the performances of the four different al-
gorithms over two different time intervals. Fig. 4a corresponds
to the records from time steps 1100 to 1500, and Fig. 4b from
1500 to 1900. We notice that around time steps 1140 and 1170,
some spikes appear in ADPP. Although those observations are
not labelled as attacks in the original dataset, ADPP scores
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(a) 65.3668s (b) 170.6448s (c) 104.8921s (d) 61.2421s

(e) 0.5253s (f) 4.4362s (g) 1.7937s (h) 0.5589s

(i) 0.1401s (j) 0.3654s (k) 0.2546s (l) 0.1502s

Fig. 2. (a), (b), (c) and (d) are from MN-SCAnn. (e), (f), (g) and (h) are from ADPP with Gaussian weights. (i), (j), (k) and (l) are from ADPP with the
identity weight function (unweighted). The red triangles (▲) denote potential anomalies. The associated value below each plot is the running time in seconds.
The number of points n in these four datasets are 506, 1602, 1000 and 504 respectively.

(a) ϵ = 0.3
√

logn
n

(b) ϵ =
√

logn
n

(c) ϵ = 3
√

logn
n

Fig. 3. Influence of the constant for the sharp bound criterion. The red triangles (▲) denote potential anomalies.

TABLE I
RUNNING TIME IN SECONDS FOR DIFFERENT PHASES OF ADPP. (d = 2)

n Pairwise distance EMST radius Weight assignment PageRank Total
200 0.0012± 0.0001 0.0025± 0.0003 5.2257× 10−4 ± 5.5551× 10−5 1.0274× 10−4 ± 1.2637× 10−5 0.0042
400 0.0054± 0.0005 0.0083± 0.0008 0.0024± 0.0003 3.7261× 10−4 ± 3.9830× 10−5 0.0165
800 0.0289± 0.0029 0.0343± 0.0035 0.0151± 0.0016 0.0012± 0.0001 0.0795
1600 0.1172± 0.0118 0.1307± 0.0132 0.0618± 0.0065 0.0041± 0.0004 0.3138
3200 0.4252± 0.0430 0.4627± 0.0468 0.1869± 0.0211 0.0155± 0.0016 1.0903
6400 1.7147± 0.1732 1.8077± 0.1827 0.7231± 0.0819 0.0589± 0.0060 4.3044

12800 7.0034± 0.7076 7.1144± 0.7188 2.8038± 0.3142 0.2308± 0.0235 17.1524
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PCA Residual Error (dimension = 4)

KPCA Residual Error (dimension = 20)

KOAD Error

ADPP PageRank Value

1100 1150 1200 1250 1300 1350 1400 1450 1500

Labelled Attacks (time steps)

(a)

PCA Residual Error (dimension = 4)

KPCA Residual Error (dimension = 20)

KOAD Error

ADPP PageRank Value

1500 1550 1600 1650 1700 1750 1800 1850 1900

Labelled Attacks (time steps)

(b)

Fig. 4. Comparisons of four algorithms on KDDCUP 99 dataset at different time sections. The red circles indicate labelled attacks. The running time for
PCA, KPCA, KOAD and ADPP are respectively: 0.0373s, 432.3144s, 1.7238s and 2.3755s.

low PageRank values due to the irregularity of the traffic
type at those locations, which are also identified by KPCA or
KOAD. The first attack at time step 1220, is only picked up by
ADPP with fairly high confidence. The second set of attacks
from time steps 1230 to 1320, are not identified by ADPP,
since these records are clustered and last for a long time,
effectively violating our uniform anomaly assumption. All the
other attacks in this interval are identified by ADPP more
reliably than the other methods. In Fig. 4b, we see that ADPP
performs exceptionally better than the alternatives. However,
we do notice weird patterns from time steps 1720 to 1900
detected by all the algorithms in comparison. The records in
that range are DNS queries, which show up a total of 177
times in our 4000 records. This possibly causes some skew in
the results, and ultimately, how each algorithm performs.

In terms of running time, ADPP only needs around 2.4
seconds for a 41 dimensional dataset with 4000 instances, on a
par with an online algorithm KOAD, which is extremely fast.
It gives a better detection rate than another nonlinear method
KPCA, however, the speedup is evident, see Fig. 4.

2) USPS: USPS dataset is a well known data source for
handwritten digits recognition. Each data point is a 16 × 16
gray scale image taken from US postal envelopes. For each
picture, we stack columns on top of one another, yielding a
256-dimensional vector xi ∈ R256, in which case every pixel
is considered as a feature. We use part of the dataset for our
experiment. Our algorithm is performed directly on the data.
Neither dimension reduction nor feature selection pre-steps are
taken.

