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Abstract

Graph neural network (GNN) models achieve
superior performance when classifying nodes
in graph-structured data. Given that state-
of-the-art GNNs share many similarities with
their CNN cousins and that CNNs suffer ad-
versarial vulnerabilities, there has also been
interest in exploring analogous vulnerabilities
in GNNs. Indeed, recent work has demon-
strated that node classification performance
of several graph models, including the popu-
lar graph convolution network (GCN) model,
can be severely degraded through adversar-
ial perturbations to the graph structure and
the node features. In this work, we take a
first step towards detecting adversarial at-
tacks against graph models. We first pro-
pose a straightforward single node threshold
test for detecting nodes subject to targeted
attacks. Subsequently, we describe a kernel-
based two-sample test for detecting whether
a given subset of nodes within a graph has
been maliciously corrupted. The efficacy of
our algorithms is established via thorough ex-
periments using commonly used node classifi-
cation benchmark datasets. We also illustrate
the potential practical benefit of our detection
method by demonstrating its application to a
real-world Bitcoin transaction network.

1 Introduction

Graph neural networks (GNNs) have been successful
for a wide variety of machine learning tasks for graph-
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Figure 1: Bitcoin transaction network. Nodes are transac-
tions; edges indicate flow of bitcoin between transactions.

structured data. With GNNs already being applied to
tackle practical problems (Hamilton et al., 2017; Zhang
et al., 2019; Ying et al., 2018; Sun et al., 2019; Guo
et al., 2019; Xu et al., 2020), there is a concern that
GNNs may exhibit the same brittleness displayed by
many state-of-the-art CNNs, which can be exploited
in adversarial attacks (Carlini and Wagner, 2017). In-
deed, researchers have exposed GNN vulnerabilities by
crafting adversarial attacks which induce classification
errors (Zügner et al., 2018; Zügner and Günnemann,
2019; Dai et al., 2018; Chang et al., 2020). The at-
tacks poison the data by perturbing the graph structure
and/or the node features. Such vulnerabilities are a
serious concern when deploying models in industrial
settings. We are thus motivated to study the adversar-
ial vulnerabilities of GNN models in order to become
aware of and insulate models from potential security
threats. In this paper, we focus exclusively on structure
perturbations as they lead to more severe performance
degradation (Zügner et al., 2018) and because the rai-
son d’être of GNNs is that they exploit the relational
information given by the graph structure.

Adversarial attack detection techniques are important
in the analysis of financial, communication, and social
networks. For example, fraudulent actors might dis-
guise their financial malfeasance by conducting many
transactions with trustworthy agents. We provide a
motivating example for financial transaction networks
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in Figure 1. The goal is fraud detection for a bitcoin
transaction network. The model aims to label each
Bitcoin transaction as licit (between exchanges, wallet
providers, etc.) or illicit (scams, malware, terrorist or-
ganization transactions, etc.). Licit transactions tend
to cluster together, as do illicit transactions (Weber
et al., 2018), so a graph adversarial attack designed to
disguise illicit transactions can exploit this by making
(adding) fake Bitcoin flows (edges) in the dataset. In
this setting, an algorithm that specifically targets the
detection of such attacks is important.

Our main contributions are: (i) we provide a novel
approach for detecting adversarial attacks on GNNs,
designing a test to detect perturbations of individual
nodes; (ii) we design a maximum mean discrepancy
(MMD) based test for detecting whether a given subset
of nodes has been corrupted; (iii) we demonstrate the
efficacy of our algorithms via thorough experiments
using commonly used node classification benchmark
datasets and a real-world Bitcoin transaction network;
(iv) we design a defense mechanism that leads to more
robust classification in the face of attack; and (v) we
modify existing attacks so that it can avoid detection by
our proposed approach (at the cost of reduced impact).
The Bitcoin transaction data analysis illustrates the
potential practical benefit of our detection method
as a mechanism to insulate graph-based models from
security threats. We show through empirical analysis
that our proposed method significantly outperforms
state-of-the-art GNN defense approaches.

2 Related Work and Preliminaries

Detection: Our detection methods fall into the cate-
gory of anomaly detection for static, attributed graphs.
In contrast to previous work (Sharpnack et al., 2013;
Qian and Saligrama, 2014; Li et al., 2017; Akoglu et al.,
2015), we do not assume any model and instead learn a
suitable representation based on the observations and
graph topology. This is more in line with methods
that assign an anomaly score to each node based on
features and/or graph structure. Such methods are
either based on the feature discrepancy within a node’s
neighbourhood (Perozzi and Akoglu, 2016; Wu et al.,
2019b) or measure a reconstruction error (Ding et al.,
2019; Ioannidis et al., 2020).

Defense mechanisms: Our proposed defense mech-
anism is related to recent attempts to improve the
robustness of GNNs (Xu et al., 2019; Zhou et al., 2019;
Zhu et al., 2019; Wu et al., 2019b; Entezari et al., 2020).
A recent software library (Li et al., 2020) provides a
good framework for investigation and fair comparison.

Graph attacks: Most of the prior works on graph ad-
versarial attack focus on designing new attacks rather
than detection. Attacks include DICE (Waniek et al.,

2018), RL-S2V (Dai et al., 2018), Nettack (Zügner
et al., 2018), Meta-attack (Zügner and Günnemann,
2019), and GF-Attack (Chang et al., 2020). These
attacks target semi-supervised learning, which is our
focus. Some recent work addresses the unsupervised set-
ting (Bojchevski and Günnemann, 2019; Chang et al.,
2020). Both DICE and Nettack assume a perturbation
budget ∆. DICE deletes ∆/2 randomly chosen edges
connected to the attacked node i and then attaches
∆/2 new edges to randomly selected nodes with labels
y different from yi. Nettack changes the local topology
around node i in order to decrease the classification
margin, selecting edges to change using a surrogate
model. Meta-attack aims to drive down performance
over the entire graph, formulating the selection of edges
to modify as a constrained optimization problem. RL-
S2V uses reinforcement learning to learn an attack
policy. It can be effective, but the computational re-
quirements are significant. GF-Attack is a restricted
black-box attack that does not require knowledge of
the model.

3 Problem Statement

We are provided with an attributed (possibly directed)
graph Gobs = (N , E), where N = {1, . . . , N} is the
set of nodes and E is the set of edges. We represent
the graph using the pair (X,A), where X ∈ RN×D
is a matrix of node features and A ∈ RN×N is the
adjacency matrix. The ith row of X is a vector xi ∈
RD containing features associated with node i. We
consider the semi-supervised node classification setting;
there is a subset of nodes L ⊂ N which have labels
YL = {yi | i ∈ L}. The observed graph Gobs may differ
from the “original” graph G because of adversarial
attacks. The original graph has the same node set
N as Gobs but it may possess a different edge set E ′.
Consequently, if A′ ∈ RN×N is the adjacency matrix
of G, the equation A = A′ need not hold. However, we
assume that the node features X associated with G are
identical to those of Gobs.

We address four attack detection and defense tasks:
(i) Single targeted node attack detection: For a
specific node i, decide whether its edges have been
modified in order to induce poor classification. We
formulate this task as a hypothesis test acting on a
pertinent statistic.
(ii) Corrupted subset detection: We suppose that a
specified subset of nodes S ⊂ N consisting of M nodes
has potentially been attacked by addition or deletion
of edges with at least one endpoint in S. Our task is
to decide whether the subset has been attacked.
(iii) Graph defense mechanism: For a given GNN
model, introduce modifications to the learning proce-
dure, so that classification accuracy for the observed
graph Gobs is as close as possible to what would be
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achieved using the original graph G.
(iv) Adaptive attack: Design a modified attack that
can reduce classification accuracy but avoid detection
by our proposed test for targeted node attacks.

For the first two tasks, we assume access to a portion
of unperturbed data. This is often reasonable; for
example, in the Bitcoin transaction network, there
are many trusted entities, and their interactions can
be assumed to be legitimate. In settings where we
do not have access to unperturbed data, we rely on
the assumption that the attacker has limited capacity
and must focus attention on nodes where a change in
outcome is of most interest. In these cases, we can form
an “unperturbed” group through random selection;
although we may include some attacked nodes, the
majority are unperturbed.

Threat model: Most existing GNN attacks are white
box models that assume full access to the GNN model.
Different attacks impose different restrictions on the
extent of the perturbation. These include the number
of edges that can be changed and the extent of the
modification of graph statistics such as the degree dis-
tribution. We impose the same constraints as adopted
in the original papers that proposed the attacks. Ex-
isting attacks do not strive to minimize or restrict the
perturbations that we exploit in our detection and de-
fense mechanisms. One contribution of our paper is
to show that the majority of existing attacks can be
detected. Following the advice of (Carlini et al., 2019),
we design an adaptive adversary. We show that the
adaptive adversary can successfully avoid detection,
but its impact on classification performance is reduced
substantially compared to the original attacks.

4 Detection of Targeted Node Attacks

Most topological attacks strive to drive down the clas-
sification margin of a node (and eventually cause an
error) by adding edges to nodes that likely belong to
other classes. The result is usually a greater discrep-
ancy between a GNN’s output softmax probabilities
{pj}j∈N (i) in the closed neighbourhood of an attacked

node, as compared to an unperturbed node.