First, we explore how different digits are distributed in this
256-dimensional space. For each digit, we take 1100 instances,
plus 50 uniform random images. We run ADPP with the EMST
growing trend criterion and the identity weight function. We
check how many uniform random images appear in the top 50
positions of the PageRank vector in ascending order, and then
average over 10000 such tries. We see from Table II that digit

TABLE II
THE AVERAGE NUMBER OF TIMES UNIFORM RANDOM IMAGES DETECTED

IN THE TOP 50 POSITIONS FOR DIFFERENT DIGITS.

Digit # of detection Digit # of detection
1 43.1899 6 40.8048
2 31.6678 7 47.5460
3 38.9360 8 1.0687
4 37.0230 9 45.4823
5 43.3232 0 41.6728

Fig. 5. Images with the lowest 10 PageRank values.

“7” and “9” have the most random images detected, while digit
“8” takes an exceptionally low value. These numbers strongly
indicate that “7” and “9” present good cluster structures in the
256-dimensional Euclidean embedding, while “8” is far more
scattered.

Next, we give an example to visualize the results. We
assume in our framework that the anomalies come from a
uniform distribution, therefore we still inject random images
as contaminants. Since the value for digit “4” in Table II is
close to the average value for all the 10 digits, we choose “4”
as the representative to form the nominal population pool. We
randomly sample with replacement 1000 instances from digit
“4”, together with 10 uniform random images as the input
of our algorithm. We examine the images with the lowest 10
PageRank values. Fig. 5 shows the results. It is worth noting
that the last “noise” image ranks in the 11th position in this
particular example.
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(a) Digit “3”

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive

S
e

n
s
it
iv

it
y

 

 

AUC = 0.7892

ADPP

PCA

(b) Digit “8”
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(c) Digit “0”

Fig. 6. Selected ROC curves for different digits versus the rest 9 digits, along with the corresponding AUC values respectively.

Finally, a more realistic scenario is considered. Digits are
no longer compared with random images. Each time, we
fix one digit as nominal and the remaining nine digits are
considered anomalous. We randomly sample with replacement
1100 images for the nominal digit, and 100 for the anomalous
class. We compare ADPP with PCA, where ADPP uses the
unweighted graph and the EMST rules, and PCA projects the
data onto a subspace which preserves 98% of the energy. The
experiment is repeated 1000 times to average out the receiver
operating characteristic (ROC) curves and the area under curve
(AUC) values for each digit with ADPP shown in Fig. 6.

We can see from Fig. 6 that the ROC curve for digit “8”
is indeed disappointing. For instance, even if we can tolerate
false alarm rate at the level of 0.1, the detection rate is still
as low as 0.4. This agrees with the values listed in Table II,
indicating that “8” is much more uniformly distributed, which
makes it extremely difficult to distinguish from the uniform
contaminants as we assumed. Digit “0” favors ADPP, while it
is almost neutral for digit “3”.

Since our method do not use label information, uniform
anomalies are the best we can obtain. However, alternative
distance metrics can be used to make the nominal points
more clustered. For example, tangent distance [56], invariant to
linear transformations (e.g., translation, rotation, scaling, etc.),
has been shown very suitable for optical character recognition
(OCR) tasks, which should result in much better performance.

VIII. SUMMARY AND FUTURE WORK
In this work, we propose a framework for anomaly de-

tection using proximity graphs and the PageRank algorithm.
This is an unsupervised, nonparametric, density estimation-
free approach, readily extending to high dimensions. Various
parameter selection, time complexity guarantees and possible
extensions are discussed and investigated.

We see several possible directions for future development.
One straightforward extension is to formalize the problem
of semi-supervised anomaly detection, when partial labels
are available. The label information can be adapted into our
framework without difficulty by changing the teleport vector
t accordingly in a more deliberate way.

Another direction is to make the framework online. At this
stage, our algorithm operates in a batch mode. Given a set of
observations, after announcing the potential anomalies once,
the algorithm terminates. However, in practice, it is quite
common for successive measurements to come incrementally

as time passes by. Once a new observation is available, we
do not want to run the whole algorithm from start again. The
time complexity of our framework has already been shown to
be O(n2), which is not desirable in the online fashion. We are
aiming to adapt our approach to update the model in a much
faster way.

Moreover, given measurements in Rd, we use all the
dimensions instead of only a subset to compute the full
dimension distance. This is to say, if our algorithm produces
meaningful results, all dimensions are assumed to contribute
useful information for our anomaly detection task. However,
in reality, especially in high dimension cases, not all of them
are helpful. The inclusion of noisy dimensions may even hurt
the performance. Therefore, it will be better if our framework
has some feature selection ability support built in, to filter out
those unwanted dimensions.
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