Test statistic: Since each pj can be thought of as a
probability mass function over the node classes, it is
natural to apply the multi-distribution Jensen-Shannon
Divergence (Lin, 1991) to measure the discrepancy be-
tween a set of softmax probabilities. The Shannon en-
tropy is H(pj) = −

∑
k pjk log pjk; let Pi = {pj}j∈N (i)

be the set of softmax probabilities in the closed neigh-
bourhood of node i. N (i) denotes the local neighbour-
hood of node i. Also please note that the neighbour-
hood will include the center node itself. For each node

htbp

(a) (b)
Figure 2: Box plots of Multi-JSD statistics after log trans-
form for unperturbed nodes (red) and perturbed nodes
(green). (b) using kernel density function to fit the log-
transformed statistics from the unperturbed nodes (Citeseer
dataset, under Nettack).

i, we obtain a discrepancy metric:

JSD (Pi) = H

 1
|N (i)|

∑
j∈N (i)

pj

− 1
|N (i)|

∑
j∈N (i)

H (pj) .

(1)

Figure 2 shows example distributions of the multi-JSD
statistic for clean and perturbed nodes after a log
transformation. The difference between the statistics
of perturbed versus unperturbed nodes is clear.

We also explore the application of a sharpening tech-
nique, as in (Berthelot et al., 2019), prior to computing
the JSD statistic. That is, for each pj , we first compute

p̃j = Sharpen (pj , T ) =

 (pj)
1
T
k∑K

k′=1 (pj)
1
T
k′

K
k=1

(where K is the number of components of pj . We then
calculate the statistics JSD({p̃j}j∈N (i)). The scalar T
is a “temperature” hyperparameter that controls the
amount of sharpening.

Detection test: This discrepancy measure is appeal-
ing given its simplicity and straightforward calculation.
We define a detection test by evaluating the JSD statis-
tic for a possibly perturbed node and comparing it to
a threshold τ . If it exceeds τ , then the node is deemed
to have been attacked. We apply the Neyman-Pearson
approach (Neyman and Pearson, 1933) to set the de-
tection threshold for the JSD statistic so that we can
maximize the detection probability while targeting a
desired false alarm rate. We fit a kernel density es-
timator (KDE) to unperturbed training data using a
Gaussian kernel whose bandwidth is determined via
cross-validation. We calculate an appropriate detec-
tion threshold τ by matching the KDE tail probability,
estimated with empirical quantiles, to a specific target
false positive rate (Silverman, 1986).

The KDE fitting and thresholding procedure requires
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an i.i.d. assumption on the JSD statistics of different
nodes. This assumption is usually not valid for graph
data. As a result, we are not guaranteed to achieve
the desired false alarm rate. In practice, however, the
empirical false alarm rate is very close to the target
theoretical value. We report the results of a detailed
investigation in the supplementary material.

4.1 Defense Mechanism

Our detector can be effectively employed as a prepro-
cessing step to flag adversarial input to a GNN. We
now outline a simple potential defense approach to cap-
italize on the information obtained from applying our
detection schemes. Although simple, the experiments
below suggest that the proposed mechanism is signifi-
cantly more effective than state-of-the-art approaches.

Suppose the detector flags a node’s neighbourhood as
unreliable and probably corrupted. We conduct classi-
fication for such a node without using neighbourhood
information. This leads to an effective pipeline for
integrating detection and training. Given a possibly
perturbed graph dataset and a GNN model to train, we
do not immediately train the classifier. Instead, we first
apply our detection test. If any nodes are identified as
perturbed, we simply exclude the neighbourhood data
for those nodes. This yields an “ameliorated” dataset
that we use to train the classification algorithm.

4.2 Adaptive Adversarial Attack

It is important to evaluate the adversarial robustness us-
ing adaptive attacks, i.e., attacks that are aware of the
detection method and adapt to avoid detection (Car-
lini et al., 2019). We now propose modifications to
Nettack (Zügner et al., 2018) and DICE (Waniek et al.,
2018) to construct such adaptive attacks.

Nettack uses a linearized graph convolutional network
as a proxy model and searches over candidate edges to
delete and add to the neighbourhood of a node. Edges
are chosen according to how much they reduce the clas-
sification margin of the proxy model. While conducting
the search over candidate edges, the algorithm is con-
strained to preserve the degree distribution. DICE
swaps edges in the neighbourhood of an attacked node,
removing those that connect to nodes of the same class
and adding edges to nodes of different classes. DICE’s
constraint is how many edges it can change.

Our adaptive attacks adds a constraint that the multi-
JSD statistic must not be increased to the extent that
the node would be flagged as attacked by the proposed
detection test (for a threshold associated with a chosen
false-alarm rate). The adaptive attack has the informa-
tion to calculate this threshold. In adapt-Nettack, we
conduct a local greedy search for the node that has the
greatest impact on classification, but only accept those

that respect the multi-JSD limit. In adapt-DICE, the
proposed random edges is evaluated and the modifica-
tion is rejected if the multi-JSD threshold is exceeded.

5 Detection of Corrupted Node Sets

We now switch to the task of detecting whether a
subset of nodes S ⊂ N , with |S| = M � N , has been
perturbed. We divide the nodes N into three sets: T ,
R, and S. The set R contains M nodes that are used
as a comparison set and are assumed to be unperturbed.
The set T = N − (R∪ S), containing N − 2M nodes,
is used to learn a suitable embedding of the nodes.

We now provide an overview of the proposed approach.
For each node i in R or S, we create an extended
feature vector x̃i ∈ X (we specify X below). Briefly, x̃i
concatenates the node features xi to a binary vector
ai,T of length N − 2M that encodes the topology in
node i’s neighbourhood (but only for edges that connect
to nodes in T ). We expect the difference between R
and S to manifest as a statistical difference between
the extended feature vector sets {x̃i}i∈R and {x̃j}j∈S .

Two-sample statistical hypothesis testing is a natural
framework for testing for such a discrepancy. Since the
space X is high-dimensional, it can be important to
identify a feature extractor zT : X → RV such that the
output zT (x̃i) ∈ RV succinctly summarizes the graph
topology, features and labels in the neighbourhood of
node i. We then apply a two-sample test to deter-
mine whether {zT (x̃i)}i∈R is drawn from the same
distribution as {zT (x̃j)}j∈S . The null hypothesis, H0,

models zT (x̃i) ∈ RV for i ∈ R ∪ S as i.i.d. random
vectors, generated from the distribution p. The alter-
native hypothesis, H1, states that the random vectors
zT (x̃i) ∈ RV for i ∈ R are i.i.d. and are generated from
a distribution q 6= p. In the context of detecting topol-
ogy manipulations, we can write p(x̃) = p1(x)p2(aT |x)
and q(x̃) = q1(x)q2(aT |x). Our detection framework
assumes p1(x) = q1(x); otherwise, we may detect a dis-
crepancy in the features included in R versus S. The
test thus operates over the conditional distributions
p2(aT |x) and q2(aT |x). It essentially tests whether,
conditioned on the node features, the probabilistic con-
nectivity is different between sets S and R.

We employ the non-parametric two-sample kernel test
from (Gretton et al., 2012). Let k be a (measurable and
bounded) kernel function; this kernel has associated
with it a reproducing kernel Hilbert space (RKHS) Hk
of functions on the set X . Given two distributions p
and q, the kernel k induces a metric which compares
the two distributions. This metric is the Maximum
Mean Discrepancy (MMD):

MMD2
k := Er,r′ [k(r, r′)]+Es,s′ [k(s, s′)]−2Er,s[k(r, s)].

(2)
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Here r, r′
i.i.d.∼ p and s, s′

i.i.d.∼ q. We reject H0 when
the MMD statistic exceeds a threshold cα, where α is
the desired p-value of our test.

We approximate the MMD using samples to form an

unbiased estimator M̂MD
2

U,k. Under H1, M̂MD
2

U,k is
asymptotically normal (Gretton et al., 2012) but under
H0, it converges to a distribution that depends on the
unknown distribution p. The threshold cα thus cannot
be computed analytically. Fortunately, (Sutherland
et al., 2017) provide a method for estimating a data-
dependent threshold ĉa via permutation.

5.1 Details of the test

For i ∈ N−T , let ai,T denote the binary vector
with N−2M elements, such that entry ai,j,T indi-
cates whether there is an edge between node i and
node j ∈ T . As mentioned, x̃i is the concatenation
of xi and ai,T . The vectors thus constructed lie in
X = RD × {0, 1}N−2M . We need to identify a suitable
feature extractor zT (x̃) : X 7→ RV . The subscript T
indicates that the function is dependent on the training
set nodes and the associated graph topology.

The (sharpened) Jensen-Shannon divergence can act
as a valuable feature for subset detection. We thus
use the function z′T (x̃i) = JSD({p̃j,T }j∈N (i)∩T ). The
notation p̃j,T indicates that the softmax probabilities
are derived using only the nodes in T . The multi-JSD
is evaluated over the nodes in N (i) ∩ T to avoid the
introduction of undesirable strong dependencies. In
order to ensure asymptotic consistency of the test (see
discussion below) we prefer to construct a function zT
that concatenates γ1xi, γ2ai,T and z′T (x̃i). Here γ1
and γ2 are scalars that can be selected to control the
impact of the respective terms.

5.2 Consistency of the test

The performance of the test can be measured by the

risk : R
(N)
M = P (H1|H0) + P (H0|H1). A detection test

is (asymptotically) consistent if R
(N)
M → 0 as M →∞.

The MMD test employing M̂MD
2

U,k is asymptotically
consistent if the kernel k is characteristic (Gretton
et al., 2012). A bounded, measurable kernel on a
measurable space, (X ,B), that defines an RKHS H
is called characteristic if the mapping P 7→ mP =
EX∼P [k(·, X)] is injective for probability distributions
P on the space (Fukumizu et al., 2004, 2008). As
discussed by (Sutherland et al., 2017), the composition
of a kernel k : X2×X2 → R and a function z : X1 → X2

defines a composite kernel k ◦ z : X1 ×X1 → R. If z is
an injective function and k is a characteristic kernel on
X2, then k ◦ z is a characteristic kernel on X1.

The function zT : X 7→ RN−2M+D+V is clearly in-

jective, because we can recover x̃ simply by dividing
each of the first N − 2M elements by γ1 or γ2. The
Gaussian radial basis function kernel is characteristic
on Rd. We can then construct a characteristic kernel
k : X × X 7→ R by forming the composition of the
function zT and a Gaussian RBF kernel k′ defined over
RN−2M+D+Q × RN−2M+D+Q.

5.3 Independence considerations

We now address a somewhat subtle point concerning the
i.i.d. assumptions required by the MMD test. It may
appear at first that the samples in {z′T (x̃i)} are not i.i.d.
because they contain entries from the adjacency matrix.
However, note that ai,T and aj,T do not have any
elements in common. The node i belongs to either R
or S and we are considering potential edges between it
and nodes in a disjoint subset T . The entire adjacency
matrix can have a strong dependency structure and
yet the vectors ai,T can be independent. Consider, for
example, a generative model parametrized by cT , a
vector indicating the class memberships of the nodes in
T , and a matrix β that indicates the probability that
a node in class r has an edge with a node in class s.
The joint distribution for nodes i and j in S is:

p(ai,T ,aj,T |cT ,β) =
∏
k∈T

p(ai,k|ci, ck,β)p(aj,k|cj , ck,β)

The vectors are thus conditionally independent even
though the generative model can achieve strong depen-
dencies in the adjacency matrix through the vector c.
The key point is that it is these conditional distribu-
tions that we test with the MMD. We do not assume
that the graphs are samples from a generative model
with the structure above. Rather, we can perform a
test under an independence assumption while allowing
for intricate dependencies in the adjacency matrix.

6 Experimental Results

6.1 Experimental settings

Datasets: We use the datasets analyzed in (Shchur
et al., 2018; Zügner et al., 2018). For targeted node
detection, we use citation datasets Cora, Citeseer,
Pubmed, and political blogs network Polblogs; for
subset detection, we also include collaboration net-
works Coauthor CS, Coauthor Physics and co-purchase
graphs Amazon Computers and Amazon Photo. We
follow the pre-processing steps of (Shchur et al., 2018).
For full dataset descriptions and statistics, please refer
to the supplementary material.

Graph attack models: We evaluate over 5 major
existing adversarial attack approaches including both
targeted and global attacks. We test the targeted node
attacks DICE (Waniek et al., 2018), Nettack (Zügner
et al., 2018), and GF-Attack (Chang et al., 2020). For
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Table 1: Detection Area-under-Curve (AUC) % comparison for Nettack (Zügner et al., 2018)

Dataset Ours GraphSAC GAE Amen Radar
OCSVM

raw
OCSVM

emb
Jaccard

Cora 86.4 80.0 50.2 75.0 77.0 50.3 72.7 69.9
Citeseer 80.1 75.0 64.4 73.0 67.0 36.8 67.8 69.3
Polblogs 85.4 98.0 51.2 89.0 76.0 - 59.9 -
Pubmed 87.8 82.0 69.2 62.0 44.0 58.5 57.9 82.4

Table 2: Detection Area-under-Curve (AUC) % under various graph attacks.

Model Ours GAE
OCSVM

raw
OCSVM

emb
Jaccard Ours GAE

OCSVM
raw

OCSVM
emb

Jaccard

Cora Polblogs

Nettack 86.4 58.2 33.9 59.4 71.0 88.9 57.8 - 53.1 -
DICE 77.5 64.6 50.0 50.0 61.2 74.2 48.5 - 33.0 -
GF-Attack 87.1 60.7 28.7 46.0 61.2 59.7 46.8 - 49.9 -
DICE-global 81.8 56.8 41.2 43.0 59.4 67.3 48.3 - 49.2 -
Mettack 66.1 56.4 43.8 61.0 57.3 87.0 50.4 - 51.1 -

Citeseer Pubmed

Nettack 83.2 63.5 27.9 56.3 67.5 91.0 70.2 72.6 82.3 82.0
DICE 76.8 62.6 44.2 47.1 62.9 68.0 54.4 60.8 57.0 57.9
GF-Attack 82.3 69.0 27.7 43.6 58.2 95.5 58.7 71.8 61.9 73.5
DICE-global 84.3 57.2 37.1 43.0 61.5 76.8 53.1 42.9 40.9 63.4
Mettack 66.3 57.5 37.7 66.2 59.2 83.1 54.0 35.8 37.3 65.5

global attacks, we use DICE-global (Waniek et al.,
2018) and Mettack (Zügner and Günnemann, 2019).

Detection Baselines: We compare our single node
detection method with state-of-the-art alternatives:
(i) two methods based on local feature homophily,
Amen (Perozzi and Akoglu, 2016) and Jaccard sim-
ilarity (Wu et al., 2019b). The latter was designed to
identify anomalous edges; we extend it to node detec-
tion by computing the average Jaccard index between
the center node and each neighbor; (ii) two methods
based on anomaly scores, GAE (Ding et al., 2019)
and Radar (Li et al., 2017); (iii) GraphSAC (Ioannidis
et al., 2020), which uses random sampling and consen-
sus; and (iv) two baselines that use One-class SVM
(OCSVM) (Manevitz and Yousef, 2001) — OCSVM-
raw uses the average of the raw neighbourhood features
and OCSVM-emb uses GNN node representations.

Defense comparison baselines: We compare with
three state-of-the-art robust GCN training schemes
(defense mechanisms): RGCN (Zhu et al., 2019), GCN-
Jaccard (Wu et al., 2019b) and GCN-SVD (Entezari
et al., 2020). We also compare to three different GNNs:
GCN (Kipf and Welling, 2017), SGCN (Wu et al.,
2019a) and GAT (Velickovic et al., 2018). GAT (Graph
Attention Network) can alleviate the impact of spurious
edges using the attention mechanism.

6.2 Results for single node detection

Attack configuration: We adopt the attack setup
in (Zügner et al., 2018), including the target node
selection procedure and perturbation budget. We
use GCN (Kipf and Welling, 2017) as the GNN un-
der attack. For Nettack (Zügner et al., 2018), GF-
Attack (Chang et al., 2020), and Mettack (Zügner and
Günnemann, 2019), we use default settings and speci-
fied hyperparameters. For targeted DICE, we apply a
light attack with perturbation budget ∆ = 1

4d, where d
is the degree of the targeted node. For the global DICE
attack and Mettack (Zügner and Günnemann, 2019),
we set the perturbation budget ∆ to 5% of the total
number of edges in the graph. We evaluate the per-
formance of our proposed model under other settings
and report results in the supplementary material. The
behavior is consistent across settings. Experimental
results are obtained by averaging over 10 runs.

Experiment 1: For the Nettack attack, we report
the average area-under-the-curve (AUC) values across
10 runs for K=10 targeted nodes in Table 1 (results
for GraphSAC and Amen are taken from (Ioannidis
et al., 2020)). This experiment allows us to compare to
the reported results for the state-of-the-art GraphSAC
detector (code is currently unavailable and we could
not replicate the performance).

Experiment 2: This more comprehensive experiment
investigates detection capabilities for 5 representative
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graph adversarial attacks. For the targeted attacks,
Nettack, DICE, and GF-Attack, we choose K = 40
nodes to attack. Table 2 reports the obtained AUCs.

Discussion: The results clearly demonstrate the ef-
fectiveness of our proposed detection technique. It
achieves a relatively high AUC for most attacks and
significantly outperforms comparison methods, both
for local and global attacks, on all datasets except for
Polblogs. Polblogs has no node attributes and has very
dense connectivity. In the absence of attributes, Graph-
SAC’s label propagation model outperforms the GCN
used to derive the logits. Our method’s AUC is lower
for Mettack, which is a relatively ineffective attack
(Table 5 shows that Mettack reduces accuracy by only
5-20% compared to 65-85% for Nettack) so detection is
harder. Besides, we evaluate the effectiveness for other
GNN models. Detection performance is similar for the
Graph Markov Neural Network (GMNN) (Qu et al.,
2019), simplified GCN (SGCN) (Wu et al., 2019a), and
Graph Attention Network (GAT) (Velickovic et al.,
2018). Results are included in the supplementary ma-
terial.

6.3 Adaptive graph adversarial attacks

In this experiment, we provide the results for the adap-
tive attacks described in Section 4.2. We select 40
target nodes. Proposed perturbations are only permit-
ted if the resultant multi-JSD is below a threshold τ ,
which is selected to correspond to the 5% false positive
rate on training data. More details of the experiment
setting are provided in the supplementary material.

Table 3: Accuracy (%) comparison for the target nodes
between the original attacks and the adaptive attacks with
the multi-JSD constraint.

Clean
Nettack

Nettack
Nettack
mJSD

Clean
Dice

DICE
DICE
mJSD

Cora 82.2 25.0 49.3 89.8 64.1 63.2
Citeseer 73.6 28.6 45.0 87.5 62.6 61.8
Polblogs 95.0 37.8 84.3 87.0 27.7 64.8
Pubmed 89.2 9.7 52.4 86.7 58.4 61.1

Table 4: Comparison of detection rates (%) at 5% false-
alarm threshold between the original attacks and the adap-
tive attacks multi-JSD constraint.

Nettack Nettack-mJSD DICE DICE-mJSD

Cora 43.2 21.1 50.0 42.5
Citeseer 54.1 26.6 43.6 2.1
Polblogs 60.2 9.1 38.9 4.3
Pubmed 52.5 22.5 52.5 20.1

Table 3 shows the accuracy reduction achieved by the
adaptive attacks and in Table 4, we report the detection
rate of the adaptive attacks before and after adding the
local smoothness constraint (we report detection rate
instead of AUC to more clearly demonstrate the effec-
tiveness of the adaptation. AUC results are reported

in the supplementary material). The adaptive attack
greatly reduces the probability of detection (Table 4),
but this comes at the price of potential less impactful
attacks. Note that the detection rates for the adaptive
attacks are non-zero because the attacks evaluate the
multi-JSD constraint using a proxy linearized model
and there is a mismatch between this proxy and the
the true GNN used during detection and classification.

6.4 Results for Sets of Corrupted Nodes

In order to simulate a poisoned subset of nodes S, we
use DICE to sequentially corrupt edges of a set of M
nodes chosen uniformly at random. The set R consists
of another M uncorrupted nodes that are not in S. To
test the effectiveness of our detection scheme, we also
use a “control” dataset where the nodes are partitioned
into three sets Rcontrol, Scontrol and Tcontrol but where
Scontrol has not been subjected to any perturbations.
This provides a way to validate the false alarm rate.

We expect that it is harder to detect suspicious sets
of nodes for small M and we therefore carry out our
detection experiments for a range of values of M . For
each value of M , we generate 100 different random
partitions {R,S, T }. Our detector employs an RBF
kernel k′ with a fixed bandwidth, a hyperparameter
that must be tuned. We apply the kernel optimization
procedure from (Sutherland et al., 2017) wherein the
sets of samples are divided into a “training set” and
a “test set” for tuning kernel parameters. The other
hyperparameters γ1 and γ2 are positive scalars that are
small relative to the kernel bandwidth and the choice
of γ1, γ2 is thus folded into the bandwidth tuning. The
softmax probabilities used in the MMD test are derived
from a GCN trained using the graph structure and
node features incident on T . This allows us to obtain
embedding vectors for all nodes in S and R. Finally,
we used a false positive threshold α = 0.05 to derive the
data-dependent threshold ĉα for the hypothesis test.

Figure 3 shows the detection rate for a range of M
values. The thin lines at the bottom of each graph
are the corresponding false alarm rates; we achieve to
stay close to the target 5%. We compare three differ-
ent kernel mapping functions: Multi-JSD, sharpened
Multi-JSD (T = 0.01) and hard maximum (T → 0)).
From the experimental results of all nine datasets, we
demonstrate the effectiveness of our proposed detectors
on the node subset detection task. We observe that
the sharpened Multi-JSD consistently outperforms the
other two kernel mapping functions. The performance
of the MMD subset detection approach is much better
than repeated application of single node detection; due
to the multiple hypothesis testing effect, the threshold
of the single node detector must be set very high to
avoid too many false alarms and as a result the detec-
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Figure 3: Detection performance for subgraph attack detection for 8 datasets under DICE attack.

Table 5: Accuracy (%) comparison with GCN defense mechanism under targeted attack and global attack. The uncertainty
represents the 95/5 confidence interval. Bold values denote cases where a Wilcoxon signed rank test indicates a statistically
significant difference between the best and second-best (underline) algorithms.

Dataset GCN (clean) GCN SGCN GAT GCN-SVD Jaccard RGCN Ours

Targeted attack: Nettack
Cora 89.6±1.8 17.2±3.8 23.7±0.1 37.5±1.1 43.6±1.4 35.7±1.5 18.6± 0.9 50.3±2.4
Citeseer 90.0±0.8 18.0±1.0 20.0±0.0 31.0±2.2 41.7±1.5 25.3±1.6 17.5±1.7 63.3±1.7
Polblogs 93.8±1.2 14.1±2.5 - 24.0±8.7 19.0±1.9 - 9.4±0.9 36.7±0.5
Pubmed 83.3±1.2 28.8±0.1 26.6±2.1 44.5±1.3 49.1±1.0 30.1±3.1 29.4±0.6 67.9±0.6

Global attack: Mettack
Cora 82.8±0.2 75.1±0.1 76.2±0.0 77.2±0.1 77.8±0.4 78.5±0.4 77.1±0.4 79.0±0.5
Citeseer 71.9±0.2 65.9±0.3 69.6±0.1 71.8±0.1 68.9±0.8 70.2 ±1.1 71.2±0.1 72.1±0.3
Polblogs 95.3±0.3 76.4±0.6 - 86.9±1.5 92.3±0.4 - 77.3±0.6 77.5±0.4
Pubmed 85.9±0.1 81.2±0.0 74.4±0.0 79.6±0.3 82.0±0.1 81.3±0.1 80.8±0.1 82.4±0.1

tion rate is very low. See supplementary material for
detailed results.

6.5 Defense Mechanism

We compare our proposed defense strategy with the
existing GNN defense approaches including GCN-
Jaccard (Wu et al., 2019b), Robust GNN (Zhu et al.,
2019) and GCN-SVD (Entezari et al., 2020). We
conduct experiments on Cora, citeseer, Polblogs, and
Pubmed under one target attack, Nettack, and one
global attack Meta-attack. For the targeted attack, we
report the classification accuracy for the K = 80 se-
lected nodes (with target selection policy as in (Zügner
et al., 2018)) before and after the attack. For the global
attack, we apply Meta-attack with 5% perturbed edges
to poison the underlying data topology. We then report
the classification accuracy for the entire test set. We
use our proposed detector to flag any nodes with multi-
JSD metrics above the detection threshold τ (computed
by setting a 5% false positive rate on training data).
Then we exclude the neighborhood data around those
nodes and yield the “ameliorated” adjacency matrix.

As shown in Table 5 when we train GCN (Kipf and
Welling, 2017) or SGCN (Wu et al., 2019a) on the
poisoned dataset, we observe a significant degradation
in accuracy. GAT (Velickovic et al., 2018) is more ro-
bust, which could be explained by the learned attention
scores can mitigate the impact of spurious edges. Com-
pared with other robust GNN training alternatives, our
approach is more robust against targeted node attacks,
with an average 15% improvement over the second-best
baselines. For the defense against the global meta-
attack, our method also has an advantage, with the
exception of the Polblogs dataset. As mentioned previ-
ously, Polblogs does not have node attributes and its
topology information dominates the representation of
nodes. The low-rank approximation of the graph used
by GCN-SVD can effectively filter out the noisy edges.

We further explore the performance of our detector and
defense strategy under different perturbation budget
(severities of attack). We conduct a global attack (Meta-
attack) under different perturbation budgets. Figure 4
shows the example results for Citeseer. The right panel
compares defense strategies and the left compares de-
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Figure 4: Detection and defense under different perturba-
tion budget (Citeseer)

tection strategies. We observed similar trends for other
datasets. The results are consistent with the results
reported in table 5 and table 2. Our proposed detector
and defense outperforms alternatives in the majority
of the cases.

Finally, we compare the time complexity across dif-
ferent defense techniques. In Table 6, we can observe
that our proposed defense strategy is computationally
efficient and scales much better for larger graphs com-
pared to the GCN-SVD and R-GCN approaches. In
addition, our defense strategy does not introduce extra
space complexity compared to the original GCN model.

Table 6: Training time complexity (s)

GCN Jaccard GCN-SVD R-GCN Ours

Cora 7.9 12.7 25.2 61.2 14.6
Citeseer 8.5 12.8 22.8 73.4 16.8
Polblogs 6.4 7.8 7.1 25.2 12.3
Pubmed 45.8 88.4 1070.2 1999.8 96.9

Table 7: Left: Prediction accuracy (%) for the illicit trans-
action before and after the adversarial graph perturbations
and after using our defense strategy. Right: Detection Area-
under-Curve (AUC) under Nettack attacks using GCN as
the prediction model.

(Acc %) Clean
Under

Nettack
Defense
Nettack

Detection
Nettack (AUC %)

TS 1 92.5 85 87.5 83.5
TS 2 72.5 50.0 52.5 78.0
TS 3 90.0 62.5 82.5 86.3
TS 4 97.5 67.5 82.5 87.1
TS 5 95 55.0 87.5 75.9

6.6 Real world application: Adversarial
attack detection in Bitcoin Networks

We evaluate our proposed detection scheme on real-
world Bitcoin transaction networks provided in the
Elliptic Bitcoin Dataset (Weber et al., 2018). From the
raw Bitcoin data, the graph is constructed such that
nodes represent transactions and edges represent the

flow of Bitcoin currency from one transaction to the
next. The goal is to label each Bitcoin transaction as
licit or illicit (see Figure 1). The dataset statistics are
provided in the supplementary material.

The dataset consists of multiple transaction graphs
associated with different times. We select for analysis
the 5 time steps with the most illicit transactions. We
consider targeted attacks that have the goal of disguis-
ing illicit transactions. We apply Nettack and DICE
to simulate this real work attack mechanism (DICE
results can be found in the supplementary), with at-
tack budget and constraints set as in Section 6.2. After
obtaining the perturbed graph, we conduct the target
node detection procedure.

Table 7 shows how effective the attacks are in deceiving
a GCN classifier and disguising illicit transactions. In
the right column, we report the detection AUC for our
single node detector. The proposed detector achieves
high AUC scores, successfully detecting most attacked
transactions without generating many false alarms.

7 Conclusion

We have presented methods for detecting adversarial
attacks against graph data in two distinct regimes. In
both cases, we assume that the data has been poisoned
by modification of edges in the graph in order to mis-
lead a node classification algorithm and degrade its
performance. The existence of adversarial vulnerabili-
ties for the task of node classification was seen to be
tied to the assumption of local smoothness of the graph
data. As practical motivation, we illustrated using Bit-
coin transaction network data how graph adversarial
attacks could be used to disguise illicit transactions.
We then demonstrated that the proposed detection
procedure could reveal such attacks. Building on the
detection procedures, we designed a defense mechanism
that results in a much more robust training procedure.
Finally, we proposed an adaptive attack which signifi-
cantly reduces the detection rate by using our designed
smoothness metric as an unnoticeable criteria for lim-
iting the search space for the perturbation edge.
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